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Abstract. In the field of deep learning, the identification of 

optimal neural architectures requires not only profound expertise 

but also a substantial investment of time and effort in the 
evaluation of the outcomes generated by each proposed model. In 

this study, we introduce a Single Agent Neuroevolution algorithm, 

based on the Hill Climbing algorithm for Neural Architecture 
Search, named Dynamic Neural Network Optimization (DyNNO). 

This approach focuses on the evaluation of the performance of 

neural networks optimized for function approximation. 

Additionally, we have explored the minimization of the number of 

neurons within the neural network structures. The results 

demonstrated the feasibility of using this algorithm to automate 
the neural architecture search process. Furthermore, the reduction 

in the number of parameters improved the generalization 

capability of the networks. The findings also suggest that mutation 
in activation functions can be a factor to explore in achieving a 

more effective reduction in error rates.  
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1 Introduction 
 

Artificial Neural Networks (ANNs) are computational models that attempt to mimic the features of biological neurons. They are 

typically composed of interconnected nodes, or neurons, which can have one or more inputs and outputs. The basic model of a 

neuron in neural networks involves computing a weighted sum of the inputs, which is then passed through a typically nonlinear 

activation function, although linear functions can also be used. This output determines the response of the neuron. A single neuron 

computes this operation independently. When two or more nodes (neurons) compute such sums using the same inputs and are 

organized together, they form a structure commonly referred to as a perceptron. This model is widely applied in different fields 

for classification and regression problems (Campbell & Gear, 1995). If the perceptron has more than one layer, then it is a 

Multilayer Perceptron (MLP). 

 

To build a MLP model is necessary to define its architecture, i.e., establish the number of layers, the number of neurons per layer, 

and the activation function that the model will have, although the process of finding the best parameters is usually time-consuming 

and requires a certain level of expert knowledge. The Neural Architecture Search (NAS) is a paradigm that emerged to optimize 

this process. In this way, different strategies have been proposed such as reinforcement learning, evolutionary algorithms, and 

gradient-based methods. However, reinforcement learning regularly requires large amounts of computational resources. 

Evolutionary algorithms may offer a viable alternative when resources are constrained, owing to their rapid convergence and 

ability to operate without prior knowledge.  Despite the absence of such knowledge, their performance is at least comparable to 

other algorithms (Pan & Yao, 2021). 
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In this context, metaheuristic algorithms, some of them inspired by optimization processes observed in nature, provide an efficient 

search method. Metaheuristic algorithms are computational optimization approaches to find high-quality solutions for complex 

and challenging problems. Unlike conventional methods, metaheuristic algorithms do not rely on specific problem information 

and can explore broad solution spaces in search of the optimal solution. These algorithms draw inspiration from natural processes, 

physical phenomena, or global search strategies to guide the exploration of solution spaces. Examples of metaheuristic algorithms 

include hill climbing, genetic algorithms, simulated annealing, tabu search, and particle swarm optimization. Their flexibility and 

ability to address various problems make metaheuristic algorithms powerful tools for tackling complex challenges in engineering, 

logistics, planning, and others. 

  

In this study, we propose a single agent neuroevolution algorithm based on hill climbing named Dynamic Neural Network 

Optimization (DyNNO), which is employed for the exploration of neural architectures in a multilayer perceptron, applied to the 

task of function approximation. The structure of this paper is as follows: Section 2 presents previous work. Section 3 explains the 

algorithm of Dynamic Neural Network Optimization. Section 4 explains the experiments done with the functions to be 

approximated by the neural network. Section 5 showcases the obtained results. Section 6 provides the conclusions. 

 

2 Previous work 
 

According to (Elsken et al., 2019) Neural Architecture Search (NAS) can be divided into three fields: search space (to define 

which architectures to explore, initially), search strategy (to maximize ANN performance by exploring the search space of neural 

architectures), and performance estimation strategy (to estimate architecture's performance without training each architecture to 

be evaluated from scratch). 

 

In the case of search strategy (the field where this work lay), some of the proposed methods have been Bayesian optimization 

(Rao et al., 2022), evolutionary methods (Klosa & Büskens, 2022; Niu et al., 2019) and reinforcement learning (Lyu et al., 

2023). In the context of neuro-evolutionary methods, genetic algorithms are used as a weight-sharing strategy to speed up the 

evaluation of the architectures. Moreover, other methods, such as simulated annealing or tabu search, have also been proposed 

(Ludermir et al., 2006). 

 

Nevertheless, most of the work on NAS revolves around the training or construction of Convolutional Neural Networks, with 

interest in reducing their design time and even resource use (Wu et al., 2022), complexity (DLW-NAS), or improving its 

performance in object classification, segmentation or identification tasks (Li et al., 2021), where data sets such as CIFAR-10 (Niu 

et al., 2019; Z. Chen & Li, 2020) or ImageNet (Wu et al., 2022) is used as a reference (DLW-NAS). However, each domain 

requires a specific approach (Wolpert & Macready, 1997). Few works focus NAS on other kinds of networks, for example, in 

(Ludermir et al., 2006) a NAS algorithm was proposed to optimize a multilayer perceptron (MLP) network weights and 

architectures, where the constraint was to generate topologies with few connections and high classification performance to solve 

classification tasks with tabular datasets and prediction tasks with time series. (Klosa & Büskens, 2022) propose an evolutionary 

NAS to predict traffic conditions training Graph Convolutional Networks (GCN), taking care of performance, robustness, and 

resource consumption. 

 

3 Dynamic Neural Network Optimization (DyNNO) 

 
The hill climbing algorithm is an optimization method used in machine learning. The algorithm aims to find the best solution to a 

problem through successive iterations. It starts at a random solution and makes small modifications to get a new solution. If the 

new solution is better, then it becomes the actual solution and repeats the process until no further improvements are found or other 

termination criteria are met. This approach is particularly useful in complex problems where finding the optimal solution is 

computationally difficult. This algorithm has been used in many applications (Tsamardinos et al., 2006; Guindon and Gascuel, 

2003). 

 

DyNNO is based on hill climbing; however, instead of selecting a random point in the search space, a neural network with a 

random architecture within the search space is created. The pseudocode is presented in Algorithm 1, and its explanation is as 

follows: 

 

• First the neural network architecture is constructed using the random net function. This function takes as parameters the 

minimum and maximum values for the number of layers and the number of neurons per layer the network may have when it 

is initialized. Then the architecture is built with a random number of layers, within the defined range of layers. For each layer, 
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the number of neurons is chosen randomly within the defined range of neurons, and a matrix of random numbers between 0 

and 1 is created to generate the synaptic weights. In this work all random choices were taken from a uniform distribution, the 

layers range was [2, 3] and the neurons range was [50,200]. Finally, all layers have a hyperbolic tangent activation function, 

except for the output layer, which has a linear function. 

• Once the neural network is created, it is trained using the backpropagation algorithm, employing the mean squared error as 

the loss function. Additionally, a minibatch of size 100 is utilized to expedite the training process. 

• With the initial network trained, the architecture search process begins. For this, a mutation is applied to the network, where 

the mutation process includes modifying the number of neurons in a layer, the number of layers, or the activation functions 

(see subsection 3.1. Modification of the number of neurons or layers and subsection 3.2 Modifying activation functions). The 

mutated network is also trained using the backpropagation algorithm. If the mutated network exhibits a lower error, the 

mutated network replaces the current one; otherwise, no changes are made, and the current network undergoes another 

mutation. 

• This process continues for a specified number of epochs. In this work, 20 epochs were conducted for each function. The 

number of epochs was chosen solely based on execution time, ensuring the algorithm did not exceed one hour for each trial. 

Algorithm 1. DyNNO Algorithm 

               DyNNO Algorithm 

1: procedure DyNNO(layers range, neurons range, Input, Output, epochs) 

2: net ← random net(layers range, neurons range) 

3: net, error ← train net(net, Input, Output) 

4: for epoch ← 1 to epochs do 

5: new net ← mutate net(net) 

6: new net, new error ← train(new net, Input, Output) 

7: if new error < error then 

8: net ← new net 

9: error ← new error 

10: end if 

11: end for 

12: end procedure 

 

3.1   Modification of the number of neurons or layers 
 

The mutation algorithm for modifying the number of neurons or layers automatically and randomly is shown in Algorithm 2. The 

process of mutation is realized every epoch, and the number of layers could decrease until 1, but increase without restriction 

(according to the modifications made in each epoch). The modification of the number of neurons or layers is generated according 

to the value of r, where r is a random number with uniform distribution with values from 0 to 1, and it is generated every training 

epoch. The mutation of the network is generated according to the value of r, with the following rules: 

 

1. If r < 0.1, a layer is added at a random position in the architecture. The number of neurons in the new layer is randomly 

generated based on the neurons range defined previously. Their weights are also randomly generated with values between 0 

and the weights of the previous layer and the next layer are adjusted to match the weights of the new layer. 

2. If r ≥ 0.1 and r ≤ 0.9, the number of neurons is modified, excepting the last layer so as not to modify the desired output size 

of the network. Neurons are added with a probability of 0.5, otherwise, they are removed. The number of neurons to add or 

remove, number neurons, is chosen randomly in a range from 1 to 10. 

3. r > 0.9, a random layer is removed. The weights of the next layer are adjusted to match the layer before the removed layer. 

4. In cases 2 and 3, if only the output layer remains, a hidden layer is added. 
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Algorithm 2. Mutation algorithm for neurons and layers 

               Mutation algorithm for neurons and layers 

1: procedure Network Mutation(neurons range) 

2: r ← rand[0, 1] 

3: if r < 0.1 then 

4: net mut ← add layer(neurons range) 

5: else if r > 0.1 and r < 0.9 then 

6: net mut ← modify number of neurons(random layer, number neurons) 

7: else 

8: net mut ← delete layer 

9: end if 

10: end procedure 

 

3.2 Modifying activation functions  

 
Modifying activation functions consists of changing the type of function (sigmoid or tangent), or its characteristics (amplitude 

and slope). Eq. 1 shows the sigmoid activation function and eq. 2 shows the hyperbolic tangent activation function. Fig. 1 shows 

an example of two variants of the sigmoid function. The blue one has a slope and amplitude equal to one. The red one has a slope 

and amplitude equal to two. 

 

                                                                          f(x) =  
𝛼

1 + 𝑒−𝛽𝑥

⬚

⬚
. (1) 

 

                                                                       f(x) =  𝛼
𝑒𝛽𝑥−𝑒−𝛽𝑥

𝑒𝛽𝑥+𝑒−𝛽𝑥
. 

(2) 

where 

α is a factor for the slope 

β is a factor for the amplitude 

 

 
Fig. 1. Sigmoid function 

 

Function modification is performed with a probability of 0.2 as long as there is at least one hidden layer, this due to the output 

layer is never modified, and its function always remains linear. This value to function modification was chosen because most of 
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the research utilizes standard activation functions, however, there is evidence suggesting that modifying these functions can 

enhance performance (Mercioni et al., 2019; Pedamonti, 2018). Whether the function modification is valid, a hidden layer n is 

randomly selected, and random numbers r1 and r2 are generated with values from 0 to 1. The function modification is carried out 

according to the following rules: 

 

1. If r1 < 0.2 we proceed to the activation function mutation. Otherwise, no modification is made to the activation functions. 

(a) If r2 < 0.2, the type of activation function is modified. If the current function is sigmoid type it is changed to a hyperbolic 

tangent type function. Conversely, if the current function is a hyperbolic tangent it is changed to the sigmoid function. 

(b) If r2 ≥ 0.2, the parameters of the current activation function are randomly modified, increasing, or decreasing the 

amplitude and the slope of the function, each one with a different random value between -0.5 and 0.5. 

Algorithm 1. Mutation algorithm for activation functions 

               Mutation algorithm for activation functions 

1: procedure NetworkMutation(net) 

2: r1 ← rand 

3: if r1 < 0.2 then 

4: if numLayers > 2 then 

5: r2 ← rand 

6: n ← randint(lenLayers) 

7: if r2 < 0.2 then 

8: Layers.f cn(n) ← change f cn(Layers.f cn(n)) 

9: else 

10: m ← rand([−0.5, 0.5]) 

11: Layers.f cn(n).amplitude ← Layers.f cn(n).amplitude + m 

12: p ← rand([−0.5, 0.5]) 

13: Layers.f cn(n).slope ← Layers.f cn(n).slope + p 

14: end if 

15: end if 

16: end if 

17: end procedure 

 

3.3 Optimization Model 

 
Considering a neural network with architecture x, it is applied the mutation function M to get the new neural architecture x′, 

defined by: 

 

x' = M(x)  (3) 

 

Then, the neural network error is defined as ϵ1 for the neural network with the architecture before the mutation, and ϵ2 for the 

neural network error after the mutation: 

 

ϵ1 = Error(x)  (4) 

 

ϵ2 = Error(x’)  (5) 

 

The neural network’s error is calculated with eq. 6: 

 

                                                                  Error = 
1

𝑛
∑ ⬚ 𝑛
𝑖= 1   (𝑦𝑖  −  𝑦𝑖 

′)2  (6) 
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where, 

yi is the output of the function (Sphere, Rastrigin or Griewank) and y’i is the output of the neural network. 

 

The new architecture x′ will be accepted if the following conditions are satisfied: 

Accept x’ if (ϵ2 < ϵ1)  (7) 

 

The algorithm with the acceptance condition given by eq. 7 is named Normal DyNNO, to refer to it only searches for the minimum 

error value. Additionally, a second proposal of the previous model has a variation of the acceptance condition by considering the 

possibility of a slightly worse performance but with fewer parameters in the neural network. The algorithm with the second 

acceptance condition is referred to as Min DyNNO. The acceptance condition of Min DyNNO is described in eq. 8. 

Accept x′ if (ϵ2 − ϵ1 < 0.1) AND (NumParams(x′) < NumParams(x)) (8) 

 

where, 

NumParams(x) and NumParams(x′) represent the number of parameters in the architectures x and x′, respectively. 

 

4 Experiments 
 

The approximation functions and the experiments carried out are described in this section. This work considers three different 

functions to be approximated by the neural networks: Sphere, given by eq. 9, Rastrigin, given by eq. 10 and Griewank, given by 

eq. 11. The functions were selected due to their use in testing optimization algorithms (Yang et al., 2013; Garcıa et al., 2023), and 

their form poses an interesting challenge for approximation with a neural network. 

 

                                                                                 f(x) =  ∑ 𝑥𝑖
2 𝑑

 𝑖 = 1  (9) 

 

                                                          f(x) = ∑
𝑥𝑖
2

4000

 𝑑
 𝑖 = 1 −∏ cos (

𝑥𝑖

√𝑖
) 𝑑

𝑖 = 1  + 1 
(10) 

 

                                                             f(x) = 10𝑑  + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

 𝑑
 𝑖 = 1  (11) 

 

where, 

d is the number of dimensions for the function, and X is a vector. 

 

The experiments consider different dimensions of the same function, varying the number from 1 to 10, but maintaining a single 

output in each function. The output of the functions for dimensions 1 and 10 are shown in Fig. 2. The input data is in the range of 

[-1, 1], with increments of 0.1, which returns a vector size = 21. In scenarios involving two or more dimensions, a grid 

of uniformly distributed points is generated and organized into a matrix of size [dimension, vector_sizedimension]. However, if 

vector_sizedimension > 10, 000, only the first 10,000 columns are used. 

 



Angeles et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163. 

157 

 

 
Fig. 2. Function outputs for dimensions 1 and 10 

 

5 Results 

 

A hundred experiments were conducted for each dimension, with statistical error values calculated. Two types of training were 

performed, first with Normal DyNNO and then with Min DyNNO. 

 

The pseudocode for Min DyNNo was adjusted accordingly to Algorithm 4. After completing the trials, the following statistical 

data on the error was collected: minimum, maximum, average, median, standard deviation, total weights, and bias of the network 

with the minimum error, and average error across the 100 trials. Then, we also used the best neural network with validation data 

with the same length as the training input. The validation data is the same as the input but adds random numbers in the range of 

[-0.1,0.1]. The results are shown in the Tables 1,2,3,4,5,6. Based on the data obtained from the conducted tests, we proceeded to 

implement a Multi-Criteria Decision Making (MCDM) approach, a methodology used for decision-making involving multiple 

criteria (Hwang et al., 1981). We employed the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, 

developed and applied in numerous studies and practical applications (S.-J. Chen & Hwang, 1992; Behzadian et al., 2012). This 

technique is based on the idea that the chosen option should have the smallest Euclidean distance to the ideal solution and the 

greatest distance to the non-ideal solution. The criteria used are the statistical data in the tables. 

 

Algorithm 4. Modification to prioritize fewer parameters 

               Modification to prioritize fewer parameters 

1: if new error < error OR (new error −error) < 0.1AND new net.P arameters < net.P arameters then 

2: net ← new net 

3: error ← new error 

4: end if 

 

Table 1. Results of Sphere function with normal algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 0.1078 168.44 3.4382 0.3479 17.5571 0.1098 7326 

2 0.0123 0.2156 0.0672 0.0627 0.0372 0.0134 13440 

3 0.0057     0.5428 0.1069 0.0453 0.1240 0.0062 13516 

4 0.0137       0.6236 0.0962 0.0641 0.1120 0.0289 11342 
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5 0.0020      0.0140 0.0050 0.0041 0.0025 12.1131 8852 

6 0.0033       0.0096 0.0054 0.0051 0.0018 4.5509 7093 

7 0.0010       0.0175 0.0035 0.0026 0.0029 0.1402 8187 

8 0.0030       0.0134 0.0054 0.0049 0.0019 8.5237 11964 

9 0.0035      0.0171 0.0059 0.0049 0.0036 11.7938 6791 

10 8.06e-05    0.0038 0.0011 9.98e-04   8.44e-04 0.2715 11684 

 

Table 2. Results of Sphere function with minimization algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 0.1069    41.9907  1.3946 0.2660 5.0881 0.1132 7380 

2 0.0023   0.1042 0.0210 0.0194 0.0172 0.0035 3794 

3 0.0062     0.1097 0.0351 0.0372 0.0217 0.0060 3852 

4 0.0006       0.0272 0.0022 0.0015 0.0033 0.0024 685 

5 0.0027       0.0586 0.0077 0.0055 0.0068 0.0821 6051 

6 0.0035       0.0969 0.0100 0.0072 0.0132 0.2087 3595 

7 7.22e-04     0.0360 0.0072 0.0050 0.0081 0.2880 3273 

8 2.15e-04       0.0252 0.0103 0.0081 0.0059 0.2704 8953 

9 0.0025      0.0413 0.0074 0.0057 0.0060 0.1662 3901 

10 1.43e-05       0.0071 0.0023 0.0020 0.0015 1.6687 5321 

 

 

The factors were weighted to give more importance to some of them. To weigh the criteria, decimal numbers were assigned whose 

sum equals 1. The assigned weights were as follows: minimum error: 0.2, maximum error: 0.1, average error: 0.15, median error: 

0.15, standard deviation error: 0.1, and test error: 0.3. 

 

To apply TOPSIS, the statistical data obtained in all the dimensions were added up according to their function and the experiment 

under comparison (with Min DyNNO referred to as “Min” against Normal DyNNO, referred to as “Normal”). The results are 

shown in the first section of Table 7.  

 

Table 3. Results of Rastrigin function with normal algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 42.1788     155.3428 62.0994 53.3792 83 42.0016 5079 

2 0.0795       99.9939 2.3214 1.3431 9.9090 0.4928 4580 

3 0.0130     37.3487 0.6232   0.0766 3.7232 0.3360 7480 

4 0.0404      0.9145 0.2472 0.1934 0.1813 1.7927 13978 

5 0.0677       110.7870 49.7869 55.0708 25.5513 6.6513 4098 

6 0.0158     1.5043 0.3555 0.2385 0.3133 8.4582 6668 

7 0.0008    41.4356 2.0495   0.0042 8.8448 24.5503 3469 

8 0.0015     152.9829 30.8810 0.0062 58.2250 37.0374 7405 

9 0.0010       63.2166 0.6354 0.0028 6.3213 25.4991 2670 

10 1.19e-06    0.0035 4.89e-04 7.02e-05   7.66e-04 253.6776 14347 
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Table 4. Results of Rastrigin function with minimization algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 44.4816 188.4018 67.4475 54.8170   27.6903 46.8318 11139 

2 0.1817    2.7307 0.7864 0.6116 0.5766   0.6607 14138 

3 0.1026       1.1735 0.3705 0.2730 0.2571 0.5637 9830 

4 0.0667       1.7757 0.2997 0.2609 0.2150 1.7412 12598 

5 0.1720     1.8329 0.7367 0.5561 0.4650 9.7870 3619 

6 0.1612      1.2311 0.4856 0.3424 0.2643 11.0513 5020 

7 0.0078     0.1491 0.0419 0.0298 0.0323 20.5160 1418 

8 0.0001       0.1106 0.0388 0.0313 0.0281 183.1473 6453 

9 0.0010   77.6584 3.3909 0.0038 14.9381 64.0813 1918 

10 1.01e-05     0.0332 0.0025 0.0018 0.0042 279.6284 5523 

 

Table 5. Results of Griewank function with normal algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 0.0229   130.1647 2.1082 0.1100 13.1507 0.0228 2198 

2 0.0009       0.0239 0.0057 0.0046 0.0044 0.0012 9895 

3 0.0002     0.0063 0.0021 0.0018 0.0015 0.2158 6419 

4 0.0006       0.0055 0.0022 0.0025 0.0008 0.0015 7112 

5 0.0002       0.0043 0.0021 0.0024 0.0008 0.0201 8245 

6 0.0003       0.0045 0.0016 0.0018 0.0006 0.0033 6049 

7 0.0005       0.0066 0.0026 0.0030 0.0010 0.0072 3661 

8 0.0003       0.0044 0.0024 0.0023 0.0011 0.0023 3103 

9 0.0003     0.0048 0.0021 0.0019 0.0012 0.0042 3861 

10 2.06e-6      0.0055 0.0018 0.0013 0.0013 5.3608 2492 

 

Following that, the outcomes of the three functions derived from the Normal DyNNO algorithm were added, doing the same with 

the results obtained with the Min DyNNO algorithm. The results are shown in the second section of Table 7. Subsequently, they 

were normalized using the Euclidean norm by dividing all the data by the number c obtained with equation 12. 

Table 6. Results of Griewank function with minimization algorithm 

Dim  Min Max Avg Med Sd Test error Param. avg 

1 0.0230  20.7805 1.0913 0.2056 2.9516 0.0266 5383 

2 0.0056     0.1315 0.0305 0.0247 0.0188 0.0049 6720 

3 0.0028      0.0693 0.0238 0.0227 0.0092 0.0030 3060 

4 7.26e-4     0.0359 0.0040 0.0027   0.0048 0.0011 10975 

5 5.65e-04       0.0196 0.0037 0.0027 0.0032 0.0038 6837 

6 8.21e-04      0.0255 0.0028 0.0018 0.0036 0.0024 5789 

7 4.28e-04       0.0178 0.0041 0.0032 0.0029 0.0024 4858 

8 4.41e-04       0.0351 0.0042 0.0037 0.0036 0.0022 4932 

9 6.23e-04    0.0083 0.0037 0.0040 0.0011 0.0039 1190 

10 5.17e-04       0.0059 0.0039 0.0041 0.0009 0.0045 1864 
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Table 7. Results of Sphere function with normal algorithm 

 Min Max Avg Med Sd Test error Param. avg 

Sphere 

Normal 

0.1524   

 

169.9018    3.7348 0.5426 17.8438 37.5515 100200 

Sphere 

Min  

0.1257      42.4969 1.4978 0.3576 5.1718 2.8092 46805 

Rastrigin 

Normal  

42.3985  663.5298 149.0000   110.3149 196.0700 400.4970 69774 

Rastrigin 

Min  

45.1747    275.0970   73.6005 56.9277 44.4710 618.0087 61836 

Griewank 

Normal  

0.0262  

 

130.2305    2.1308 0.1316 13.1634 5.6392 53035 

Griewank 

Min  

0.0355      21.1294 1.1720 0.2752 2.9997 0.0548 51608 

Normal  42.5771  963.6621 154.8656 110.9891   227.0772 443.6877 223000 

Min 

parameters  

45.3359    338.7233   76.2703 57.5605 5 52.642 620.8727 160250 

 

The sums of the statistical error data were divided by the maximum output value of the larger dimension of each function, except 

for Griewank, whose maximum value is less than 1. The maximum output value in the Sphere function was 10, in Rastrigin it was 

151.11, and in Griewank it was 0.8068.  

 

                                                                                  c = √∑ 𝑀𝑎𝑡𝑟𝑖𝑥𝑖
2 𝑛

 𝑖 = 1  (12) 

 

The idea of TOPSIS is to calculate the distance between the actual solution and the ideal value, and the distance between the actual 

solution and the worst solution. In this case, the worst solution would be an infinite value, so the distance to the worst solution is 

irrelevant, and only the distance to the best solution is considered. 

 

Ideal solution = 0. 

 

To calculate the distance to the ideal solution we use eq. 13 being Matrix the values of the rows of the second section of Table 7. 

                                       W = [0.2, 0.1, 0.15, 0.15, 0.1, 0.3], 

                                           DistPosi = √∑ (𝑤𝑖 (𝑀𝑎𝑡𝑟𝑖𝑥𝑗,𝑖 −  𝐼𝑑𝑒𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖))
2

 𝑛
 𝑖 = 1  

(13) 
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Fig. 3. Box-and-whisker plot of the final characteristics of the best neural architectures 

 

Applying the TOPSIS method we obtain the following results: 

Normal DyNNO: 1.1958 

Min DyNNO: 0.6299 

 

It is important to emphasize that MCDM does not inherently connote a multi-objective problem. MCDM is employed due to the 

presence of distinct data to calculate the best of the two proposed algorithms. Nevertheless, within the framework of Min DyNNO, 

the primary focus resides in error minimization, with the concurrent aspiration to minimize parameter count serving as a secondary 

objective. 

 

Finally, figure 3 shows the box-and-whisker plot for the characteristics of the best neural architectures, considering all dimensions 

and functions. The characteristics shown are the number of hidden layers (depth), as well as the amplitude and slope of the 

activation functions of each hidden layer of the network. 

 

In addition, we obtained the results shown in Table 8, using the data from the functions Sphere, Rastrigin, and Griewank in two 

and ten dimensions, following the methodology described in (Garcıa et al., 2023), where 5 metaheuristic algorithms were 

compared using an architecture of one hidden layer with 150 neurons. The results obtained by (Yang et al., 2013), where they 

trained a neural network for function approximation using BackPropagation (BP), Radial Basis Function (RBF) and Generalized 

Regression Neural Network (GRNN), are also shown in Table 8, but some cells remain empty because the lack of information 

reported. 

Table 2. Comparisson of different optimization algorithms using data from functions Sphere, Rastrigin and Griewank in 

two and ten dimensions 

 Sphere 

2D 

Rastrigin 

2D 

Griewank 

2D 

Sphere 

10D 

 

Rastrigin 10D Griewank 

10D  

PSO 18.1777     15.1972 14.2934 144.7836 188.8615 136.6322 
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SA 14.6961    12.9845 13.1961 66.1094 103.6318 73.5678 

DE 109.1617      295.3036 243.0766  737.33 1108.9818 594.8004 

GA 447.3259  1158.2   979.2230 1258 3419.2 2155.5 

ABC 11.4331     15.9049 11.5369 79.4692 180.6814 109.3722 

BP 0.1793 — — — — — 

RBF 23.59   0.1987 0.5601 — — — 

GRNN 78900   0.5691 0.5600 — — — 

DyNNO 

Normal 

0.0672      2.3214 0.0057 0.0038 0.0005 0.0018 

 

DyNNO 

Min 

0.1042    0.7864 0.0305 0.0071   0.0332 0.0039 

 

6 Conclusions 

 
By using this neural architecture search algorithm, it is possible to avoid the need to manually supervise the training process and 

evaluate the improvement in error. The automation of neural architecture optimization not only simplifies the process but also has 

the potential to lead to more efficient performance by enabling the algorithm to systematically explore and propose network 

structures without the need for expert knowledge. This alleviates users from the laborious task of manually adjusting architectures 

and allows for a more effective approach in the quest for optimal neural models. An example of this was shown in Table 8, 

comparing the performance in function approximation using the same data across different algorithms that used manually defined 

architectures in other works. The results showed that the architecture found by applying the DyNNO algorithm had the best 

performance. 

 

The optimization of neural architectures was carried out using the proposed metaheuristic DyNNO. In this algorithm, the training 

method was backpropagation but other optimization algorithms as Levenberg-Marquardt or metaheuristics can be used. While 

there is a possibility that a population-based algorithm may achieve superior results by expanding the search space, it is crucial to 

note that its execution time tends to increase with the size of the population. In this work, evolutionary approaches to population-

based algorithms were implemented, choosing to consider a single individual to significantly reduce execution time. This approach 

effectively addressed the optimization of neural architectures, ensuring promising results while optimizing computational 

efficiency. 

 

The experimental results reveal that, although Normal DyNNO algorithm shows a reduction in error when working with training 

data, this apparent advantage is counteracted when evaluating the model with validation data. Conversely, by using Min DyNNO, 

an enhancement in the model’s generalization capacity was observed. These findings suggest that the strategy of reducing 

parameters strengthens the model’s ability to generalize more effectively to unseen data during training. 

 

According to the Multi-Criteria Decision Making (MCDM) analysis, the value of the distance to the positive ideal was lower in 

the algorithm with parameter minimization, indicating that it had a positive effect on the performance of the networks. Hence, it 

is advisable to follow this approach in future implementations. The algorithm can be applied to any problem that is amenable to 

solution by MLPs, extending beyond mere approximation function tasks. Regarding the mutation of activation functions, although 

the average of the best architectures remained within standard values, there were several instances of mutated activation functions. 

Therefore, it is recommended to explore mutation on activation functions for future work. 
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