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Abstract. The scheduling problems in Manufacturing Systems are characterized by a high degree of 
uncertainties arising from diverse factors such as stochastic environments and data incompleteness. 

However, traditionally the schedules generated for those environments are deterministic, or quasi-

deterministic at the best, and only recently the approach static is being shifted for a stochastic approach. 

This paper highlights the uncertainty characteristics that should be taken into account to improve the 
schedule robustness.   In this research, selected cases from the last ten years of stochastic scheduling 

literature are reviewed, specially the ones relatives to  Semiconductor Factories. Another  important 

objective of our report is to bring the attention of researchers to emerging methodologies and technologies 

coming from the subject of Knowledge Representation and Reasoning.  These new methodologies and 
technologies are well suited to solve hard combinatorial problems with incomplete knowledge.  

Keywords: Dynamic scheduling, scheduling under uncertainty,  rescheduling, non-monotonic reasoning, 

knowledege representation and reasoning, answer set programming. 

 

0 Introduction 
 

There are a lot of situations in industrial environments in which one must make a decision under uncertain conditions. Planning 

and scheduling are plagued of such problems. Different methods have been proposed and applied to deal with unexpected 

interruptions during the scheduling execution [46]. However, in spite of existing multiple problem instances of stochastic nature, 

scheduling under uncertainty has only been addressed in a partial and limited way [3], [53]. A representative case of using this 

modeling approach is a Semiconductor Manufacturing System (SMS). The SMS represents one of the most stochastic 

production processes, and yet most of the reported research works about those environments have been formulated 

deterministically [4],[75].  

 

 In manufacturing systems the scheduling performance and the production process are inextricably interlinked. During the 

schedule execution the environment is constantly changing due to the system evolution over time. There are also other changes 

of non-deterministic nature, which frequently induce interruptions in the manufacturing process, like  restricted capacity of the 

production system, changes in job orders, etc.  Usually, these perturbations make the original schedule non-viable, and a partial 
or complete rescheduling is required. 

 

Different manufacturing systems share common problems, but each one has very specific particularities derived from the 

production process and the working environment. Rescheduling in Semiconductor Manufacturing has been recognized by the 

research community as one of the most difficult problems of this type [14], [84]. The difficulty of the SMS rescheduling comes 

directly from the production processes, which involves complex product flows, quick changing orders, concurrent 

manufacturing of distinct products, and multiple steps of variable length in the production cycles, besides of the huge quantity of 

interruptions related to machine breakdowns, rush orders, failures in supplies and deliveries, and many other disruptions that 
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cannot be completely anticipated. Additionally to the complex production process, a schedule should satisfy multiple objectives 

such as a minimum makespan or tardiness [4]. 

 

In the last decade, researchers have been forced to include uncertainty in rescheduling models to bridge the gap between 

traditional theoretical models and real world planning problems. To formulate a problem of scheduling under uncertainty, some 

design decisions must be taken, e.g., which stochastic events should be attended, which event priority should be used, how often 
rescheduling should be done, etc. All these choices must be carefully weighted for each particular problem, but in general it is 

required to define a framework of decisions before the problem is modeled. Given the diversity of application areas and the 

particular characteristics of each scheduling problem, it is unlikely that all rescheduling problems can be formulated inside a 

single framework. For the purpose of study, some classification schemes have been proposed, and among them the most 

influential ones were proposed by [3], [82].  

 

In the case of SMS, some surveys about static scheduling problems have been recently published, see e.g. [58], which is 

restricted to scheduling wafer fab operations. In the previously mentionated paper, one of the identified challenges is to evaluate 

the impact of rescheduling strategies in the schedule robustness and stability improvement.  

 

The paradigm shift witnessed over the last decade from a static view of scheduling to one including uncertainties can be 

explained by two main reasons: a) it is imperative to fill the gap between purely theoretical investigations and scheduling 

decisions towards solving practical real problems within the industry; b) the production processes, and consequently, the related 

scheduling problems have become extremely complex.   

 

Up-to-date reviews about the rescheduling problem for manufacturing systems are rather scarce. One of such reviews was given 

by Li and Ierapetritou [47], which is addressed to scheduling problems related to factories with batch processing. The aim of this 
review is the scheduling problem under uncertainty for Manufacturing Systems in general, and to rescheduling in SMS in 

particular.  This review is biased to works based on the Artificial Intelligence (AI)'s subtopic known as Knowledge 

Representation and Reasoning (KRR). 

 

The rest of this paper is organized as follows.  In Section 2 we discuss the pros and cons of optimal schedules and robust 

reschedules.  Section 3 is dedicated to the origin of uncertainty and what role should be assigned during the modeling step of 

scheduling problems.  Section 4 is devoted to study how the rescheduling problems can be classified based on strategies, 

policies and methods taking as reference the most influential rescheduling frameworks proposed by diverse authors. Some 

rescheduling cases were selected and studied in Section 5 with the aim to identify a possible relationship between the scheduling 

strategy and the technique used to solve the problem.  Lastly, Section 6 briefly reviews some theories and techniques from 

Knowledge Representation and Reasoning well suited to solve scheduling problems with incomplete knowledge.  Some 

concluding remarks complete the paper. 

 

2 Scheduling Optimality versus Rescheduling Robustness  
 

Traditionally, scheduling research has been mainly focused on two main concerns: optimality and efficiency. The optimal use of 

time and resources has a direct benefit in reducing production costs, while efficiency is related to computational resources. This 

means that fast algorithms with low computational load are needed. However, it may not be practical to devote too much effort 

in achieving optimality, since truthful optimal scheduling can only be ascertained conjoined with its practice on real world 

industrial problems.    

 

In order to meet industrial needs, researchers have begun to put more emphasis on robustness than optimality. In real-world 

rescheduling problems, stability is important as optimality and efficiency.  Stability is measured as the number of resources we 

need to reassign to a new schedule whenever the current schedule becomes useless [22], [71].   
 

Under this perspective, it is important to consider that the most tightly optimized schedule is probably not the best one. In other 

words, if the main objective is to maintain the stability of the system, then the most important point is to be sure that the new 

plan requires as few resource reallocation as possible. Another related concept to stability is shop floor nervousness. This 

phenomenon happens when a rescheduling process results in a big number of changes in the resource allocation. Experimental 

results have shown that scheduling nervviousness is an undesirable situation, because the production costs increase and 

negatively affect the makespan [82].  
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As it previously stated, research in scheduling is focused on optimality and efficiency while rescheduling is on robustness. Under 

the classical scheduling view point, optimality is determined only for static environments. Consequently, the schedule can only 

be optimal if the real world behaves as expected during the schedule execution. For quasi-deterministic environments, it is 

advantageous to assume that the environment is static, since this leads to more tractable variants [71].  In contrast, there are 

evidences that show that for environments with high uncertainty, it is more convenient to design a robust schedule instead of an 

optimized one [19]. 
 

Two approaches have been reported in literature for modeling non-deterministic scheduling problems. 1) When modeling the 

problem, the scheduler uses as much information about uncertainties as there is available. Both, Stochastic Programming [8], 

[28], and Robust Optimization [71] belong to this approach. 2) The problem is solved by dividing it into two parts: one layer 

deals with the dynamic nature of the problem, while the other solves the deterministic part. This approach is named 

interchangeably as Dynamic or Reactive Scheduling [42].    

 

Both approaches have pros and cons. Stochastic Programming and Robust Optimization have reported better results than the 

second approach, because whenever uncertainties are incorporated, the model is closer to reality. Unfortunately, adding 

uncertainty to the model is expensive, as the problem's complexity class is increased. The complexity of a scheduling problem 

without uncertainties belongs to the class of NP-complete problems, while stochastic scheduling belongs to the class of 

PSPACE-complete problems [63]. 

 

The main advantages of the dynamic scheduling approach are: 1) Tractability through splitting the problem into two different 

entities, the scheduler part and the reactive part, allowing to solve large instances efficiently by using a deterministic solver; 2) 

Faster problem solutions with deterministic solvers are already available; 3) Simplification of uncertainty modeling because it is 

not necessary to know the probability distributions of the variables - information that in general is hard to obtain.  Disadvantages 
of the dynamic scheduling approach are: 1) dynamic rescheduling does not incorporate uncertainties during the modeling of the 

problem and, consequently, the resultant schedule is less robust than the one obtained using the first approach. 2) There are few 

theoretical results reported to date. Some of the most recent frameworks for reactive rescheduling were proposed in [23], and 

[42].  

 

 

3 The Role of Uncertainty in Modeling 
 

In the taxonomy proposed by Tannert et al. (2007), uncertainties are classified into two main groups: objective and subjective. 

Subjective uncertainty is related to moral aspects and is beyond the scope of this paper.  

 

3.1 Objective Uncertainty 
 

Tannert subdivides objective uncertainty into two subclasses: epistemic and ontological. Epistemic uncertainty is caused by gaps 

in knowledge about some topics.  Ontological uncertainty is derived from the stochastic nature of a particular situation. Usually, 

complex systems exhibit this type of behavior. These systems often have a non-linear behavior, which requires to solve 

uncertainties by an inference method different to that of deterministic reasoning. 

 

Regardless of of Tannert's categorization, uncertainty is mainly defined depending on how it is measured. There are different 

methods to measure uncertainty. For example, to measure risks or the possible occurrence of events, probabilistic uncertainty is 

used. To measure the grade of certainty and the membership to a set, fuzzy sets and fuzzy logic are used.  Meanwhile, the 

possibility theory  is devoted to handling incomplete information and it is similar to probability theory, but  differs in some 

aspects. Possibility Theory uses a pair of functions called possibility and necessity measures. Dubois [17], identifies at least four 

kinds of ideas that can be taken into the possibility world to get a measure function of these concepts: a) feasibility (if it is 

possible to solve a problem); b) plausibility (if some events are likely to occur); c) consistency with available information (if a 

proposition does not contradict the available information), and d) if something is allowed by the law. 

 
In conclusion, as all scientists agree, scientific research is more about probabilities and possibilities than truths beyond all doubt. 

Uncertainty permeates everything in the real world. Events seemingly inconsequential, can have catastrophic impacts in 

apparently unrelated facts.  It does not matter how detailed a model can be, a researcher has never a complete knowledge of the 

problem under modeling.  So, uncertainty becomes a conceptual challenge, and scheduling researchers should confront it.  

Undoubtedly, we cannot keep ignoring the fact that the real world is uncertain. Therefore, it is important to anticipate how to 

react under unexpected events that turn the schedule under execution into a nonviable schedule.  Additionally, if probabilistic or 
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possibilistic information about random events is available, or if it is feasible to obtain, it is important to take it into consideration 

to assess the impact of unexpected events on system performance. 

 

3.2  Scheduling under Uncertainty 
 

As Schrader [73], pointed out in his seminal paper, whenever a problem is being solved, one of the most crucial options to be 

made is the level of uncertainty and ambiguity that should be incorporated into the model. Schrader remarks that the problem 

should not be derived without an adequate recognition of the external sources of uncertainty. He clearly distinguishes that 

during the framework conformation the designer has to carefully choose what kind of uncertainty and ambiguity should be 
incorporated into the model. These design decisions later determine which mathematical model and   methodology are the best, 

given the chosen characteristics of the framework. Another design issue is to identify what parts of the problem change as the 

system evolves over time and what parts stay static. Fixing these restrictions helps keep the problem tractable. Besides, if the 

domain problem is restricted, the search space of the solution is narrowed. 

 

However, the consideration of which and how the uncertainties should be integrated into the model, is not a trivial problem.  

Aytug et al [3],   proposed the uncertainty as the principal actor in the rescheduling process and even put forward a taxonomy 

for uncertainty. They categorized uncertainty in four preliminary dimensions: cause (object, state); context (free or sensitive);  

 

3.3  Uncertainty Sources in Manufacturing Systems 
 

In production environments, there exists a myriad of uncertainty sources affecting the schedule execution. Some of these 

uncertainties can be anticipated, and it is possible to take some measures during the scheduling process.  Nevertheless, there are 

other types of uncertainties that are hard to anticipate.  In general, for Manufacturing Systems, the disturbances are related to 

load capacity [28], job orders, or both. According to Katragjini et al [39],  the most common disruptions related with load 

capacity are: a) machine breakdowns (the most studied); b) non-available tools; c) absence of operators; and d) deterioration of 

machines  ́ efficiencies. On the other hand, the most common disruptions related to job orders are: a) rush orders; b) priority 

changes; c) variations in processing times; d) order cancellations; e) rework; and f) lack of material or material transportation 

delays. 

 

In a SMS, the production process is complex, dynamic and plenty of uncertainties come from different sources. These 
uncertainties are particularly related to the volatility of the market, which is constantly changing product demands [11].  Other 

unexpected events are directly related to the production process itself, such as the case of jobs requiring re-working in some of 

the production steps, or interruptions derived from simultaneous manufacturing of different products. 

 

 

4 Rescheduling Study Cases: Analysis of Strategies versus Techniques  
 

To model problems of scheduling under uncertainty, the first thing to do is to fix the rescheduling strategies and policies. 

Different classification schemes for strategies and policies have been proposed [82], [3], and [62], but there is no a general 

consensus until now about what scheme is the best.  The rescheduling frameworks by Vieira and Aytug have common 

characteristics, but the one of Ouelhadj and Petrovic [62] added a new scheduling strategy to a total of four scheduling 

strategies: completely reactive, predictive-reactive, robust predictive-reactive, and robust pro-active. We consider that Ouelhadj 

and Petrovic's taxonomy is more precise because it makes a finer separation among the strategies. That is why we have decided 

to use it to classify all the systems studied in this review. 

 

In scheduling problems with a total reactive strategy, uncertainty is not taken into account whenever partial schedule is being 

built, so if an unexpected event ever happens, the schedule is reassessed or re-optimized.  In the other three rescheduling 

strategies, different levels of uncertainty knowledge are embedded into the initial and predictive schedule, and interruptions 

caused by some unexpected events are attended according to the rescheduling policies previously established.  Furthermore, as  

much as in the case of robust predictive-reactive as  in robust pro-active strategies, other additional objectives to be taken into 

account are robustness and stability.  

 

In the following sections, some study cases are analyzed and classified according to the strategy used to deal with interruptions.   
 

4.1   Reactive Scheduling 
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Whenever an interruption should be attended in completely reactive scheduling, the actual partial schedule is adjusted based on 

heuristics or dispatching rules.  

 

Modeling methodologies for SMS's reactive scheduling are more sophisticated than those for simpler manufacturing systems. 

Researchers hesitate to get a model for a complete Semiconductor Wafer Fabrication System (SWFS) using orthodox 

mathematical methods. Instead, researchers frequently use alternative modeling techniques, such as languages to describe 
distributed systems. One popular modeling language for complex systems is Petri nets. Other approaches reported in the 

literature are Kelly's, Markov's, Brownian, Queing Theory, and Continuous Flow Models, but for SMS, the most frequently 

scheduling approach is the one based in dispatching rules.    

 

To obtain the information about the actual state of the factory, it is necessary to model the behavior of the system, including one 

of the most relevant characteristics of SMS', re-entrancy (pattern flow of their manufacturing lines).  For example, a scheduling 

problem for a wafer factory was modeled and simulated through a combination of queuing theory and color-timed Petri nets 

(CTPN) [84]. The scheduler was implemented by a genetic algorithm that dynamically searches for an appropriate dispatching 

rule. Experimental results showed that the genetic algorithm-based scheduler has a superior performance compared to 

conventional dispatching rules.  Other authors, such as the ones in   [66], report a case of SMS scheduling modeled by 

hierarchical colored timed Petri nets (HCTPN).  They used a combined approach between HCTPN and extended genetic 

algorithms (EGA) to study how to optimize the combination of scheduling policies. The results obtained by a system simulation 

showed a near optimal schedule.   

 

In a similar way, in [43] and [49], was used an approach based on time extended object-oriented Petri nets (TEOPNs) for SWFS 

performance modeling, real-time dispatching and simulation. TEOPNs were used to describe the SWFS as a series of objects. 

Coincidentally, in both reports by Liu and Lee, dispatching rules were developed via a dynamic bottleneck dispatching 
algorithm. The performance was evaluated by Liu using a simulation architecture SWFS.  Meanwhile, Lee et al. [43] proposed a 

new multiple-objective scheduling and real-time dispatching (MSRD) approach, which basically consists of two main modules: 

an off-line multiple-objective scheduling and an on-line real time dispatch. The performance evaluation was done via a 

simulation built on a platform made of the MSRD prototype and the TEOPNs.  

 

In the studies carried out by Lee and Liu, the virtual SWFS was derived from a real fab located in Shanghai.  They obtained 

similar results showing that a dynamic scheduling dispatch has a better performance than both critical ratio (CR) + First In First 

Out (FIFO) and Earliest Due Date (EDD) dispatching policies.   

 

A different approximation to modeling the re-entrancy problem in semiconductor's manufacturing is the one reported by Coron 

et al [13]. These authors characterized the re-entrancy problem as an optimal control problem governed by the scalar hyperbolic 

conservation law using partial differential equations.  

 

Another methodology that seems well situated for solving complex scheduling problems such as those in SMS, are Multi-Agent 

Systems (MAS).  Many researchers have taken advantage of MAS' superior capacities to deal with randomness and dynamism 

of complex problems to solve scheduling in manufacturing environments [20], [48], [83] and [90].   

 
For example, Lin et al. [48], developed a distributed simulation platform for a semiconductor manufacturing process. The 

platform architecture was structured into three layers: The network communication layer, the middleware layer (based on 

JADE), and the multi-agent simulation layer. This platform was tested simulating a semiconductor manufacturing process of a 

real semiconductor factory in Shanghai. Meanwhile, Mönch et al. [57] proposed a new architecture of an agent-based system for 

production control of an SMS, which is implemented as a multi-layer hierarchical scheme.  

 

In order to fulfill the overwhelming demanding requirements of modern production systems and keep the firm competitive 

against other businesses, production scheduling and execution control should be tightly coupled. This strong integration in the 

Manufacturing Execution Systems (@MES) is essential to achieve an adaptive behavior due to the interactions between a set of 

agents acting as autonomous managers,  as it happens in the Agent Based Modeling and Simulation (ABMS) tools, proposed by 

Rolón et al. for a @MES distributed design [69]. Rolon's approach used a bio-inspired technique in Holon Manufacturing 

Systems [30], [78].  The agents showed emergent behaviors comparable to a complex adaptive system. Besides, the agents are 

well-suited for modeling processes, where each agent must adapt and modify its own behavior over time.  Each agent has 

autonomy to solve disruptions related to its function. The fulfillment of goals is achieved collaborating with each other, and 

each agent individually defines and performs his own actions. The agents communicate with each other coordinated by a 
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dynamic Gantt chart. According to the simulation results, the interaction mechanisms among the agents were stable and robust 

in spite of the total autonomy of all agents and the absence of a master schedule. 

 

4.2   Predictive-Reactive Scheduling 
 

The predictive-reactive strategy was approached in various ways by scheduling researchers, but the initial schedules were 

designed off-line generally, and whenever unanticipated events occur during the running time, partial or complete rescheduling 

was done based on rescheduling policies previously established. 

 
Hung et al., used the predictive-reactive strategy for a scheduling problem in the photolitography area of a semiconductor wafer 

factory [38]. His goal was to compare the effectiveness and efficiency of three algorithms: simulated annealing, genetic 

algorithm and tabu search to get an optimal reschedule.  They also proposed a sensitivity search method to improve the 

performance. Their method worked as follows: independently of the moment when rescheduling is required, the initial schedule 

is used as the starting point to search for a new schedule. The experimental results showed that a sensitive search improved the 

performance, and in particular, tabu search turned out to be superior than the other proposed algorithms.  

 

Recently, new theories and methodologies are being introduced to represent the domain knowledge for rescheduling problems.  

Muñoz et al., reported a study case found in a chemical factory with multi-product batches [59]. The unexpected event 

considered is the increasing operation time. The considered objective function is the maximization of the profit of the plant 

taking into account income and energy costs. The modeling of the problem was based on approximated dynamic models and 

ontologies. Usually, online and historical information among different decision levels is independent and not properly integrated 

during the process of rescheduling. However, ontologies can be used to integrate this information as it was done in this study 

case. 

 

Mixed-line production is trendy in certain types of current production systems and emerged as a way to meet the market 

demand. Under this production scheme, a customer order consists of high variety and low volume products. Typical 
manufacturing systems with mixed-line production are the electronics and wireless communication industries.  Huang et al., 

solved a scheduling problem for these kind of manufacturing systems, adopting the Drum-Buffer-Rope (DBR) technique of 

Theory of Constraints (TOC) and the buffer management [37]. The application of these techniques helps the managers detect 

early production problems, and to evaluate the desirability of rescheduling in advance. The evaluation objective was to compare 

the DBR and EDD techniques, and to study the impact of delayed orders on the performance, maximum tardiness time and cost 

as well as the total completion flow. The results showed that DBR was better than EDD because it minimized the longest 

tardiness in the customer's orders, and it offered a greater flexibility and ability to manage a fab with capacity overload and 

frequent disruptions. 

 

4.3   Robust Predictive-Reactive Scheduling 
 
Scheduling of highly stochastic systems is a hard problem because they present unpredictable behaviors. However, it is not 

convenient to reschedule at each disruption either. Instead of a policy of rescheduling triggered every time a disturbance 

happens, a better option is to reschedule just whenever the interruption dimension makes the running schedule non-viable [12]. 

A generic and optimal solution for the robust predictive-reactive scheduling problem is still an open question, and multiple 

approaches and methods are constantly being proposed and tested.  

 

A research by Vonder et al., reported the results of an experiment designed to evaluate several predictive reactive resource-

constrained project schedules [80]. The projects of this kind are stochastic versions of the basic scheduling problem in a 

deterministic setting, known as a resource-constrained project schedule problem (RCPSP). In the extended RCPSP schedule, 

stochastic activity durations are considered, and its optimization objective is to minimize the expected makespan. Another 

objective is to guarantee that the schedule robustness should not be affected by disturbances. Vonder's complete experiment 

consisted in evaluating all possible combinations of three baseline schedules obtained for different procedures with four reactive 

rescheduling procedures. The impact on the performance is measured whenever there are range variations in the following 
parameters:  1) the level of uncertainty in the activity span; 2) the weighting parameter (ratio of the dummy end activity to the 

average of the rest of activities); and, 3) the project due date (timely project completion probability, TPCP).  

 

The baseline scheduling methods evaluated were: 1) RCPSP-predictive: an exact procedure with the average duration of the 

activities; 2) a suboptimal procedure based on simple priority-based scheduling heuristics, specifically, on the Latest Start Time 

(LST) priority rule; 3) Resource Flow Dependent Float Factor (RFDFF):  suboptimal procedures targeted to minimize the 
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stability cost function. The four reactive scheduling methods are: 1) RCPSP-reactive: complete rescheduling by an exact 

procedure, where only the finished activities at the disruption time are considered for the rescheduling; 2) Fix Flow:  no 

complete rescheduling under the railway concept, that is, activities never start earlier than its assigned starting point on the base 

schedule; 3) activity-based priority rules (ABR):  the problem is solved by heuristics, and the solution is an activity list rather 

than a schedule; 4) resource-constrained earliness-tardiness project scheduling problem (RCPSPWET):  using exact procedures 

earliness-tardiness costs are minimized.    
 

The final conclusion of this experiment was that even when exact procedures were used to generate proactive and reactive 

schedules, the TPCP's optimization objective showed the best results. However, the stability objective was not improved. In 

general, considering the results obtained in all the experiments, the authors arrived to the conclusion that for strong requirements 

in TPCP, not too tight due dates, and low values of the duration variability, it is better to generate a robust (stable) proactive 

scheduling based on RFDFF heuristics. However, for highly variable environments and TPCP with low values, the RFDFF 

heuristic is not the best option. In these cases, a better option is to combine a procedure that generates a minimum duration 

baseline schedule with a stability-improving reactive policy, like WET. In conclusion, the authors adviced to conduct more 

studies about robust reactive scheduling in order to improve the WET results. 

 

Kuster et al., proposed a generic approach to partial scheduling in highly stochastic realistic environments [41]. First, they 

proposed an extension of the conceptual framework RCPSP, (x-RCPSP) to describe formally disturbance management 

problems. In essence, x-RCPSP conceptualized active and inactive elements. Only active elements were considered for 

rescheduling. The authors also proposed a Local Rescheduling (LRS) to do the partial scheduling. LRS was based on a time 

window that is extended in a bidirectional way to search for potential solutions. These potential solutions must fulfill the new 

requirements imposed by the occurrence of stochastic events. 

 
A similar approach and objectives were addressed by Huang et al., in their Job Shop Scheduling Repair (JSSR) research 

problem [36]. The goal of this problem was to obtain a stable repair scheduling through a commitment between makespan 

optimization and performance deviation during rescheduling. The problem was formulated as a Disjunctive Temporal Problem 

(DTP), framed as an Optimal Constraint Satisfaction Problem (OCSP) and solved by an algorithm integrating incremental 

consistency and efficient candidate generation. 

 

4.4   Robust Pro-Active Scheduling 
 

In this strategy, the objective is to obtain a robust and stable schedule. To accomplish this goal, robust and stable schedules are 

created off-line including uncertainties. In theory, the resulting schedule should be insensitive to disruptions. However, 

unavoidably some non-anticipated exogenous events occur during the execution of the proactive schedule. These disturbances 

frequently cause the schedule to be partially or completely repaired. The new schedule should be generated without missing that 

stability and performance should not decrease.   

 

Robust proactive approaches are classified into three subcategories: 1) redundancy-based, 2) probabilistic, and 3) 

contingent/policy-based techniques. The objectives of each one are: 1) to reduce the impact of uncertainties by allocating time 

and extra resources; 2) to obtain the probability density functions of uncertainties, and; 3) to establish policies of scheduling to 

attend any particular sequence of events [52].  

 

Besides the stability measures, it is also important to know how the disturbances and the rescheduling policies affect the system 
performance. Robust schedules allow us to correlate the number of disturbances with the system performance. Diverse studies 

have been developed to measure how disruptions affect the system performance [29] and [40].  

 

Bonfill et al., proposed a stochastic modeling and optimization approach to solve a rescheduling problem of batch processing 

[9]. Initially, a proactive schedule is generated including uncertainty measures of loading, heating and discharging. The 

uncertainties are characterized by a uniform distribution. The optimization objective is a combination of makespan and waiting 

times. The schedule is obtained using an optimized genetic algorithm. Whenever a machine breaks or the processing times are 

longer than expected, a new schedule is calculated applying the right-shift rule.  Finally, the authors developed an experiment to 

compare the performance of the algorithms under deterministic and stochastic approaches. They found that even when the 

makespan and the waiting times were optimized for a deterministic environment, under a stochastic scenario the makespan 

increases by about 4%. Despite the simplicity of this problem, the experimental results showed significant information 

supporting benefits if uncertainties are incorporated from the beginning into the schedule.  
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Merdan et al., studied the case when an event-driven rescheduling policy was applied to a small manufacturing system with 

machine failure as the triggering event of rescheduling [56]. The system performance was empirically evaluated for different 

failure types with diverse spans as well. The influence of the number of pallets over the system performance was also evaluated, 

and several rescheduling methodologies were tested, such as Right-shift Scheduling (RS), Agenda Rerouting (AR), New jobs 

Rerouting (NR), and Complete Rerouting (CR). The evaluation was implemented on the agent-based simulation environment 

MAST. The results showed that CR was the best rescheduling methodology in this particular case. 
 

In the research reported in [86],  a predictive-reactive rescheduling with non-reshuffle and reshuffle strategies was proposed for 

a flexible manufacturing system (FMS). The authors considered new job orders arriving when the scheduled jobs were not 

finished as the only source of disturbance. The challenge was to integrate the new job orders into the existing production 

schedule immediately, while preserving factory performance and stability. In the non-reshuffling strategy new orders are 

assigned to machines just in the available idle times, while in the reshuffle strategy, operations are re-sequenced to generate a 

partial solution within the rescheduling horizon. The performance measures are a commitment between the sum of weighted 

squared tardiness, the makespan and the stability. The stability was calculated based on three aspects: machine migration, job 

start time, and sequence deviations.  The implementations of reshuffling and non-reshuffling were done with Genetic 

Algorithms.  Their experimental results showed that the non-reshuffle strategy is a better option than the reshuffle strategy 

because it improved the sum of weighted squared tardiness, and at the same time, stability was highly increased without 

increasing the cost of makespan.   

 

Other researchers [61], looking for a balance between pros and cons of different kinds of policies and methods, have proposed a 

framework including the best of all worlds. Novas' framework is oriented towards multi-product and multi-stage plants. The 

operational policies are of three types: a) unlimited intermediate storage (UIS); b) non-intermediate storage, unlimited wait 

(NIS-UW); and c) non-intermediate storage, zero-wait (NIS-ZW). The knowledge about the manufacturing environment and the 
production plan is explicitly represented and modeled with object-oriented techniques.  Certain static information about the 

resources (for example, about the properties and methods of the most relevant entities), is included into the domain knowledge. 

The temporal attributes of resources are considered as well. The chosen scheduling policy is event-driven together with a partial 

rescheduling method. The goal of this proposal is to give an immediate response to events without introducing excessive 

changes into the schedule and at the same time, to maintain the system stability. By means of the domain representation, the 

current state of the scheduling in process can be known whenever an unanticipated event occurs. Thus, at any moment an event 

happens, the context can be obtained with precision and used to render the rescheduling problem specification. Otherwise, the 

incorporation of contextual information could allow a more precise evaluation of the impact of an event. However, the authors  

proposed this improvement for the future.  Contextual information is only used to evaluate whether the schedule becomes 

useless by the effect of an occurrence of some event, and to decide if rescheduling proceeds. Lastly, once the rescheduling is 

completely specified and the performance measures have been selected, the model is generated through the Constraint 

Programming (CP) updating module.  

 

Novas' approach has the advantage of reducing nervousness in the production line and at same time to maintain an acceptable 

optimization. The use of contextual information demonstrates that, to evaluate the impact of the event allows us to distinguish 

the cases where the size of the disturbance mandates a rescheduling, (reducing the cases needing rescheduling) avoiding 

unnecessary rescheduling. These experimental results also demonstrated that better optimization objectives were obtained when 
the domain knowledge included larger sections of the manufacturing process. 

Current manufacturing systems should be capable of re-configuration, flexibility and robustness.  Some of those emergent 

manufacturing paradigms have been inspired by biology, for example, Bionic Manufacturing Systems (BMS), Holonic 

Manufacturing Systems (HMS) and Reconfigurable Manufacturing Systems. According to the Bio-inspired Paradigms, the key 

to achieve adaptability and robustness in changing environments is self-organization. Even when the theoretical bases of Bio-

inspired paradigms date from mid 60s, only few applications to the industry have adopted this paradigm [44] and [45].  

 

 

5   Methods Based in Knowledge Representation and Reasoning (KRR) 
 

The next sections are dedicated to a brief overview of the most influential and successful theories and methods based on KRR 

well suited to the solution of combinatorial search problems, including scheduling/rescheduling and planning problems. The 

methods and theories selected are:  Satisfiability (SAT) solvers, CP, Nonmonotonic Logic, and Answer Set Programming 

(ASP). 
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5.1   Combinatorial Search Problems and KRR 
 

Scheduling, Combinatorial Optimization, SAT, the Constraint Satisfaction Problem (CSP), the Quantified Boolean Formula 

(QBF) satisfaction problem, and Planning (bounded length) all belong to the Combinatorial Search Problems class. The search 

space of solutions is usually exponential in the size of the input and its complexity is NP-complete for all these problems, except 

for QBF which is PSPACE-complete.    

 

There are some basic techniques for solving combinatorial search problems ranging from AI to numerical analysis and 
operations research. However, given the complexity of the problem, a combination of heuristics and combinatorial search 

methods are usually used to solve the problem in reasonable time.  

 

Although AI techniques such as Fuzzy Logic, Neural Networks and Genetic Algorithms have been used together with many 

other different methods to solve scheduling problems, there is a set of powerful KRR methods and techniques that have been 

little explored in solving manufacturing scheduling problems. Nowadays KRR is one of the hot topics in AI. The origins of 

KRR can be traced back to the seminal papers of John McCarthy [54]. 

 

5.2    SAT solvers 
 

A SAT problem is represented as a Boolean equation, and given a certain assignment of values to the variables, the formula 

evaluates to true, or responds that no such assignment exists. On the other side, it has been determined that AI planning 

problems are PSPACE-complete, but if the planning problem is restricted to plans of a polynomial size, the reasoning problem 

turns into an NP-complete problem, which can be efficiently solved on a SAT engine by encoding problem instances in 

Conjunctive Normal Form (CNF). 

 

SAT solvers are remarkable successful, and have been applied to very diverse problems, including planning and scheduling. An 

important advantage of SAT is that there are numerous efficient solvers [32]. Although the complexity of SAT is an exponential 

run time for all known algorithms in the worst-case, experimental results have showed that most real-world problems can be 

solved by SAT solvers in polynomial time [87] and [89]. 

 

5.3    Constraint Programming 
 
The basic idea of CP is to define a problem as a set of constraints represented through a set of variables. A domain of values is 

defined for each variable, and relationships among the subsets of these variables are established. For example, in a scheduling 

problem for a manufacturing system, the decision variables could be the batch sizes of each demand and the start times of the 

jobs.  The constraints could be the machine load capacity (only one job can be scheduled to be processed at a time on one 

machine); and the job sequence order (jobs cannot be scheduled in arbitrary order, but processed according to the production 

specs). 

 

Recently, the Constraint Satisfaction Problem (CSP) has been extended for different purposes. In some CSP extensions, the 
objective is to search for optimal solutions of single- and multi-criteria problems. The constraint solvers search the solution 

space in a local or systematic way. The solvers based on systematic searching use backtracking, branch and bound, or a 

combination of search and inference. Inference is used to narrow the search space. On the other hand, the non-systematic solvers 

are based on local search and the solutions are not always optimal because the search is incomplete.  

 

Like SAT, CSP is NP-complete. Fortunately, it is frequent that instances of real-world combinatorial optimization problems 

show structural properties that can be exploited to design polynomial time algorithms. Some of these structural properties are 

static while others are dynamic. One static property is the degree of acyclicity in constraint graphs. For example, an instance of a 

combinatorial optimization problem is solvable in polynomial time if the tree width of its constraint graph is bounded by a 

constant [72].   On the other side, the approach based on dynamic structural properties focuses on looking for hidden structures 

in the runtime distribution of the search methods. These hidden structures are known as backdoor sets. Basically, a backdoor set 

consists of the variables whose instantiation transforms the NP-complete problem to a tractable one [15], [31], and [81].  

 

Unfortunately, there are also some drawbacks in applying CP to the solution of real-world problems. One of them is that it is not 

easy to find a good model given the chosen solver, so, hunting for a solution is a very hard problem. Another big drawback is 

that frequently real-world problems are over-constrained and no solution exists for that set of constraints.  The researchers 
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circumvent this difficulty in two ways; using preferences instead of constraints or slightly modifying the constraints so that a 

solution can be found without modifying the original problem too much [16] and [35].   

 

In spite of these inconveniences, in recent years CP has been used alone or together with other methods to solve some 

scheduling/rescheduling problems in manufacturing systems [50] and [61]. Another case where CP was applied to solve a 

rescheduling problem in SMS was given in [88]. 

 

5.4    Non-monotonic Logic and ASP 
 

The research community in KRR is wide and has addressed multiple applications.   KRR's researchers have faced their studies 

from very different angles. There are research groups focusing on fundamental issues common to different applications, and 

consequently, their studies have mainly addressed KRR's general methods. Other groups have the objective of developing 
specialized methods of KRR to handle core domains, such as time, space, causation and action.  A third group of researchers 

have put their attention on the solution of practical applications through KRR. Planning and scheduling are classes among these 

applications.   

 

The general methods proposed until now have common points but differ in important questions. One of the most important 

differences comes from the type of monotonic or non-monotonic logic based on. Monotonic logic is most commonly known as 

classical logic. Unfortunately, classical logic is insufficiently expressive and impractical to deal with incomplete and 

counterfactual KRR. So far, in real-world domains, rational entities (humans or based on AI) most of the time make inferences 

in situations where knowledge is incomplete and some facts are contradictory. Therefore, a lot of effort has been invested to 

extend the classical logic into a new logic capable of handling qualitative and uncertain information.   

 

Reasoning systems based on monotonic logic are incapable to adjust their conclusions whenever new and contradictory facts are 

added to the preexisting knowledge base.  In contrast, the distinctive feature of reasoning systems based on non-monotonic logic 

is their capability to arrive to consistent inferences even in the presence of counterfactual knowledge.   

 

In the methods based on non-monotonic reasoning, there are two main and successful semantic solutions: stable model 

semantics [24] and well-founded semantics [79].  Both semantics have numerous extensions.    

 
Answer Set Programming (ASP) is a declarative language for KRR based on stable model semantics [24] and  [25].  It is a 

paradigm designed to solve combinatorial search problems and their optimization variants [7].  The most outstanding 

characteristic of ASP is its ability to represent defaults, which makes ASP so different from other languages for knowledge 

representation. Default reasoning is equivalent to common sense reasoning, which is a way humans deal with uncertainties in 

the environment.  In fact, decision-making in the real world is always done under incomplete knowledge.  Knowledge gaps are 

filled based on the assumption “that things go as usually do”, or more formally, “elements of class C normally satisfy property 

P”. 

 

For example, when we model a scheduling problem for a manufacturing system with non-monotonic logic, it is possible to 

represent the Epistemic Uncertainty assuming that the machines assigned to each job will work “normally” during the schedule 

execution, where “normally” means that the machine will not suspend its operation execution for any reason. If a machine is 

broken or becomes unavailable before the order is completely processed, the scheduler would need to retreat the previous 

inference and adjust its conclusions according to new and possible contradictory facts. 

 

Although it is known that finding the answer set (solution) to a problem modeled with ASP is NP-complete, it is important to 

highlight that it is possible to represent all NP-search problems by means of ASP. In other words, expressiveness of ASP makes 

it possible to represent every property of a finite structure in a precise mathematical sense using first-order structures without 
any kind of functions. Problem representations in ASP are decidable in nondeterministic polynomial time with an oracle in NP 

[6]. 

 

It is important to refer to ASP's real-world applications, which widely range. We can find among the most remarkable ones:  

decision support system for a space shuttle [60], configuration [74], scheduling and team generation for a seaport [68], and 

phylogenetic systematics [18].  No less important it is to highlight that continually, the research community is proposing new 

extensions of ASP [27], and  it is also constantly looking for combinatorial optimization problems that are computationally 

challenging, in order to propose techniques to solve them in a  simple and elegant way by using ASP [75]. 
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6    Conclusions 
 

Recent publications in scheduling testify a paradigm shift from a simplistic view of the world, where uncertainty is exorcised, to 

a closer view to reality, and every day more and more researchers formulate a scheduling problem in manufacturing systems as 

a dynamic and non-deterministic one.  

 

For more complex manufacturing systems such as semiconductor manufacturing factories, the task is even more challenging. 

According to the analyses conducted by the experts from industry and academia, the problem has been approached from a single 

level of decision. However, to be competitive, SMS requires the integration of more decision levels. Two of these levels relate 

to the supply chain and real-time plant control [10] and  [64].   

 

The modeling of scheduling problems based on dynamic and stochastic systems requires different theories and methodologies 
than those used for static scheduling. However, a classic mathematical modeling of rescheduling problems in complex 

manufacturing systems is highly difficult, and alternative modeling methods have been explored. MAS is considered as one of 

the most promising modeling methods to solve real-world scheduling problems, but it has the disadvantage that causal relations 

between the variables are not clearly defined. Now, scheduling problems for SMS are not only typical dynamic and stochastic 

problems, but also have higher levels of difficulty because some jobs have to be re-worked. A resource competition caused by 

re-working may lead to deadlock situations, consequently, modeling methodologies for rescheduling with probable deadlock 

should be capable of generating deadlock-free models. 

 

The execution of a scheduling has been modeled as a work-flow problem by different methods; some of them are graphical such 

as UML or Petri Nets. Diagrammatic modeling has the advantage that it allows an explicit specification of causal relationships 

between the variables, but it presents issues in the solution validation [65].    

 

Some researchers have explored how to combine the strength of Petri nets and ASP technologies to maximize the capabilities of 

both technologies to model and solve problems in the area of discrete-event dynamic systems. It is advantageous to use Petri 

nets due to their ability to represent features such as precedence, concurrency, conflict and synchronization of dynamic systems.  

Other analysis methods such as structural analysis and graph reachability can be used to prevent deadlock situations. On the 

other hand, ASP is one of the best options to process algebraic, temporal logic and mathematical equations. These capacities are 

needed to implement Petri Nets. Another point in favor of ASP is that there exists efficient solvers [2] and [34].  
 

Probably, the solution of a complex scheduling problem with disruptions and changing environment over the time cannot 

depend on a single method, and hybrid modeling methodologies should be used.  KRR's emerging methodologies have many 

advantages over traditional Operations Research methodologies and meta-heuristics based on AI employed until now in 

combination with other methods. It is also important to point out that notable advances have been achieved in KRR in the last 

two decades, both in its theoretical part and in engineering software [33].  Although more research in real-world industrial 

applications needs to be done, promising results obtained so far in applications based on KRR methodologies open a window for 

the opportunity of finding a solution to difficult combinatorial problems, such as scheduling/rescheduling problems for real-

world manufacturing systems. 

 

Additional advantages of using KRR methodologies for the solution of real-world scheduling problems are twofold:  a) 

knowledge bases can be verified and validated using formal methods [1], and b) it is possible to detect consistency in the 

reasoning process by formal methods specifically designed for this purpose [67].  
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