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Abstract. This study introduces a novel approach for 

quantifying and analyzing canine movement through 2D 

video recordings, aiming to elucidate the relationship 

between dog movement patterns and their trainability 

responding to abandonment stimuli. Utilizing an advanced 

method based on deep learning, we captured and estimated 

24 3D-markers of nine Siberian Husky dogs performing the 

3-minute task in their daily environments. From the markers 

captured over the skeletons, the average amount of relative 

motion was calculated for three sub-phases: “initial”, 

“intermediate” and “final”, for the two trials performed on 

each dog. The core objective was to determine how specific 

motion patterns correlate with different levels of training 

across sub-phases. Preliminary findings suggest that -the 

second subphase is more associated with the levels of 

trainability based on the dispersion between the two trials-, 

as an indicator of a dogs’ potential for trainability. This 

research not only contributes to the understanding of canine 

motion patterns during this specific test but also offers a 

scalable and non-invasive tool for professionals and dog 

owners to enhance training outcomes based on individual 

motion profiles. Keywords: Motion tracking, canine 

trainability, motion analysis, movement patterns. 
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1 Introduction 

 
Dogs exhibit a wide spectrum of behaviors that reflect their welfare in many ways, such as emotions, cognitive abilities, and social 

aspects. These behaviors range from the playful actions observed during activities to more structured responses during training 

sessions. Understanding these behaviors is crucial since it allows us to have a clear picture of the current state of the dog, leading 

to more effective communication and training strategies (de Castro et al., 2020). 

 

Trainability in dogs encompasses more than just the ability to follow commands; it reflects a complex combination of genetics, 

environmental influences, and individual temperament and personality Van der Waaij et al., 2008; Jones & Gosling, 2005; Serpell 

& Hsu, 2005; Ruefenacht et al., 2002). These traits are what makes some of the dogs excel in obedience, while others show 

remarkable skills in tasks such as search and rescue or even medical and emotional support. However, accurately assessing 

trainability can be challenging, as it requires a nuanced understanding of each dogs’ unique responses to a variety of training 

stimuli and situations (Bray et al., 2021). 
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Specific body postures and movements, such as tail position, ear orientation, and the dogs’ overall body alignment, have been 

shown to play a crucial role in their receptiveness and ability to engage in training sessions (Andrukonis, Protopopova, Schroeder, 

& Hall, 2023). For example, dogs exhibiting relaxed and attentive body language, forward-facing ears or a wagging tail, are often 

more responsive and capable of forming positive associations with training cues (Deldalle & Gaunet, 2014). On the contrary, signs 

of stress or discomfort, indicated by a lowered body posture, tucked tail, or pinned ears, can negatively affect a dog's learning 

process (Duranton & Horowitz, 2019). These findings emphasize the need for trainers to understand and respond to canine body 

language to facilitate effective training. 

Historically, canine behavior has been studied by direct observation by trainers and behaviorists. Although effective to a degree, 

these methods are time-consuming and often fail to capture the subtleties of canine behavior due to unreliable or biased 

interpretations. This creates a need to develop objective and precise methods that help in the process of measuring a trainability 

score. Consequently, this research aims to investigate the correlation between dogs’ physical reactions to an emotionally charged 

stimulus and their trainability score assigned by experts, by analyzing canine movements through 2D video analysis. 

This approach not only has the objective of automating the process of assessing trainability, making it more efficient and objective, 

but also unveils patterns and nuances in canine behavior that may be invisible to the naked eye, gaining deeper insight into the 

factors that influence a dog's ability to learn and respond to stimuli, improving the process of trainability and enhancing the human-

canine bond (Bray et al., 2021; Arnold, 2016). 

Very few studies have addressed the automatic detection of postures or the tracking of canine movement with the aim of 

associating them with emotional stimuli or even with trainability. For instance, key physical landmarks on dogs, such as tail 

position, ear orientation, and overall body posture, have been identified to recognize patterns associated with different emotions. 

By leveraging machine learning techniques, the authors aim to develop a predictive model that can accurately identify canine 

emotions based on these physical indicators (Ferres, Schloesser, & Gloor, 2022). 

Our work diverges significantly from existing studies in the field of canine behavior analysis, particularly in the observation and 

analysis of dogs in their natural environments. Although a considerable amount of previous work has relied on controlled settings 

or static images from online databases, our approach prioritizes the authenticity and dynamism of real-world interactions. By 

capturing video footage of dogs responding to abandonment stimuli in their usual surroundings, we ensure that our data reflects 

the variability of behavior. Based on real-life observations, we set a new standard for research in understanding and improving 

the training process of dogs. 

 

Advancements in artificial vision and machine learning algorithms allow for the development of intelligent systems for analyzing 

animal behavior, especially in terms of their movements. Through the lens of artificial vision, we look to decode the subtle nuances 

of how dogs convey information and interact with their surroundings in a naturalistic manner. This interdisciplinary approach not 

only contributes to a deeper understanding of animal communication, but also opens the door to the creation of innovative 

technologies that seek to facilitate human-dog interaction. 

 

This study is part of the Tzuku project, initiated by a collaborative consortium of Mexican institutions and supported by funding 

from the National Council of Humanities, Sciences, and Technologies of Mexico. The overarching objective of the Tzuku project 

is the development and refinement of technology to optimize the selection, training, and operational procedures related to search 

and assistance dogs. Within this framework, an investigation of the vocal and physical behavior patterns exhibited by dogs in 

various internal states is conducted, which encompasses the realms of physical well-being, emotional disposition, and contextual 

interactions. These findings serve as the foundation for the development of sophisticated computational models designed to discern 

and interpret canine behavior in different data sources such as heart rate (Ospina-De la Cruz et al., 2023), images (Hernández-

Luquin et al., 2022), vocalizations (Abrego-Ulloa et al., 2022), and video (Chavez-Guerrero, Pérez-Espinosa, Puga-Nathal, & 

Reyes-Meza, 2022). The resultant computational frameworks offer actionable insights and invaluable guidance to a diverse array 

of stakeholders, including dog owners, caregivers, veterinarians, trainers, and individuals with disabilities, facilitating informed 

decision-making processes.  

 

2 Experimental procedures 

 
We collected data from 9 Siberian Husky dogs (3 males and 6 females), dogs were 1 to 6 years old. The experimental protocol 

was approved by the Bioethics and Academic Committee of the Postgraduate Program in Biological Sciences at the Autonomous 



Garcia-Loya et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(1) 2025, 140-150. 

142 

 

University of Tlaxcala. Owners signed an informed consent for their dogs to participate in this study. The behavioral test was 

conducted at the owner’s residence on two different days. Three video cameras were used to record the dogs’ behavior from 

multiple angles during the test. For each test, a 2-minute recording was made before the stimulus was applied to capture the dogs’ 

usual behavior. Subsequently, the stimulus was applied for three minutes and the recording continued for 2 minutes after the 

stimulus ended. 

 

We applied twice (Trial 1 and 2) a task called Abandonment, performed as described here: the dog was removed from its usual 

living area and tied to a post or tree in the shade. The owner was instructed to secure the dog to the post and then depart from the 

location. This stimulus lasted three minutes. During this test, the dogs wore a small sensor to record their heart rate (polar OH1) 

in the ventral area and were recorded with a thermographic camera (Fluke TiS75+) to register changes in their surface temperature. 

Nonetheless, this data was not utilized in the current study. 

 

2.1 Labeling-tracking 

 

Fig. 1. List of markers used to train and process the videos through DeepLabCut, inspired Ferres et al. (2022) selection of 

landmarks. 

 

In previous research done by Ferres, Schloesser, and Gloor (2022), landmarks in dog postures were effectively used to detect 

emotions such as anger, fear, and happiness, by using a 24-point distribution base as illustrated in Figure 1. These points were 

strategically placed in key anatomical locations, where dogs can exhibit cues that lead to the recognition of an emotional state, 

with an example being the "play" posture, where the dog stretches its paws out, often associated with a positive emotion. This 

posture can vary between dogs, so a detailed analysis of all movements of the paws, face, and tail is needed to ensure a correct 

classification. In this comprehensive study, depicted in Figure 2, we compiled the landmark detection process and subsequent data 

analysis to delve into the nuances of trainability. A detailed explanation of each of these steps will be described in the following 

paragraphs. 

This study also used DeepLabCut (DLC), a landmark detection software by Mathis et al. (2018). This framework can help to 

precisely label using machine learning models. After doing practical examples in this tool and a brief analysis, we opted to apply 

Transfer Learning techniques to enhance our model’s performance. This was done using ModelZoo’s SuperAnimal-Quadruped 

model (Ye et al., 2023), chosen for its similarity to landmark suggestions in Ferres, Schloesser, and Gloor (2022). This model has 

been trained on various animals and scenarios, including different breeds of dogs. 

For our training dataset, we employed DeepLabCut’s tools to extract and label approximately 20 frames per video from our 

collection, totaling 200 frames from different dogs and stimuli, these frames are later augmented using DLCs recommended 

method (imgaug). Our model was then trained for 200,000 iterations, as it is the recommended amount by both the authors and 

the community. Then, we performed an outlier removal method to obtain even more frames for the dataset. After extracting 

outliers for half of the videos in the dataset, we resumed training for the model, resulting in our model training for 300,000 

iterations. 
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We evaluated each dog by applying four positive and four negative tasks, subsequently, we measured their behaviors during tasks 

and assigned each dog a score according to its performance. For example, the owner was instructed to engage in play with the dog 

using their favorite toy, object, or in the way he normally plays with his dog, then we assigned 0 if the dog lay down or 1 if the 

dog followed its owner, wagged its tail or stood on two legs. We analyze all the behaviors displayed in the positive and negative 

tasks and, at the end, we calculate the points obtained by each dog. 

 

We use the abandonment task because it determines the level of dog independence (which is an important feature of trainability). 

Furthermore, tethering the dog during the test minimized its chances of moving out of the camera’s view, thereby aiding the tool 

in more effectively extracting all markers. 

 

 
Fig. 2. Methodological process to obtain the normalized landmarks from videos. 

 

2.2 Feature engineering 

 
Given the naturalistic conditions under which the experiments were conducted, several variables could potentially impact the 

accuracy of our DeepLabCut (DLC) model. Specifically, the dogs’ varying distances and angles relative to the camera, along with 

possible occlusions caused by bushes and other environmental elements, represented significant challenges. To address these 

issues effectively, we implemented an additional step to refine further the results from the data provided by the DLC model. We 

integrated the use of YOLOv5 (Jocher et al., 2022) to generate bounding boxes around the dogs. This technique allowed us to 

normalize the dogs’ coordinates within the footage, ensuring a more consistent and accurate analysis of their movements despite 

the unpredictable experimental conditions. 

In instances where our object detection process resulted in multiple bounding boxes within the same video or frame, we 

implemented an additional step to ensure accurate tracking of the dog. By calculating the center point of each bounding box and 

comparing it with the centroid of markers identified by DeepLabCut, we were able to accurately pair each set of markers with the 

nearest bounding box center. This method effectively addressed the challenge of multiple detection, ensuring that the analysis 

remained focused on the correct target by matching markers to the closest center of the bounding box. Figure 3 presents an 

illustration of the entire procedure for extracting normalized landmarks from a single frame of a video. 

 

This was achieved by determining the relative motion of each joint linked to the landmarks, using the formula below: 

 

avg j ,s=
1

2⋅ segsize

∑
i= 1

segsize

(|( p j x
(i )− p j x

(i− 1))|+|( p j y
(i )− p j y

(i− 1))|)
 

(1) 
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Fig. 3. a) Original frame from the recorded video. b) Frame after extracting markers, with a bounding box detected and drawn. 

After extracting and normalizing the landmarks, the subsequent phase involved computing a metric for motion across the video 

frames.  

 

which calculates the average quantity of relative motion taking into account the normalized distance traveled by a specific joint 

over successive frames. This is done by taking the x and y coordinates of each of the markers for each time segment. For this 

study, the segment size segsize was set to 1 second, a duration determined experimentally and given the passive nature of the 

selected task, abrupt changes within the same second are not anticipated. By measuring this motion metric avgj,s we were able to 

produce a consistent dataset that reflects how much a dog moves in the abandonment stimuli. 

 

3 Results 

 

We measured the canine movement from the trials carried out by using Equation 1, which allowed us to process and translate the 

movement of the dog into a comprehensive representation across sub-phases of test. Heat maps were used to represent a minute-

by-minute visualization of each dogs’ activity throughout the trial, capturing the entirety of the motion across time. By segmenting 

the trial into discrete one-minute segments (‘initial’, ‘intermediate’, and ‘final’), we were able to detect patterns of mobility. The 

heat maps, shown in Figure 4, offer an explainable representation of the processed data, highlighting areas of peak activity (darker 

color), as well as those that are relatively calm (lighter color). 

 

From results presented by each Trial (Figure 4) it was observed that the dog ‘Rufo’ had greater mobility during Trial 1, while 

‘Tory’ had this same behavior during Trial 2. On the contrary, several dogs showed little movement during both trials, e.g. ‘Jeisu’. 

Both ascending (e.g. ‘Kiara’ in Trial 1) and descending (e.g. ‘Nala’ in Trial 2) movement patterns are also observed. Another  

pattern observed is to start and finish with higher movement, with a decay of movement in the middle of the trial, e.g. ‘Hachika’ 

in Trial 2. 
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Fig. 4. Average quantity of relative motion (AQRM) for both trials ordered by dog trainability score (Segment codes, 1: initial, 

2: intermediate, and 3: final). 

 

It is important to mention that the dogs are presented in ascending order according to dog trainability score, from score 6 for 

‘Gina’ to 12 for ‘Kiara’. A slight tendency of less movement (less color) towards the right of the heat maps can be noticed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Mean and standard deviation of AQRM from both trials ordered by dog trainability score (Segment codes, 1: initial, 2: 

intermediate, and 3: final). 

 

Beyond reporting results for each trial individually, we also examined canine movement by consolidating data from both trials. 

This analysis was based on a measure of central tendency and a measure of dispersion, as illustrated in Figure 5. Starting by the 

mean movement of each joint in these two trials as a key statistical measure, as traditional assessments of trainability often 

overlook inter-trial information that could contain subtle but significant patterns that might otherwise go unnoticed. The mean 
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metric substantiates that ‘Rufo’ and ‘Tory’ exhibit higher motion values, attributed to their elevated activity levels in specific 

trials. Conversely, ‘Conor’ and ‘Jeisu’ consistently showed the lowest motion values, irrespective of the trial. 

 

To complement the mean movement, we also incorporated the standard deviation in our analysis to capture the variability and 

consistency of the dogs’ movements. The standard deviation is critical as it illustrates the extent to which each trial’s movements 

deviate from the mean. This variability can be telling in terms of trainability, as it may hint at a dogs’ adaptability or its potential 

for stable behavior. Traditional assessments might fail to capture these nuances, as they typically do not quantify fluctuation in a 

dogs’ performance. In this case, only ‘Tory’ demonstrates a significant behavioral shift across the two trials, whereas ‘Gina’ and 

‘Jeisu’ maintain a better consistent behavior between trials. 

 

Finally, the difference in movement between the first and the second trial was also calculated to understand the temporal effects 

and potential training impact on the dogs, see Figure 6. This difference metric identified changes in the dogs’ behavior from  one 

trial to the next, which can be indicative of learning, habituation, or fatigue. Reporting these differences aggregates an additional 

angle that we can utilize to understand the evolution of a dogs’ behavior, as well as the effectiveness of the stimuli used in the 

trials. In this instance, the magnitude of motion may be represented by negative values if a dog increased its movement in the 

second trial, for example, ‘Tory’. Conversely, higher positive values correspond to diminished activity in the second trial, as 

observed with ‘Kiara’, or to a lesser degree, ‘Rufo’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Difference (Trial 1 - Trial 2) of AQRM ordered by dog trainability score (Segment codes, 1: initial, 2: intermediate, and 

3: final). 

 

3.1 Assessing the correlation between canine movement and trainability score 

 

In order to find a relationship between trainability and the amount of relative motion, we now present a series of plots that make 

a direct comparison between a dogs’ trainability score and their relative motion as captured in our trials. This aims to visualize 

the potential correlations between the recordings of the stimuli and the qualitative assessments done by professionals for each 

dogs’ trainability. 

 

 

Fig. 7. Standard Deviation of AQRM vs Dog Trainability Score for the mean of each of the three 

segments of the trials. 
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Fig. 8. Difference (Trial 1 – Trial 2) vs Dog Trainability Score for each mean of the three segments of the 

trials. 

 

The standard deviation and difference serve as our primary indicators, as the offer a broader perspective on each dogs’ behavior: 

one that focuses seeks to showcase the consistency of the movement across trials, and another that accounts for the change in 

movement across them, as shown in figures 7 and 8. These plots also highlight the differences in movement between trials, 

providing additional insight into the dogs’ learning and adaptation over time, something that we also covered by calculating the 

difference in movement between the trials. Remembering that the scope of this analysis is constrained by the availability of a 

small dataset, limiting the potential to identify stronger correlations. 

From Figure 7, intermediate (Pearson’s correlation coefficient, r=0.54) and final (r = 0.36) segments exhibit a subtle trend 

indicating that an increase in standard deviation corresponds to a higher trainability score. However, the first (r = 0.15) segment 

displays an opposite trend, with only one sample being an exception (very low std dev and trainability score).  This latter pattern 

is replicated in the intermediate and final segments when considering the difference in movement between trials, yielding 

correlation coefficients of r = -0.17 and r = -0.31, respectively. 

 

3.1 Case studies in movement patterns 

 

 

 

Fig. 9. Differences in dogs’ behavior across the stimuli. a) Increasing movement in Kiara's 2nd trial. b) 

Decreased movement in Nala's second trial. c) Uniformly calm movement across Jeisu's first trial. 
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As highlighted earlier, distinct movement patterns emerged during the individual trials for various dogs, offering insight into 

behavioral tendencies that may affect trainability, see Figure 4. For example, Kiara’s first trial exhibits an increase in motion as 

the trial develops, which is shown in Subfigure 9a. This might suggest an increase in discomfort with the environment as the trial 

progresses. In contrast, Nala presents a contrast to a decrease in activity during her second trial, shown in Subfigure 9b. This 

reduction could hint at the dog sitting for the remainder of the trial, displaying calmness, learning from the first trial, or a general 

decrease in interest. Jeisu’s first trial also displays a somewhat interesting pattern: complete calmness throughout the whole 

duration of the trial, as seen in Subfigure 9c. These individual cases serve as focal points for our study, although there is no direct 

relationship with the trainability score from this stimulus alone. Each case covers a behavior that may be general when scaling 

this study to different breeds or stimuli, offering insights into the factors that may affect a dogs’ behavior through the latter. 

 

3.2 Limitations of our study 

 

In the task of analyzing canine movement through 2D video in such a naturalistic manner, we confronted several challenges that 

represented unique obstacles to data integrity and model performance. These cases illustrate the breadth of real-world variables 

that can impact the application of ML techniques in behavioral analysis. 

 

First, we faced natural obstructions that compromised the precision of our tracking model. As dogs navigated their everyday 

surroundings, routine obstructions, such as posts or grass, often obscured the sight of some of the markers, especially in the lower 

parts of the dog. This led to inconsistent tracking, but also resulted in smaller bounding boxes, which tended to under-represent 

the actual scope of the dogs’ movements. The corresponding Subfigure 10a illustrates how these occlusions affected the visibility 

and the subsequent analysis of the movement data. 

Our second case highlights the limitations of machine learning models in the context of considerable diversity among subjects 

and environments. Despite the application of training techniques with data augmentation, the model exhibited expected failures 

when faced with the unique combinations of ten different dogs, each with its own distinct environmental conditions, coat color, 

size, and even husky breed variation. This complexity was further demonstrated by the sheer volume of data, with 18 videos 

comprising around 1800 frames each. Considering that the model was trained and refined on a dataset of just over 300 frames, 

this only represented 1% of the total amount of frames, thus the challenge for a good model becomes evident. In order to account 

for this, we employed methods to extract the best representative of a second (this being the frame with the highest average 

likelihood). Subfigure 10b depicts an instance where the model crossed the markers of the paws, illustrating the difficulty of 

creating a one-size-fits-all model for such varied data. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Showcased problems when processing data: a) Natural occlusion affecting the detection of markers/bounding box. b) 

Crossed detected markers for the dogs’ paw. c) The dog goes out of frame. 

 

Our third case also deals with the challenges of capturing behavior in an uncontrolled naturalistic environment. The unrestrained 

setting observes authentic behavior and introduces variables that impact the performance of both our tracking tools. Instances 

where the dogs moved out of the camera frame required on-the-fly camera adjustments, which were not instant. These events, 

although infrequent, had a noticeable effect on the integrity of the data and the overall performance of the tracking models. 

Subfigure 10c shows how both models fail as the dog leaves the frame, making it impossible for the DLC to detect the markers 

confidently and also draw a bounding box over the dog. 

 

We also visually verify very special cases of dogs’ behavior. In particular, an incident deserves mention where a dog (‘Luna’  in 

the first trial) was tethered too closely to a tree trunk with its leash, causing discomfort during the initial part of the trial, resulting 
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in a prolonged restraint in its movement. The dog in question ended up sitting after a series of movements that led to adjustment 

and a better position. Nevertheless, our approach successfully quantified movement throughout this subphase, unaffected by the 

atypical behavior during the trial. 

 

In a further inspection of the results displayed in Figure 4, which delineates the AQRM for both trials, we can note that there is 

no evident pattern that directly ties the dogs’ trainability scores to their levels of activity; each dog exhibits a unique motion profile 

or pattern. This was expected, due to the lack of nuanced information that this insight offers. This creates a challenge for further 

analysis using the rest of the metrics obtained as results. 

 

After analyzing Figures 5 and 7, it is apparent that the relationship between a dogs’ trainability and its movement is not 

straightforwardly discernible from the data. The absence of a clear-cut correlation in the average movement across trials might 

seem like there are layers of complexity that affect canine behavior. When comparing to a traditional assessment, we found that 

not only movement is perceived for a trainability score, but also actions that the dog performed in such trial, and these might 

manifest in different kinds of information not taken into consideration here, such as vocal cues like whining and barking, activities 

such as urinating or standing on hind legs, and even visual poses, including sitting or resting. 

 

Regarding Figure 7, when analyzing all 3 plots, a higher standard deviation in the average amount of relative motion appears to 

correlate positively with the increase in the trainability score in the second and third segments. As the trial progresses, the second 

and third segments might indicate that dog behavior begins to stabilize, and a more discernible pattern emerges. This stabilization 

may reflect an accurate representation of dog habituation (Pullen, Merrill, & Bradshaw, 2012; Maros et al., 2008), as the first 

segment of the tests shows that there is a disparity that can be attributed to the initial adjustment period of the dog: a perceived 

negative emotion from its owner leaving, followed by a habituation process to the environment of the trial.  

 

The data presented in the plot on the left of Figure 8 suggest a nuanced beginning to the dogs’ interaction with the abandonment 

stimuli, one that appears to lack a direct correlation with trainability. However, this indicates that the initial response may indeed 

be atemporal, reflecting a period where the difference in behavior is minimal and not particularly indicative of future trainability, 

but when it comes to the rest of the segments, a pattern begins to emerge. The decreasing amount of difference observed suggests 

that the dogs not only react to the stimuli but interact with the environment and its surroundings in a way that evolves. This might 

not necessarily reflect stress or discomfort, but rather an increase in familiarity and ease with the stimuli, leading to an 

interpretation of adaptability and learning. 

 

The goal of this work was to analyze the movement of dogs through 2D video recordings, to elucidate the relationship between 

movement patterns and dog training capacity during an abandonment test. We expected that more trainable dogs would show less 

movement during the abandonment test; however, we found a pattern associated with time. 

 

4 Conclusions 

 

In concluding this study, the proposed approach facilitated the measurement of canine movement during tests in real settings, 

showing resilience to challenges posed by occlusions. Furthermore, a strategy for analyzing movement in subphases was 

introduced and assessed, enabling the identification of specific behavioral patterns. Conversely, it is critical to reflect on the 

divergence between our initial expectations and the actual results. Our findings did not consistently substantiate the expectation 

that motion activity would directly correlate with higher trainability. Instead, we observed that other measures that rise from the 

statistical analysis of the data, provide a more nuanced indication of trainability. 

 

Looking forward, the path is paved with numerous opportunities for further research. Future work could explore the integration 

of additional behavioral metrics, such as heart rate variability or temperature, to provide a more comprehensive picture of a dogs’ 

response to training stimuli. Furthermore, additional studies could examine even more intricate visual information, such as 

activities performed by the dog during the trial, as well as poses, accommodating a wider array of characteristics or environmental 

variables. 

 

This experiment embarked on an ambitious journey to decode the complexities of canine movement and its relation to trainability 

through the lens of machine learning techniques, as well as computer vision. By strictly applying these to naturalistic data, we 

have challenged traditional notions of trainability measurement and assessment. Our findings have painted a picture that is as 

intricate as it is insightful, revealing that the essence of trainability may lie in the variability and adaptability of behavior, rather 

than the inconsistent repetition of movement or subtlety in it. As we reflect on the collective insights generated from this study, 

we are reminded of the complexity of canine cognition and behavior, which continues to unravel in surprising and intricate ways. 
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