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Abstract. Age-related macular degeneration (AMD) is one 

of the leading causes of vision loss in elderly adults around 

the world and is among the main visual impairments in 

Mexico. The difficulty of diagnosing AMD in its early 

stages motivates the use of advanced deep-learning 

methods that offer significant potential to improve 

diagnostic accuracy in retinal image analysis. In recent 

years, Transformer architectures for computer vision, such 

as Vision Transformer (ViT), Swin Transformer and BERT 

Pre-training of Image Transformers (BEiT) have provided 

a novel perspective for image analysis. This study presents 

a comparative analysis of these architectures, applied to 

AMD detection, focusing on each model's capability to 

classify the early stages of the disease. Although the small 

size of medical image datasets represented a challenge, our 

results suggest that ViT-based architectures and their 

derivatives achieve significant performance in AMD 

detection. BEiT is particularly notable for its consistently 

superior performance. 
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1 Introduction 
 

As is pointed out in (WHO, 2020), AMD significantly affects the life quality of life of elderly persons who suffer from such 

conditions, affecting their independence and capability to perform their daily activities. In Mexico, AMD has been cataloged as 

the third of the six leading causes of ocular issues that affect the population, as reported by the Mexican Health Secretary 

(World Sight Day 2020). The early detection of AMD is fundamental to prevent the advance of the disease and preserve vision. 

The literature suggests that integrating Deep Learning methods (mainly Convolutional Neural Networks or CNN) has improved 

performance in detecting and classifying medical images and, in some cases, has surpassed evaluations made by specialists (T. 

He et al., 2022). 

 

With the advance of image processing and the implementation of Deep Learning techniques, new perspectives for its use in 

medical sciences have appeared. Image processing using CNN and its automatic analysis methods have proven to be highly 

efficient tools, providing intelligent and user-friendly systems for the scanning and diagnosing diseases, including AMD, outside 

of a clinical environment (Abd El-Khalek et al., 2024). Furthermore, different approaches have been proposed to detect the 
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pathological characteristics of AMD captured in high-resolution images by analyzing texture patterns and colors (Leingang et 

al., 2023). The automatic classification of the disease level progression faces challenges, especially with those features that are 

subtle or like non-pathological conditions. This is complicated by the high image resolutions and the high resources required, 

possibly affecting the accuracy of the diagnosis and slowing down the process (Deep Learning for AMD Screening and 

Detection, n.d.). In this context, based on the comparative analysis presented in this article, we consider that vision transformer 

architectures such as ViT (Dosovitskiy et al., 2020), Swin Transformer (Liu et al., 2021), and BEiT (Bao et al., 2021) suggest a 

promising evolution in the detection of AMD, giving the capability to understand the complex spatial relationships in retinal 

images. This study presents a comparative analysis of these vision transformer architectures applied to the detection of AMD, 

focusing on the capability of each model to identify and classify the stages of the disease into No AMD, Mild, Moderate, and 

Advanced. These models may be essential to improving early detection and diagnostic accuracy of AMD, which is crucial for 

effective treatment and vision preservation in elderly populations, Mexico included. 

 

This work is organized in the following sections: Section 2 shows the related works. Section 3 compares architectures, ViT, 

Swin Transformer, and BEiT, and provides details for their implementation in the AMD case of study. Section 4 details the 

experiments carried out, their results, and the comparative evaluation of the performance of the architectures included in the 

study. Finally, Section 5 presents the conclusions and future work. 

 

2 Related works 
 

Several related works have been identified in the literature. Nevertheless, they do not compare transformers with different 

architectures for computer vision applied to DMAE, highlighting their efficiency over CNNs.  

 

One of the most relevant works is presented in (Tu, 2023); such work addressed the application of ViT to detect glaucoma 

through fundus images. The authors evaluated several architectures: ViT, Swin Transformer, Twins-PCPVT, and Class 

Attention on Image Transformers (CaiT). They used learning algorithms with few images, and the impact of data augmentation 

techniques was also analyzed. The study results showed that ViT, combined with ProtoNets, outperformed CNN-based 

counterparts and achieved competitive performance on benchmark data sets. In (Alayón et al., 2023), the authors evaluated the 

effectiveness of CNNs and Vit-based systems in detecting glaucoma in fundus images. The authors tested several CNN 

architectures such as VGG19, ResNet50, InceptionV3 and Convolution Enhanced Image Shaper (CeiT), Convolutional Vision 

Transformer (ConViT), and the ResMLP architecture. The results show that CNN and ViT performed similarly on the test set, 

although CNNs demonstrated better generalization on external datasets. Likewise, in (Li et al., 2023), the efficiency of ViT 

architectures was explored in medical imaging applications. The capabilities of ViT were compared with those of CNNs in tasks 

such as segmentation, recognition, and classification of medical images. Architectures such as Conformer, U-Net Transformer, 

and Multi-transSP were highlighted, as they showed superior effectiveness in improving precision and efficiency in various 

medical applications. The results showed that ViT outperformed CNNs in medical image segmentation due to its ability to 

model long-term dependencies and scalability. Furthermore, J. He et al. (2023) introduced a method to classify retinal diseases 

using optical coherence tomography (OCT) images. In this work, a Swin-Poly Transformer network was proved. The findings 

indicated that the proposed method facilitated accurate and efficient retinal classification and highlighted the value of artificial 

intelligence in ophthalmological diagnoses and the potential of ViT networks in the medical area. Similarly, in (Nafisah et al., 

2023), the researchers compared CNNs and ViT architectures to classify chest radiographs (CXR) in COVID-19 cases, viral 

pneumonia, and healthy cases. This study used the COVID-QU-Ex dataset, randomly splitting 80% for training and 20% for 

testing. They evaluated the effectiveness in balanced and unbalanced cases, implementing ViT models such as Twins, Swin, and 

Segformer. The results showed that the CNN and ViT-based models had similar performance, with a maximum accuracy of 

99.82% for EfficientNetB7 (CNN) and outstanding performance for SegFormer (ViT). In work (Ma et al., 2022), the authors 

evaluated the performance of ViT architectures, specifically ViT-B and Swin-B, in medical image classifications, contrasting 

their effectiveness with models based on CNNs to diagnose diseases such as thoracic diseases, pulmonary embolisms, and 

tuberculosis, using x-rays and CT scans. This work proposed that adequate initialization is essential for Vision Transformers in 

the medical field and that self-learning approaches that use mutual information generate more accurate representations for 

medical classification. In the same sense, the authors of Mallick et al. (2022) explored the use of ViT, Swin Transformer, and 

ConvNext by applying transfer learning techniques to detect Glaucoma from fundus images. This effort sought to create an 

automated method that allowed the identification of Glaucoma in its early stages to prevent blindness. Finally, (Wassel et al., 

2022), Wassel et al. reported a study that classified glaucomatous ocular conditions using ViT-based models, using whole and 

cropped optic disc fundus images. ViT, Swin, CaiT, CrossFit, XciT, ResMlp, and DeiT were evaluated in both cases, 

individually and in assemblies. In addition to glaucoma, they addressed other ophthalmological diseases such as diabetes, 

cataracts, hypertension, pathological myopia, and other anomalies. Their results showed that Swin and CaiT obtained the highest 

precision, sensitivity, and specificity levels in validating and testing the combined data sets, underscoring their effectiveness for 
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glaucoma detection in ophthalmological images and suggesting their potential usefulness in clinical practice. The following 

table shows the summary data of the related works identified in the literature for this research work. 

 

Table 1. Related works on comparisons of ViT architectures in medicine. 

Author Architecture Disease  Image Type 

Nurgazin M. et 

al. (2023) 

Variantes del ViT clásico:  

ViT_tiny 

ViT_small 

ViT_base 

 

Melanoma, Basal cell carcinoma, 

Squamous cell carcinoma, Nevus, 

Actinic keratosis, Dermatofibroma, 

Epidermoid cyst, Psoriasis, Atopic 

dermatitis, Rosacea, Breast cancer. 

Skin lesions. Breast 

tissue biopsies. 

Cervical cytology. 

Alayon S. et. al. 

(2023) 

ViT, Swin Transformer,  

Twins-PCPVT, CaiT. 

 

Glaucoma 

 

 

Fondus. 

Li J. et al. 

(2023) 

Conformer, U-Net Transformer, 

Módulo Residual Transformer 

Multi-transSP, TransPath, i-ViT 

BabyNet 

Fetal weight prediction. Detection 

of diabetic retinopathy. Knee 

cartilage segmentation. 

Ultrasound. Magnetic 

resonance imaging, 

CT scan, X-ray, 

Histopathology. 

 

He J. et al 

(2023) 

ViT   

Swin Transformer 

Diabetic retinopathy, Diabetic 

macular edema, Glaucoma, Ocular 

abnormalities. 

 

Optical coherence 

tomography (OCT). 

Nafisah S. et al. 

(2023) 
Twins, Swin, Segformer 

COVID-19 

Pneumonia 

Chest x-rays (CXR) 

Ma D.  

et al. (2022) 
ViT-B, Swin-B. 

 

Chest diseases, Pulmonary 

embolism, Tuberculosis. 

 

Chest x-rays, CT 

scans. 

 

Mallick S. et al. 

(2022) 

ViT, Swin Transformer,  

ConvNext 

 

Glaucoma Fondus. 

Wassel M. et al. 

(2022) 

Cait, crossViT, XciT, ResMlp, 

DeiT, ViT 

Glaucoma, Diabetes, Cataracts, 

Hypertension, Pathological Myopia 

Fondus. 

 

 

3 Methods and Implementation 
 

In this section, the compared transformer architectures are depicted, and the details for their implementation in the study, 

namely Dry-AMD, are described. This includes the acquisition of the image datasets, the preprocessing applied to them, and the 

parameters for the training process. The pipeline of the process is summarized in the next figure. 

 

 
Fig. 1 Process pipeline. 
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3.1 Transformer Architectures 

 

In this study, a detailed comparison between the ViT, Swin Transformer, and BEiT architectures for the detection and multiclass 

classification of AMD in fundus images is made. The classification categories used are No AMD, mild, moderate, and advanced 

AMD. The selected Deep Learning technologies were chosen for their potential to effectively process intricate visual features 

critical to discerning the different stages of AMD, which is crucial to achieving an early and accurate diagnosis. Besides, these 

architectures present an advanced ability to capture global and local image patterns, essential for reliable detection and accurate 

classification of AMD progression. 

 

3.1.1 Vision Transformer (ViT) 

 

ViT (Dosovitskiy et al., 2020) is an innovative architecture that applies the transformer mechanism, which is common in 

language processing, to computer vision. ViT breaks images into patches and processes them as tokens in a sequence. It uses 

attention to weigh the importance of different parts of the image, allowing the model to capture complex patterns and long-

distance relationships. Its focus on global relationships makes it especially suitable for identifying patterns in medical images, 

such as those related to AMD, where the manifestations of the disease may be subtle and distributed throughout the image. 

 

 
Fig. 2 Original ViT architecture (extracted from (Dosovitskiy et al., 2020)) 

 

3.1.2 Swin Transformer 

 

Swin Transformer was introduced by Ze Liu et al. in their work “Swin Transformer: Hierarchical Vision Transformer using 

Shifted Windows” (Liu et al., 2021). The Swin Transformer arises in response to some limitations of pure transformer models 

such as ViT, especially regarding computational efficiency and the capacity to handle varying image sizes. Although ViT 

demonstrated that transformers could be decisive for vision tasks, its approach of treating the image as a sequence of fixed 

patches posed challenges in terms of scalability and adaptability to different resolutions and image sizes. 

 

 
Fig. 3. Swin Transformer architecture (extracted from (Liu et al., 2021)) 
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The Swin Transformer introduces several innovative concepts to address these limitations: 

 

• Shifted Windows: One of the key innovations of the Swin Transformer is its use of shifted windows. It divides the 

image into non-overlapping windows for local attention, which reduces computational complexity. 

• Hierarchy: As in CNNs, the Swin Transformer processes images at various resolutions. It starts with high resolution 

and progressively reduces it, allowing the model to capture features at different scales and improve efficiency by 

reducing resolution in deeper layers. 

• Flexibility and Generality: Unlike ViT, which uses fixed-size patches, the Swin Transformer can more effectively 

handle different image sizes and resolutions, making it more flexible and adaptable for various vision applications. by 

computer. 

 

The Swin Transformer's selection is justified by its design, which efficiently addresses hierarchy and locality in images. Unlike 

ViT, which considers the entire image globally, the Swin Transformer processes images in local windows, allowing a more 

detailed representation of local features. 

 

3.1.3 BEiT (BERT Pre-training of Image Transformers) 

 

It was presented in a work by (Bao et al., 2021) titled “BEiT: BERT Pre-training of Image Transformers.” BEiT is inspired by 

the success of BERT (Bidirectional Encoder Representations from Transformers) in Natural Language Processing (NLP). BERT 

revolutionized NLP by pre-training transformers on large text corpora using hidden word prediction tasks, where the model 

learns to predict parts of the text that have been intentionally hidden. BEiT brings this pre-training approach to the image 

domain. Instead of predicting hidden words, BEiT is trained to predict hidden parts of an image. This process involves two main 

stages: 

 

• Image Tokenization: BEiT converts an image into a set of visual tokens using an image tokenization model (such as a 

VQ-VAE, a quantized variational autoencoder). This results in a representation of the image in tokens, similar to how 

text is tokenized in NLP. 

• Model Pre-Training: The model is pre-trained to predict visual tokens from hidden parts of the image, similar to the 

prediction of missing words in BERT. This teaches the model to understand and predict visual structure and content 

based on the context provided by the visible parts of the image. 

 

The use of BEiT in this study is justified by its focus on learning visual representations by predicting hidden pixels. This 

innovation for analyzing fundus images in AMD allows BEiT to capture subtleties in the textures and patterns of images, which 

are crucial for identifying the stages of AMD. 

 

 
 

Fig. 4. BEiT architecture (Extracted from (Bao et al., 2021)) 
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3.2 Implementation Details 

 

For comparison, models of the three architectures were trained through a fine-tuning process due to the limited size of the 

dataset and the computational resources available. Multiple iterations were carried out to tune the hyperparameters of each 

model. The same set was used for all the training processes. Most of the implementation aspects are detailed below. 

 

 

3.2.1 Hardware Specifications 

 

The ViT and Swin Transformer models were implemented in Google Colab®, using GPU acceleration. The GPU available in 

Colab® was a NVidia Tesla T4 with 15GB of VRAM. In contrast, due to resource limitations in Colab®, the BEiT model was 

trained on a desktop computer with an Nvidia RTX 3070 8GB GPU and an AMD Ryzen 5 3500X CPU. The PyTorch 

Transformers library was used for the training process of all the models. 

 

3.2.2 Datasets 

 

To build the dataset, 305 images were initially used, divided into 185 for training and 60 for validation and testing, following a 

60% / 20% / 20% distribution. The images were obtained from the iChallenge-AMD dataset (Broad (Baidu Research Open-

Access Dataset), 2020) and a set on Kaggle published by Mujib (Rakhshanda Mujib, 2023), which includes AMD images 

extracted from several fundus image sets with retinal pathologies. The classification of the images was based on existing 

literature (U.S. Department of Health and Human Services, n.d.) (Al-Zamil & Yassin, 2017). The labels for the different classes 

are: 1. Mild, 2. Moderate, 3. Advanced & 4. No AMD. After the manual classification of the images, the classification was 

corrected and validated by experts in the medical area (CONDE Investigación – Unidad de Investigación, n.d.). 

 

Data Augmenting 

 

Data augmentation techniques are applied to the training batch to enhance model generalization and reduce overfitting due to the 

limited dataset size. Such transformations include resizing, rotations, and brightness and contrast adjustments. This increased the 

set to 1,094 images, with 974 dedicated to training.  

 

 
Fig 5. Example of the transformations applied. 

Several data augmenting processes were made, which gave different results in the training process. Finally, after several proofs, 

the transformations applied to the original set were not drastic enough to maintain the subtle patterns in the images; it turned out 

that very drastic changes in the original images produced noise in the training process. 
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3.2.3 Training Parameters 

 

Multiple experiments were carried out to determine the optimal hyperparameters, concluding that 42 epochs and batches of 32 

images were the most appropriate. Increasing the number of epochs beyond 42 did not generate significant improvements in 

performance, identifying a plateau in performance around 20 epochs. Additionally, the learning rate was set to 5e-05 after 

extensive evaluations. 

 

Table 2. Hyperparameters in the models’ training process. 

Hyperparameter Value 

Learning rate 5e-05 

Train batch size 32 

Evaluation batch size 32 

Seed 42 

Optimizer Adaptive Moment Estimation (Adam) 

Warmup ratio 0.1 

Epochs 42 

 

4 Experiment Results 
 

The following section shows the results obtained from the data and parameters previously described, in addition to the graphics 

and metrics used to evaluate the trained models. 

 

4.1 Results 

 

The accuracy metric of any model trained was recorded. An increase in this metric was observed until the 40th epoch. This 

performance was monitored and documented using the Weights & Biases® (W&B) platform, as illustrated in the image below. 

     

Fig. 6. Results obtained by the models during the training process. 

The presented models achieved an accuracy greater than 0.7500. To strengthen the evaluation of the results, additional 

performance metrics were calculated, including precision, sensitivity, and F1 Score, allowing a deeper analysis of each model's 

capabilities. These metrics were obtained using the validation and test sets previously separated from the initial data set. The 

results of these metrics are presented in the following table. 
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Table 3. Results in the evaluation metrics of the different models. 

Model Accuracy Set  Class Precision Recall F1-Score 

ViT 

0.8500 Validation 

No AMD 0.8000 0.6666 0.7272 

Mild 0.8333 0.9259 0.8771 

Moderate  0.8500 0.8500 0.8500 

Advanced 1.0000 

 

0.7142 0.8333 

0.7166 Test 

No AMD 1.0000 0.5000 0.6666 

Mild 0.7187 0.8518 0.7796 

Moderate  0.6666 0.7000 0.6829 

Advanced 0.7500 0.4285 0.5454 

 

 

0.7500 
Validation 

No AMD 0.5555 0.8333 0.6666 

Swin Transformer 

Mild 0.7777 0.7777 0.7777 

Moderate  0.8235 0.7000 0.7567 

Advanced 0.7142 

 

0.7142 0.7142 

0.7666 Test 

No AMD 0.8333 0.8333 0.8333 

Mild 0.9583 0.8518 0.9019 

Moderate  0.6666 0.7000 0.6829 

Advanced 0.4444 0.5714 0.5000 

BEiT 

0.8166 Validation 

No AMD 0.8000 0.6666 0.7272 

Mild 0.7931 0.8518 0.8214 

Moderate  0.8333 0.7500 0.7894 

Advanced 

 

0.8750 1.0000 0.9333 

0.8166 Test 

No AMD 1.000 0.6666 0.8000 

Mild 0.8518 0.8518 0.8518 

Moderate  0.7391 0.8500 0.7906 

Advanced 0.8333 0.7142 0.7692 

 

The results presented in the table above show notable differences in the models' performance. By averaging the precision results 

of the models for the validation and test sets on which they were evaluated, ViT reaches an accuracy of 0.7833, Swin 

Transformer obtains 0.7583, and BEiT reaches 0.8166. 

 

Importantly, for all models, the performance in the classification of fundus images of the "mild" and "moderate" classes is 

consistent and shows better results compared to the "No dmae" and "moderate" classes. Advanced", which presents a more 

significant variance. The Figs. 7 to 11 show the comparative graphs of the primary metrics applied to the models. 

 

 

 
 

Fig. 7. Precision, sensitivity, and F1-score comparison by class of different models. 
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Fig. 8. Comparison of trends by class and model of the model evaluation metrics. 

 

 
Fig. 9. General distribution by model of the metrics used in the comparative study. 

 

 

Fig. 10. Correlation matrices of metrics of the evaluated models. 
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Fig. 11. Confusion matrices of the evaluated models (validation set). 

         

Fig. 12. Confusion matrices of the evaluated models (test set). 

4.3 Computational Efficiency 

 

The purpose of creating machine learning mechanisms is to be helpful as a support tool for ophthalmological diagnosis, so it is 

essential to consider the computation efficiency of the different models generated. The knowledge of computational efficiency 

provides perspectives about how scalable, flexible, and adaptable the models are for their implementation in medical 

applications. Next, the metrics were extracted from the Weights & Biases® (W&B) platform (memory consumption and 

training time) or obtained using the Google Colab® platform. 

Table 4. Computational Efficiency of the different models. 

Model Training time 

(minutes) 

Inference Time 

(ms/image) 

Memory Consumption 

(GB) 

Parameters(M) FLOPs 

(GFLOPs) 

 

Vision Transformer 

 

 

24.25 

 

7.95 

 

6.59 

 

86.39 

 

17.58 

Swin Transformer 

 

9.05 17.64 5.35 27.52 4.51 

BEiT 

 

28.10 11.74 7.08 85.76 17.58 

 

Due to the models being trained in different hardware environments, it's necessary to make a distinction for the training time 

metric, as the GPUs used during the training process were different. In addition, the inference time may vary depending on the 

hardware used to run the model. In this case, the GPU used was the Nvidia Tesla T4 available in Colab®. 

 

4.3 Discussion 

 

Our comparative study evaluated three advanced models: ViT, Swin Transformer, and BEiT. The results indicate significant 

variations in each model's performance, underscoring the importance of architecture selection in clinical applications. 
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The ViT model exhibited high accuracy on the validation set, although a decrease in its performance was observed when 

evaluated on the test set. It particularly stood out in classifying advanced cases of macular degeneration within the validation 

set, which suggests that this architecture has a specific aptitude for identifying severe manifestations of the disease. However, a 

reduced sensitivity was recorded in detecting cases in the early stages, which could reflect a predisposition towards 

overclassification in the most serious phases. 

 

In contrast, the Swin Transformer presented a slightly lower overall accuracy than the ViT, which was especially notable on the 

validation set. This architecture faced challenges in accurately classifying advanced cases in the test set, evidenced by its low 

sensitivity and F1 score in said category. However, it showed competitive performance in identifying the initial stages of the 

disease, which indicates its potential usefulness in early detection. 

 

BEiT proved to be the most effective model in the test set, outperforming the ViT and Swin Transformer models regarding 

overall accuracy. Despite initially inferior performance to the ViT in the validation set, the BEiT showed notable consistency 

between both sets and a significant improvement in detecting all stages of the disease compared to the ViT during testing. This 

reveals a superior generalization capacity and robustness, positioning BEiT as a promising alternative for the practical detection 

of macular degeneration in its various stages. 

 

The variability in performance between these models highlights the complexity of applying Deep Learning to medical 

diagnoses. While ViT and Swin Transformer offer advantages in detecting specific stages of the disease, BEiT shows a balance 

between sensitivity and accuracy over a broader range of conditions. The above highlights the need to consider multiple factors, 

such as accuracy, sensitivity, and specificity, when selecting a Deep Learning model to detect ophthalmological diseases. 

 

5 Conclusions 
 

Although ViT continues to present high performance, BEiT is a more consistent alternative in the present case study. 

 

The average accuracy results for the validation and test sets show that BEiT leads with an accuracy of 81.66%, followed by ViT 

with 78.33%, and Swin Transformer with 75.48%. These figures reflect the generalization capacity of each model and its 

reliability in recognizing patterns associated with specific ocular conditions. 

 

Interestingly, the models show consistency in performance in classifying conditions classified as “mild” and “moderate.” This 

phenomenon indicates that the visual features present in these stages of the disease are more distinctive and, therefore, more 

easily recognized by deep learning models. On the other hand, the “No dmae” and “Advanced” categories exhibit more 

significant variability in the results, which suggests that the visual manifestations of these stages may be more subtle or less 

differentiated, thus making accurate classification difficult. 

 

The findings underline the importance of model selection in artificial intelligence-based medical diagnostic applications. 

Although BEiT outperforms in general performance due to its balance between precision and generalization capacity, ViT still 

shows superior performance in some instances. Despite slightly lower performance, the Swin Transformer could still be 

valuable in a clinical context when combined with other modalities or as part of an assembly system. 

 

Our results suggest that, although there is no single solution for detecting all stages of age-related macular degeneration, careful 

selection of Deep Learning architecture can significantly improve diagnostic results. Future research should explore the 

integration of these architectures with other data modalities and learning techniques to develop more accurate and reliable 

diagnostic systems. 
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