

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 16(1), Jan-April 2025, 151-163. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2025.v16i1.549

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Dynamic Neural Network Optimization: A single agent neuroevolution algorithm based

on hill climbing optimization for Neural Architecture Search

Yoqsan Angeles1, Valeria Karina Legaria-Santiago2, Hiram Calvo1, Álvaro Anzueto2

1 Computational Cognitive Sciences Laboratory, CIC-Instituto Politécnico Nacional, Av. Juan de Dios Bátiz,

Mexico City, 07738, Mexico City, Mexico.
2 Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional, Av. Juan de Dios Bátiz,

Mexico City, 07738, Mexico City, Mexico.
3 Bionics Department, UPIITA-Instituto Politécnico Nacional, Insituto Politécnico Nacional, Mexico City,

07340, Mexico City, Mexico.

yangelesg2020@cic.ipn.mx; vlegarias2019@cic.ipn.mx; hcalvo@cic.ipn.mx; aanzuetor@ipn.mx;

Abstract. In the field of deep learning, the identification of

optimal neural architectures requires not only profound expertise

but also a substantial investment of time and effort in the
evaluation of the outcomes generated by each proposed model. In

this study, we introduce a Single Agent Neuroevolution algorithm,

based on the Hill Climbing algorithm for Neural Architecture
Search, named Dynamic Neural Network Optimization (DyNNO).

This approach focuses on the evaluation of the performance of

neural networks optimized for function approximation.

Additionally, we have explored the minimization of the number of

neurons within the neural network structures. The results

demonstrated the feasibility of using this algorithm to automate
the neural architecture search process. Furthermore, the reduction

in the number of parameters improved the generalization

capability of the networks. The findings also suggest that mutation
in activation functions can be a factor to explore in achieving a

more effective reduction in error rates.
Keywords: Artificial Neural Networks, Hill climbing,

Metaheuristic, Neural Architecture Search, Function aproximation

Article Info

Received November 13, 2024

Accepted March 12, 2025

1 Introduction

Artificial Neural Networks (ANNs) are computational models that attempt to mimic the features of biological neurons. They are

typically composed of interconnected nodes, or neurons, which can have one or more inputs and outputs. The basic model of a

neuron in neural networks involves computing a weighted sum of the inputs, which is then passed through a typically nonlinear

activation function, although linear functions can also be used. This output determines the response of the neuron. A single neuron

computes this operation independently. When two or more nodes (neurons) compute such sums using the same inputs and are

organized together, they form a structure commonly referred to as a perceptron. This model is widely applied in different fields

for classification and regression problems (Campbell & Gear, 1995). If the perceptron has more than one layer, then it is a

Multilayer Perceptron (MLP).

To build a MLP model is necessary to define its architecture, i.e., establish the number of layers, the number of neurons per layer,

and the activation function that the model will have, although the process of finding the best parameters is usually time-consuming

and requires a certain level of expert knowledge. The Neural Architecture Search (NAS) is a paradigm that emerged to optimize

this process. In this way, different strategies have been proposed such as reinforcement learning, evolutionary algorithms, and

gradient-based methods. However, reinforcement learning regularly requires large amounts of computational resources.

Evolutionary algorithms may offer a viable alternative when resources are constrained, owing to their rapid convergence and

ability to operate without prior knowledge. Despite the absence of such knowledge, their performance is at least comparable to

other algorithms (Pan & Yao, 2021).

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

152

In this context, metaheuristic algorithms, some of them inspired by optimization processes observed in nature, provide an efficient

search method. Metaheuristic algorithms are computational optimization approaches to find high-quality solutions for complex

and challenging problems. Unlike conventional methods, metaheuristic algorithms do not rely on specific problem information

and can explore broad solution spaces in search of the optimal solution. These algorithms draw inspiration from natural processes,

physical phenomena, or global search strategies to guide the exploration of solution spaces. Examples of metaheuristic algorithms

include hill climbing, genetic algorithms, simulated annealing, tabu search, and particle swarm optimization. Their flexibility and

ability to address various problems make metaheuristic algorithms powerful tools for tackling complex challenges in engineering,

logistics, planning, and others.

In this study, we propose a single agent neuroevolution algorithm based on hill climbing named Dynamic Neural Network

Optimization (DyNNO), which is employed for the exploration of neural architectures in a multilayer perceptron, applied to the

task of function approximation. The structure of this paper is as follows: Section 2 presents previous work. Section 3 explains the

algorithm of Dynamic Neural Network Optimization. Section 4 explains the experiments done with the functions to be

approximated by the neural network. Section 5 showcases the obtained results. Section 6 provides the conclusions.

2 Previous work

According to (Elsken et al., 2019) Neural Architecture Search (NAS) can be divided into three fields: search space (to define

which architectures to explore, initially), search strategy (to maximize ANN performance by exploring the search space of neural

architectures), and performance estimation strategy (to estimate architecture's performance without training each architecture to

be evaluated from scratch).

In the case of search strategy (the field where this work lay), some of the proposed methods have been Bayesian optimization

(Rao et al., 2022), evolutionary methods (Klosa & Büskens, 2022; Niu et al., 2019) and reinforcement learning (Lyu et al.,

2023). In the context of neuro-evolutionary methods, genetic algorithms are used as a weight-sharing strategy to speed up the

evaluation of the architectures. Moreover, other methods, such as simulated annealing or tabu search, have also been proposed

(Ludermir et al., 2006).

Nevertheless, most of the work on NAS revolves around the training or construction of Convolutional Neural Networks, with

interest in reducing their design time and even resource use (Wu et al., 2022), complexity (DLW-NAS), or improving its

performance in object classification, segmentation or identification tasks (Li et al., 2021), where data sets such as CIFAR-10 (Niu

et al., 2019; Z. Chen & Li, 2020) or ImageNet (Wu et al., 2022) is used as a reference (DLW-NAS). However, each domain

requires a specific approach (Wolpert & Macready, 1997). Few works focus NAS on other kinds of networks, for example, in

(Ludermir et al., 2006) a NAS algorithm was proposed to optimize a multilayer perceptron (MLP) network weights and

architectures, where the constraint was to generate topologies with few connections and high classification performance to solve

classification tasks with tabular datasets and prediction tasks with time series. (Klosa & Büskens, 2022) propose an evolutionary

NAS to predict traffic conditions training Graph Convolutional Networks (GCN), taking care of performance, robustness, and

resource consumption.

3 Dynamic Neural Network Optimization (DyNNO)

The hill climbing algorithm is an optimization method used in machine learning. The algorithm aims to find the best solution to a

problem through successive iterations. It starts at a random solution and makes small modifications to get a new solution. If the

new solution is better, then it becomes the actual solution and repeats the process until no further improvements are found or other

termination criteria are met. This approach is particularly useful in complex problems where finding the optimal solution is

computationally difficult. This algorithm has been used in many applications (Tsamardinos et al., 2006; Guindon and Gascuel,

2003).

DyNNO is based on hill climbing; however, instead of selecting a random point in the search space, a neural network with a

random architecture within the search space is created. The pseudocode is presented in Algorithm 1, and its explanation is as

follows:

• First the neural network architecture is constructed using the random net function. This function takes as parameters the

minimum and maximum values for the number of layers and the number of neurons per layer the network may have when it

is initialized. Then the architecture is built with a random number of layers, within the defined range of layers. For each layer,

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

153

the number of neurons is chosen randomly within the defined range of neurons, and a matrix of random numbers between 0

and 1 is created to generate the synaptic weights. In this work all random choices were taken from a uniform distribution, the

layers range was [2, 3] and the neurons range was [50,200]. Finally, all layers have a hyperbolic tangent activation function,

except for the output layer, which has a linear function.

• Once the neural network is created, it is trained using the backpropagation algorithm, employing the mean squared error as

the loss function. Additionally, a minibatch of size 100 is utilized to expedite the training process.

• With the initial network trained, the architecture search process begins. For this, a mutation is applied to the network, where

the mutation process includes modifying the number of neurons in a layer, the number of layers, or the activation functions

(see subsection 3.1. Modification of the number of neurons or layers and subsection 3.2 Modifying activation functions). The

mutated network is also trained using the backpropagation algorithm. If the mutated network exhibits a lower error, the

mutated network replaces the current one; otherwise, no changes are made, and the current network undergoes another

mutation.

• This process continues for a specified number of epochs. In this work, 20 epochs were conducted for each function. The

number of epochs was chosen solely based on execution time, ensuring the algorithm did not exceed one hour for each trial.

Algorithm 1. DyNNO Algorithm

 DyNNO Algorithm

1: procedure DyNNO(layers range, neurons range, Input, Output, epochs)

2: net ← random net(layers range, neurons range)

3: net, error ← train net(net, Input, Output)

4: for epoch ← 1 to epochs do

5: new net ← mutate net(net)

6: new net, new error ← train(new net, Input, Output)

7: if new error < error then

8: net ← new net

9: error ← new error

10: end if

11: end for

12: end procedure

3.1 Modification of the number of neurons or layers

The mutation algorithm for modifying the number of neurons or layers automatically and randomly is shown in Algorithm 2. The

process of mutation is realized every epoch, and the number of layers could decrease until 1, but increase without restriction

(according to the modifications made in each epoch). The modification of the number of neurons or layers is generated according

to the value of r, where r is a random number with uniform distribution with values from 0 to 1, and it is generated every training

epoch. The mutation of the network is generated according to the value of r, with the following rules:

1. If r < 0.1, a layer is added at a random position in the architecture. The number of neurons in the new layer is randomly

generated based on the neurons range defined previously. Their weights are also randomly generated with values between 0

and the weights of the previous layer and the next layer are adjusted to match the weights of the new layer.

2. If r ≥ 0.1 and r ≤ 0.9, the number of neurons is modified, excepting the last layer so as not to modify the desired output size

of the network. Neurons are added with a probability of 0.5, otherwise, they are removed. The number of neurons to add or

remove, number neurons, is chosen randomly in a range from 1 to 10.

3. r > 0.9, a random layer is removed. The weights of the next layer are adjusted to match the layer before the removed layer.

4. In cases 2 and 3, if only the output layer remains, a hidden layer is added.

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

154

Algorithm 2. Mutation algorithm for neurons and layers

 Mutation algorithm for neurons and layers

1: procedure Network Mutation(neurons range)

2: r ← rand[0, 1]

3: if r < 0.1 then

4: net mut ← add layer(neurons range)

5: else if r > 0.1 and r < 0.9 then

6: net mut ← modify number of neurons(random layer, number neurons)

7: else

8: net mut ← delete layer

9: end if

10: end procedure

3.2 Modifying activation functions

Modifying activation functions consists of changing the type of function (sigmoid or tangent), or its characteristics (amplitude

and slope). Eq. 1 shows the sigmoid activation function and eq. 2 shows the hyperbolic tangent activation function. Fig. 1 shows

an example of two variants of the sigmoid function. The blue one has a slope and amplitude equal to one. The red one has a slope

and amplitude equal to two.

 f(x) =
𝛼

1 + 𝑒−𝛽𝑥

⬚

⬚
. (1)

 f(x) = 𝛼
𝑒𝛽𝑥−𝑒−𝛽𝑥

𝑒𝛽𝑥+𝑒−𝛽𝑥
.

(2)

where

α is a factor for the slope

β is a factor for the amplitude

Fig. 1. Sigmoid function

Function modification is performed with a probability of 0.2 as long as there is at least one hidden layer, this due to the output

layer is never modified, and its function always remains linear. This value to function modification was chosen because most of

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

155

the research utilizes standard activation functions, however, there is evidence suggesting that modifying these functions can

enhance performance (Mercioni et al., 2019; Pedamonti, 2018). Whether the function modification is valid, a hidden layer n is

randomly selected, and random numbers r1 and r2 are generated with values from 0 to 1. The function modification is carried out

according to the following rules:

1. If r1 < 0.2 we proceed to the activation function mutation. Otherwise, no modification is made to the activation functions.

(a) If r2 < 0.2, the type of activation function is modified. If the current function is sigmoid type it is changed to a hyperbolic

tangent type function. Conversely, if the current function is a hyperbolic tangent it is changed to the sigmoid function.

(b) If r2 ≥ 0.2, the parameters of the current activation function are randomly modified, increasing, or decreasing the

amplitude and the slope of the function, each one with a different random value between -0.5 and 0.5.

Algorithm 1. Mutation algorithm for activation functions

 Mutation algorithm for activation functions

1: procedure NetworkMutation(net)

2: r1 ← rand

3: if r1 < 0.2 then

4: if numLayers > 2 then

5: r2 ← rand

6: n ← randint(lenLayers)

7: if r2 < 0.2 then

8: Layers.f cn(n) ← change f cn(Layers.f cn(n))

9: else

10: m ← rand([−0.5, 0.5])

11: Layers.f cn(n).amplitude ← Layers.f cn(n).amplitude + m

12: p ← rand([−0.5, 0.5])

13: Layers.f cn(n).slope ← Layers.f cn(n).slope + p

14: end if

15: end if

16: end if

17: end procedure

3.3 Optimization Model

Considering a neural network with architecture x, it is applied the mutation function M to get the new neural architecture x′,

defined by:

x' = M(x) (3)

Then, the neural network error is defined as ϵ1 for the neural network with the architecture before the mutation, and ϵ2 for the

neural network error after the mutation:

ϵ1 = Error(x) (4)

ϵ2 = Error(x’) (5)

The neural network’s error is calculated with eq. 6:

 Error =
1

𝑛
∑ ⬚ 𝑛
𝑖= 1   (𝑦𝑖  −  𝑦𝑖 

′)2  (6)

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

156

where,

yi is the output of the function (Sphere, Rastrigin or Griewank) and y’i is the output of the neural network.

The new architecture x′ will be accepted if the following conditions are satisfied:

Accept x’ if (ϵ2 < ϵ1) (7)

The algorithm with the acceptance condition given by eq. 7 is named Normal DyNNO, to refer to it only searches for the minimum

error value. Additionally, a second proposal of the previous model has a variation of the acceptance condition by considering the

possibility of a slightly worse performance but with fewer parameters in the neural network. The algorithm with the second

acceptance condition is referred to as Min DyNNO. The acceptance condition of Min DyNNO is described in eq. 8.

Accept x′ if (ϵ2 − ϵ1 < 0.1) AND (NumParams(x′) < NumParams(x)) (8)

where,

NumParams(x) and NumParams(x′) represent the number of parameters in the architectures x and x′, respectively.

4 Experiments

The approximation functions and the experiments carried out are described in this section. This work considers three different

functions to be approximated by the neural networks: Sphere, given by eq. 9, Rastrigin, given by eq. 10 and Griewank, given by

eq. 11. The functions were selected due to their use in testing optimization algorithms (Yang et al., 2013; Garcıa et al., 2023), and

their form poses an interesting challenge for approximation with a neural network.

 f(x) = ∑ 𝑥𝑖
2 𝑑

 𝑖 = 1 (9)

 f(x) = ∑
𝑥𝑖
2

4000

 𝑑
 𝑖 = 1 −∏ cos (

𝑥𝑖

√𝑖
) 𝑑

𝑖 = 1  + 1
(10)

 f(x) = 10𝑑  + ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

 𝑑
 𝑖 = 1 (11)

where,

d is the number of dimensions for the function, and X is a vector.

The experiments consider different dimensions of the same function, varying the number from 1 to 10, but maintaining a single

output in each function. The output of the functions for dimensions 1 and 10 are shown in Fig. 2. The input data is in the range of

[-1, 1], with increments of 0.1, which returns a vector size = 21. In scenarios involving two or more dimensions, a grid

of uniformly distributed points is generated and organized into a matrix of size [dimension, vector_sizedimension]. However, if

vector_sizedimension > 10, 000, only the first 10,000 columns are used.

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

157

Fig. 2. Function outputs for dimensions 1 and 10

5 Results

A hundred experiments were conducted for each dimension, with statistical error values calculated. Two types of training were

performed, first with Normal DyNNO and then with Min DyNNO.

The pseudocode for Min DyNNo was adjusted accordingly to Algorithm 4. After completing the trials, the following statistical

data on the error was collected: minimum, maximum, average, median, standard deviation, total weights, and bias of the network

with the minimum error, and average error across the 100 trials. Then, we also used the best neural network with validation data

with the same length as the training input. The validation data is the same as the input but adds random numbers in the range of

[-0.1,0.1]. The results are shown in the Tables 1,2,3,4,5,6. Based on the data obtained from the conducted tests, we proceeded to

implement a Multi-Criteria Decision Making (MCDM) approach, a methodology used for decision-making involving multiple

criteria (Hwang et al., 1981). We employed the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method,

developed and applied in numerous studies and practical applications (S.-J. Chen & Hwang, 1992; Behzadian et al., 2012). This

technique is based on the idea that the chosen option should have the smallest Euclidean distance to the ideal solution and the

greatest distance to the non-ideal solution. The criteria used are the statistical data in the tables.

Algorithm 4. Modification to prioritize fewer parameters

 Modification to prioritize fewer parameters

1: if new error < error OR (new error −error) < 0.1AND new net.P arameters < net.P arameters then

2: net ← new net

3: error ← new error

4: end if

Table 1. Results of Sphere function with normal algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 0.1078 168.44 3.4382 0.3479 17.5571 0.1098 7326

2 0.0123 0.2156 0.0672 0.0627 0.0372 0.0134 13440

3 0.0057 0.5428 0.1069 0.0453 0.1240 0.0062 13516

4 0.0137 0.6236 0.0962 0.0641 0.1120 0.0289 11342

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

158

5 0.0020 0.0140 0.0050 0.0041 0.0025 12.1131 8852

6 0.0033 0.0096 0.0054 0.0051 0.0018 4.5509 7093

7 0.0010 0.0175 0.0035 0.0026 0.0029 0.1402 8187

8 0.0030 0.0134 0.0054 0.0049 0.0019 8.5237 11964

9 0.0035 0.0171 0.0059 0.0049 0.0036 11.7938 6791

10 8.06e-05 0.0038 0.0011 9.98e-04 8.44e-04 0.2715 11684

Table 2. Results of Sphere function with minimization algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 0.1069 41.9907 1.3946 0.2660 5.0881 0.1132 7380

2 0.0023 0.1042 0.0210 0.0194 0.0172 0.0035 3794

3 0.0062 0.1097 0.0351 0.0372 0.0217 0.0060 3852

4 0.0006 0.0272 0.0022 0.0015 0.0033 0.0024 685

5 0.0027 0.0586 0.0077 0.0055 0.0068 0.0821 6051

6 0.0035 0.0969 0.0100 0.0072 0.0132 0.2087 3595

7 7.22e-04 0.0360 0.0072 0.0050 0.0081 0.2880 3273

8 2.15e-04 0.0252 0.0103 0.0081 0.0059 0.2704 8953

9 0.0025 0.0413 0.0074 0.0057 0.0060 0.1662 3901

10 1.43e-05 0.0071 0.0023 0.0020 0.0015 1.6687 5321

The factors were weighted to give more importance to some of them. To weigh the criteria, decimal numbers were assigned whose

sum equals 1. The assigned weights were as follows: minimum error: 0.2, maximum error: 0.1, average error: 0.15, median error:

0.15, standard deviation error: 0.1, and test error: 0.3.

To apply TOPSIS, the statistical data obtained in all the dimensions were added up according to their function and the experiment

under comparison (with Min DyNNO referred to as “Min” against Normal DyNNO, referred to as “Normal”). The results are

shown in the first section of Table 7.

Table 3. Results of Rastrigin function with normal algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 42.1788 155.3428 62.0994 53.3792 83 42.0016 5079

2 0.0795 99.9939 2.3214 1.3431 9.9090 0.4928 4580

3 0.0130 37.3487 0.6232 0.0766 3.7232 0.3360 7480

4 0.0404 0.9145 0.2472 0.1934 0.1813 1.7927 13978

5 0.0677 110.7870 49.7869 55.0708 25.5513 6.6513 4098

6 0.0158 1.5043 0.3555 0.2385 0.3133 8.4582 6668

7 0.0008 41.4356 2.0495 0.0042 8.8448 24.5503 3469

8 0.0015 152.9829 30.8810 0.0062 58.2250 37.0374 7405

9 0.0010 63.2166 0.6354 0.0028 6.3213 25.4991 2670

10 1.19e-06 0.0035 4.89e-04 7.02e-05 7.66e-04 253.6776 14347

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

159

Table 4. Results of Rastrigin function with minimization algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 44.4816 188.4018 67.4475 54.8170 27.6903 46.8318 11139

2 0.1817 2.7307 0.7864 0.6116 0.5766 0.6607 14138

3 0.1026 1.1735 0.3705 0.2730 0.2571 0.5637 9830

4 0.0667 1.7757 0.2997 0.2609 0.2150 1.7412 12598

5 0.1720 1.8329 0.7367 0.5561 0.4650 9.7870 3619

6 0.1612 1.2311 0.4856 0.3424 0.2643 11.0513 5020

7 0.0078 0.1491 0.0419 0.0298 0.0323 20.5160 1418

8 0.0001 0.1106 0.0388 0.0313 0.0281 183.1473 6453

9 0.0010 77.6584 3.3909 0.0038 14.9381 64.0813 1918

10 1.01e-05 0.0332 0.0025 0.0018 0.0042 279.6284 5523

Table 5. Results of Griewank function with normal algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 0.0229 130.1647 2.1082 0.1100 13.1507 0.0228 2198

2 0.0009 0.0239 0.0057 0.0046 0.0044 0.0012 9895

3 0.0002 0.0063 0.0021 0.0018 0.0015 0.2158 6419

4 0.0006 0.0055 0.0022 0.0025 0.0008 0.0015 7112

5 0.0002 0.0043 0.0021 0.0024 0.0008 0.0201 8245

6 0.0003 0.0045 0.0016 0.0018 0.0006 0.0033 6049

7 0.0005 0.0066 0.0026 0.0030 0.0010 0.0072 3661

8 0.0003 0.0044 0.0024 0.0023 0.0011 0.0023 3103

9 0.0003 0.0048 0.0021 0.0019 0.0012 0.0042 3861

10 2.06e-6 0.0055 0.0018 0.0013 0.0013 5.3608 2492

Following that, the outcomes of the three functions derived from the Normal DyNNO algorithm were added, doing the same with

the results obtained with the Min DyNNO algorithm. The results are shown in the second section of Table 7. Subsequently, they

were normalized using the Euclidean norm by dividing all the data by the number c obtained with equation 12.

Table 6. Results of Griewank function with minimization algorithm

Dim Min Max Avg Med Sd Test error Param. avg

1 0.0230 20.7805 1.0913 0.2056 2.9516 0.0266 5383

2 0.0056 0.1315 0.0305 0.0247 0.0188 0.0049 6720

3 0.0028 0.0693 0.0238 0.0227 0.0092 0.0030 3060

4 7.26e-4 0.0359 0.0040 0.0027 0.0048 0.0011 10975

5 5.65e-04 0.0196 0.0037 0.0027 0.0032 0.0038 6837

6 8.21e-04 0.0255 0.0028 0.0018 0.0036 0.0024 5789

7 4.28e-04 0.0178 0.0041 0.0032 0.0029 0.0024 4858

8 4.41e-04 0.0351 0.0042 0.0037 0.0036 0.0022 4932

9 6.23e-04 0.0083 0.0037 0.0040 0.0011 0.0039 1190

10 5.17e-04 0.0059 0.0039 0.0041 0.0009 0.0045 1864

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

160

Table 7. Results of Sphere function with normal algorithm

 Min Max Avg Med Sd Test error Param. avg

Sphere

Normal

0.1524

169.9018 3.7348 0.5426 17.8438 37.5515 100200

Sphere

Min

0.1257 42.4969 1.4978 0.3576 5.1718 2.8092 46805

Rastrigin

Normal

42.3985 663.5298 149.0000 110.3149 196.0700 400.4970 69774

Rastrigin

Min

45.1747 275.0970 73.6005 56.9277 44.4710 618.0087 61836

Griewank

Normal

0.0262

130.2305 2.1308 0.1316 13.1634 5.6392 53035

Griewank

Min

0.0355 21.1294 1.1720 0.2752 2.9997 0.0548 51608

Normal 42.5771 963.6621 154.8656 110.9891 227.0772 443.6877 223000

Min

parameters

45.3359 338.7233 76.2703 57.5605 5 52.642 620.8727 160250

The sums of the statistical error data were divided by the maximum output value of the larger dimension of each function, except

for Griewank, whose maximum value is less than 1. The maximum output value in the Sphere function was 10, in Rastrigin it was

151.11, and in Griewank it was 0.8068.

 c = √∑ 𝑀𝑎𝑡𝑟𝑖𝑥𝑖
2 𝑛

 𝑖 = 1 (12)

The idea of TOPSIS is to calculate the distance between the actual solution and the ideal value, and the distance between the actual

solution and the worst solution. In this case, the worst solution would be an infinite value, so the distance to the worst solution is

irrelevant, and only the distance to the best solution is considered.

Ideal solution = 0.

To calculate the distance to the ideal solution we use eq. 13 being Matrix the values of the rows of the second section of Table 7.

 W = [0.2, 0.1, 0.15, 0.15, 0.1, 0.3],

 DistPosi = √∑ (𝑤𝑖 (𝑀𝑎𝑡𝑟𝑖𝑥𝑗,𝑖 −  𝐼𝑑𝑒𝑎𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖))
2

 𝑛
 𝑖 = 1

(13)

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

161

Fig. 3. Box-and-whisker plot of the final characteristics of the best neural architectures

Applying the TOPSIS method we obtain the following results:

Normal DyNNO: 1.1958

Min DyNNO: 0.6299

It is important to emphasize that MCDM does not inherently connote a multi-objective problem. MCDM is employed due to the

presence of distinct data to calculate the best of the two proposed algorithms. Nevertheless, within the framework of Min DyNNO,

the primary focus resides in error minimization, with the concurrent aspiration to minimize parameter count serving as a secondary

objective.

Finally, figure 3 shows the box-and-whisker plot for the characteristics of the best neural architectures, considering all dimensions

and functions. The characteristics shown are the number of hidden layers (depth), as well as the amplitude and slope of the

activation functions of each hidden layer of the network.

In addition, we obtained the results shown in Table 8, using the data from the functions Sphere, Rastrigin, and Griewank in two

and ten dimensions, following the methodology described in (Garcıa et al., 2023), where 5 metaheuristic algorithms were

compared using an architecture of one hidden layer with 150 neurons. The results obtained by (Yang et al., 2013), where they

trained a neural network for function approximation using BackPropagation (BP), Radial Basis Function (RBF) and Generalized

Regression Neural Network (GRNN), are also shown in Table 8, but some cells remain empty because the lack of information

reported.

Table 2. Comparisson of different optimization algorithms using data from functions Sphere, Rastrigin and Griewank in

two and ten dimensions

 Sphere

2D

Rastrigin

2D

Griewank

2D

Sphere

10D

Rastrigin 10D Griewank

10D

PSO 18.1777 15.1972 14.2934 144.7836 188.8615 136.6322

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

162

SA 14.6961 12.9845 13.1961 66.1094 103.6318 73.5678

DE 109.1617 295.3036 243.0766 737.33 1108.9818 594.8004

GA 447.3259 1158.2 979.2230 1258 3419.2 2155.5

ABC 11.4331 15.9049 11.5369 79.4692 180.6814 109.3722

BP 0.1793 — — — — —

RBF 23.59 0.1987 0.5601 — — —

GRNN 78900 0.5691 0.5600 — — —

DyNNO

Normal

0.0672 2.3214 0.0057 0.0038 0.0005 0.0018

DyNNO

Min

0.1042 0.7864 0.0305 0.0071 0.0332 0.0039

6 Conclusions

By using this neural architecture search algorithm, it is possible to avoid the need to manually supervise the training process and

evaluate the improvement in error. The automation of neural architecture optimization not only simplifies the process but also has

the potential to lead to more efficient performance by enabling the algorithm to systematically explore and propose network

structures without the need for expert knowledge. This alleviates users from the laborious task of manually adjusting architectures

and allows for a more effective approach in the quest for optimal neural models. An example of this was shown in Table 8,

comparing the performance in function approximation using the same data across different algorithms that used manually defined

architectures in other works. The results showed that the architecture found by applying the DyNNO algorithm had the best

performance.

The optimization of neural architectures was carried out using the proposed metaheuristic DyNNO. In this algorithm, the training

method was backpropagation but other optimization algorithms as Levenberg-Marquardt or metaheuristics can be used. While

there is a possibility that a population-based algorithm may achieve superior results by expanding the search space, it is crucial to

note that its execution time tends to increase with the size of the population. In this work, evolutionary approaches to population-

based algorithms were implemented, choosing to consider a single individual to significantly reduce execution time. This approach

effectively addressed the optimization of neural architectures, ensuring promising results while optimizing computational

efficiency.

The experimental results reveal that, although Normal DyNNO algorithm shows a reduction in error when working with training

data, this apparent advantage is counteracted when evaluating the model with validation data. Conversely, by using Min DyNNO,

an enhancement in the model’s generalization capacity was observed. These findings suggest that the strategy of reducing

parameters strengthens the model’s ability to generalize more effectively to unseen data during training.

According to the Multi-Criteria Decision Making (MCDM) analysis, the value of the distance to the positive ideal was lower in

the algorithm with parameter minimization, indicating that it had a positive effect on the performance of the networks. Hence, it

is advisable to follow this approach in future implementations. The algorithm can be applied to any problem that is amenable to

solution by MLPs, extending beyond mere approximation function tasks. Regarding the mutation of activation functions, although

the average of the best architectures remained within standard values, there were several instances of mutated activation functions.

Therefore, it is recommended to explore mutation on activation functions for future work.

Acknowledgments. The authors wish to thank the support of the Instituto Politécnico Nacional (COFAA, SIP-IPN), and the

Mexican Government (CONAHCyT, SNI).

References
Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of-the-art survey of TOPSIS applications. Expert Systems with

Applications, 39(17), 13051–13069.

Campbell, S. L., & Gear, C. W. (1995). The index of general nonlinear DAES. Numerische Mathematik, 72(2), 173–196.

Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. In Fuzzy multiple attribute decision making: Methods

and applications (pp. 289-486). Berlin, Heidelberg: Springer Berlin Heidelberg.

Chen, Z., & Li, B. (2020). Efficient evolution for neural architecture search. In 2020 International Joint Conference on Neural Networks

(IJCNN) (pp. 1–7). IEEE. https://doi.org/10.1109/IJCNN48605.2020.9207545

https://doi.org/10.1109/IJCNN48605.2020.9207545

Angeles et al. / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 151-163.

163

Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine Learning Research, 20(55), 1-21.

https://doi.org/10.1007/978-3-030-05318-5_3

García, Y. A., Calvo, H., & Ríos, A. A. (2023). Uso de metaheurísticas para entrenamiento de redes neuronales artificiales. Research in

Computing Science, 152(8), 127–139.

Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic

Biology, 52(5), 696–704.

Hwang, C. L., Yoon, K., Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making:

methods and applications a state-of-the-art survey, 58-191.

Klosa, D., & Büskens, C. (2022). Evolutionary neural architecture search for traffic forecasting. In 2022 21st IEEE International Conference

on Machine Learning and Applications (ICMLA) (pp. 1230–1237). IEEE. https://doi.org/10.1109/ICMLA55696.2022.00198

Li, Z., Xi, T., Zhang, G., & et al. (2021). Autodet: Pyramid network architecture search for object detection. International Journal of Computer

Vision, 129, 1087–1105. https://doi.org/10.1007/s11263-020-01415-x

Ludermir, T. B., Yamazaki, A., & Zanchettin, C. (2006). An optimization methodology for neural network weights and architectures. IEEE

Transactions on Neural Networks, 17(6), 1452–1459. https://doi.org/10.1109/TNN.2006.881047

Lyu, B., Wen, S., Shi, K., & Huang, T. (2023). Multiobjective reinforcement learning-based neural architecture search for efficient portrait

parsing. IEEE Transactions on Cybernetics, 53(2), 1158–1169. https://doi.org/10.1109/TCYB.2021.3104866

Mercioni, M. A., Tiron, A., & Holban, S. (2019). Dynamic modification of activation function using the backpropagation algorithm in the

artificial neural networks. International Journal of Advanced Computer Science and Applications, 10(4).

Niu, R., Li, H., Zhang, Y., & Kang, Y. (2019). Neural architecture search based on particle swarm optimization. In 2019 3rd International

Conference on Data Science and Business Analytics (ICDSBA) (pp. 319–324). IEEE. https://doi.org/10.1109/ICDSBA48748.2019.00073

Pan, C., & Yao, X. (2021). Neural architecture search based on evolutionary algorithms with fitness approximation. In 2021 International Joint

Conference on Neural Networks (IJCNN) (pp. 1–8). IEEE. https://doi.org/10.1109/IJCNN52387.2021.9533986

Pedamonti, D. (2018). Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv preprint

arXiv:1804.02763.

Rao, X., Xiao, S., Li, J., Wu, Q., Zhao, B., & Liu, D. (2022, December). LSBO-NAS: Latent Space Bayesian Optimization for Neural

Architecture Search. In 2022 4th International Conference on Control and Robotics (ICCR) (pp. 22-27). IEEE.

https://doi.org/10.1109/ICCR55715.2022.10053904

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine

learning, 65, 31-78.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

https://doi.org/10.1109/4235.585893

Wu, B., Waschneck, B., & Mayr, C. (2022, September). Neural architecture search for low-precision neural networks. In International

Conference on Artificial Neural Networks (pp. 743-755). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-15937-4_62

Yang, S., Ting, T., Man, K. L., & Guan, S.-U. (2013). Investigation of neural networks for function approximation. Procedia Computer Science,

17, 586–594.

https://doi.org/10.1007/978-3-030-05318-5_3
https://doi.org/10.1109/ICMLA55696.2022.00198
https://doi.org/10.1007/s11263-020-01415-x
https://doi.org/10.1109/TNN.2006.881047
https://doi.org/10.1109/TCYB.2021.3104866
https://doi.org/10.1109/ICDSBA48748.2019.00073
https://doi.org/10.1109/IJCNN52387.2021.9533986
https://doi.org/10.1109/ICCR55715.2022.10053904
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/978-3-031-15937-4_62

