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Abstract. Groundwater overexploitation is a global problem. In Mexico, 653 aquifers provide 
39.1% of water for consumptive use. The National Water Commission manages this resource, but 

predicting aquifer availability is challenging, and the number of aquifers in deficit has increased. 

Physical models can address this issue but require extensive resources, whereas supervised learning 
algorithms offer a less resource-demanding alternative. This study evaluates four machine learning 

techniques for groundwater availability prediction: support vector machine regression, M5' model 

trees, random forests (RFR), and artificial neural networks. The models were trained using 
climatological, land use, and concession data from 1997 to 2015 and tested with data from 2018 

and 2020. Random forests performed the best, showing a high correlation coefficient and low 

RMSE errors. The prediction accuracy for the availability state was 81.24% for 2018 and 76.79% 
for 2020. Thus, RFR can effectively predict short-term water availability, aiding sustainable aquifer 

management. 
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1 Introduction 
 

Today, the excessive use of groundwater has become a significant global issue, leading to a considerable reduction in the 

availability of aquifers (MacAllister, 2024). Increasing demands from agriculture, industry, and urban development drive this 

overexploitation. Groundwater provides nearly half of all drinking water worldwide, about 40% of water for irrigated 

agriculture, and about one-third of water required for industry  (UN, 2022). The unsustainable extraction rates are causing 

groundwater levels to decline in many regions, leading to adverse environmental and socio-economic impacts, such as reduced 

water quality, land subsidence, and loss of ecosystem services (UN, 2023). According to the Food and Agriculture Organization 

(FAO), over 20% of the world's aquifers are being overexploited  (FAO, 2011). This problem is further exacerbated by climate 

change, which alters precipitation patterns and recharge rates, making the sustainable management of groundwater resources 

even more challenging. Therefore, it is imperative to adopt comprehensive strategies for sustainable groundwater management, 

incorporating technological advancements, regulatory frameworks, and collaborative efforts across sectors to mitigate the 

adverse effects of overexploitation and ensure the long-term availability of this crucial resource. 

 

In Mexico, there are 653 aquifers, contributing 39.1% of the volume destined for consumptive uses, with agriculture (60%) and 

human consumption (14.4%) as the principal use (CONAGUA, 2018a). In this country, The National Water Commission 

(CONAGUA) has been striving for organized use of this resource. Since 2001, CONAGUA has aimed to use this resource 

efficiently by periodically estimating an annual average groundwater availability (AGWA) per aquifer, considering the 

concessioned volume, recharge, and other variables, following the official norm NOM-011-CONAGUA-2000 (CONAGUA, 

2000). There are five versions of the AGWA values of these 653 aquifers: 2010-2011, 2013, 2015, 2018, and 2020 

(CONAGUA, 2009, 2010a, 2010b, 2010c, 2011a, 2011b, 2011c, 2013, 2015, 2018b, 2020). Historically, these publications have 

shown a reduction in the amount of water available for extraction and an increase the number of overexploited aquifers (Table 

1). Sustainable use of water resources and a more balanced allocation of groundwater extraction permits require a complex 

analysis considering geographical, environmental, and climatological elements to estimate AGWA values accurately.  
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Table 1. Aquifers in deficit and their average availability according to official publications. 

DOF1 publication date Number of aquifers Total mean  

availability (%) 
In deficit With availability 

07/08/2010, 08/16/2010, 

01/25/2011, 12/14/20112 
174 479 

14.51 

12/20/2013 193 460 12.50 

04/20/2015 203 450 11.46 

01/04/2018 245 408 -2.46 

09/17/2020 275 378 -12.01 

 

However, aquifers have a dynamic nature that is difficult to model; they respond to changes in land use and cover, climate, 

recharge volume, and extraction (X. Wang et al., 2018). Predicting aquifer recharge is complicated since it cannot be measured 

directly (Crosbie et al., 2015; Gao et al., 2014) (Crosbie et al., 2015). One method to detect aquifer depletion is through physical 

simulation models, which require a large amount of information and are expensive because they depend on the direct 

measurement of field variables for their calibration and validation (Coulibaly et al., 2001). An alternative to detect aquifer 

depletion is the machine learning technique (ML), which can build models from previously labeled records (Han & Kamber, 

2006). These models identify trends without deep knowledge of the underlying attributes used in physical groundwater flow 

models (Steyn, 2018). Various ML algorithms have been used around the world to address the problem of excessive 

groundwater exploitation (Uc-Castillo et al., 2023), for example, artificial neural networks (ANN) (Daliakopoulos et al., 2005), 

random forests (RF), and support vector machines (SVM) (Kanyama et al., 2020) Despite these examples, studies in Mexico are 

scarce. In this context, this work evaluates the use of four ML algorithms (M5', RF, RNA, and SVM) to predict water 

availability in Mexican aquifers. 

 

2 Methodology 
 

2.1 Construction of the Learning Set 
 

The learning set was constructed starting from official data sources with historical information from 1997 to 2021 and variables 

affecting groundwater availability, such as temperature, precipitation, land use, and the distribution of types of groundwater 

extraction permits (Table 2). The response variable is the AGWA values, measured in cubic hectometers (hm3), obtained from 

CONAGUA's periodic publications (Table 1). The AGWA values per aquifer for years prior to 2011 were estimated using 

information from the data sources (DS) (Table 2), based on the dates of granting of the aquifer extraction permits. This approach 

ensured a historical range comparable to that of the predictor variables. 

 

Table 2. Data sources are used to obtain predictive attribute values. 

Data sources (DS)  

(identifier, subject, and format) 
Description 

DS1: Land use and vegetation 

Format: vector (shapefile) 

Vector layers with the classification of land use and vegetation. INEGI3 land use series 

I-VII (1997, 2001, 2005, 2010, 2013, 2016 and 2021). 

https://www.inegi.org.mx/temas/usosuelo/#descargas 

DS2: Climate (temperature, 

precipitation, and 

evapotranspiration) 

Format: raster 

Raster layers with annual averages of temperatures, precipitation, and potential 

evapotranspiration (1997 to 2021) 

https://www.globalclimatemonitor.org/  

DS3: Extraction permits and its 

annexes 

Format: tabular (CSV) 

The status of the extraction permits in 2019 includes aquifer, type of use (agricultural, 

industrial, urban), volume covered, and granting date. 

https://datos.gob.mx/busca/dataset/concesiones-asignaciones-permisos-otorgados-y-

registros-de-obras-situadas-en-zonas-de-libre-alu 

 
1  Diario Oficial de la Federación (DOF): The official journal of the Mexican Constitutional Government responsible for publishing 

laws, regulations, agreements, and other acts issued by the powers of the Federation. 

2  The first publication of the AGWA values was made in partial installments. 
3  INEGI stands for “Instituto Nacional de Estadística y Geografía”, the National Institute of Statistics and Geography in Mexico. It 

conducts censuses and produces produces demographic, social and economic indicators about Mexican society and economy. 
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The collected data underwent a cleaning and integration process. Firstly, the consistency of the keys was verified to ensure their 

homogeneity and ability to relate the different data sources involved. Erroneous and atypical data were corrected using the 

MySQL database manager. Integration was carried out considering the historical compatibility among the records, selecting 

representative years corresponding to the official AGWA publications and 2010 to data obtained between 2010-2011 (see Table 

1). Then, a primary dataset was integrated with the attributes year, aquifer identifier, recharge volume, and AGWA volume 

(attribute to predict). The attribute year was used to relate this dataset to land use, matching it with the INEGI series closest in 

time (DS1). Thus, 2010 was associated with series IV (published between 2007-2010), 2013 with series V (published in 2013), 

2015 with series VI (2016), and 2018 and 2020 with series VII (2021). An approximation of the AGWA values was obtained 

from the DS3 data by accumulating the extraction volume of the permits per aquifer registered before 2010, thus obtaining a 

high number of learning records. These volumes were associated with previous land use series; consequently, estimates of 

AGWA values were made for 1997 (Series I), 2001 (Series II), and 2005 (Series III). During this period, information was 

missing for eight aquifers (1% of the total), so they were eliminated from the entire learning set, adjusting the analysis to 645 

aquifers. 

 

The climate variables (temperature, precipitation, and evapotranspiration) were obtained from DS2 (see Table 2). Temperature 

and precipitation are the primary variables used in similar studies (Uc-Castillo et al., 2023). The information was extracted using 

intersection spatial and group statistics tools of the QGIS software using the vector layer of the aquifers (CONAGUA, 2023) and 

climate variables. For example, Figure 1 shows the extraction of the minimum temperature data, where the polygon of the 

aquifer 1001 "Valle de Santiaguillo" and the circumscribed cells of the raster layer are shown. These values were weighted by 

the proportion of the surface area occupied by each cell, yielding an approximate value per aquifer for each available year. 

 

 
Fig. 1. Extraction of temperature data using the intersection of the raster with the aquifers' vector layer (QGIS). 

 

The representative information for each year was obtained from the average of the last three years (including the reference year). 

The results were integrated as a training set with 5160 records (eight years for 645 aquifers) and 23 attributes (including the 

attribute to be predicted). The selected attributes were the following: 

 

a) Year representative of the period to which the data in the record pertain (1997, 2001, 2005, 2010, 2013, 

2015, 2018, and 2020) [YEAR]. 

b) Official aquifer identifier. A code number consisting of four digits, two for the State where it is located 

and two as a consecutive number. [ID_AQUIF]. 

c) Climate attributes. Average temperature (°C), precipitation (hm3), and average potential 

evapotranspiration (mm) that occurred in the aquifer in the last three years [TEMP, PRECIP, ET]. 

d) Land use and vegetation. Percentage of each type of land use that the aquifer reported in the year closest 

to the representative one, classified as agricultural, human settlements, forest, water bodies, jungle, 

vegetation, and other types of coverage [S_AGR, S_SETTL, S_FOREST, S_WATER, S_JUNG, S_VEG, 

S_OTHER]. 
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e) Extraction permits by distribution type. Percentage of volume authorized for extraction in the 

representative year classified by type of use: aquaculture, agriculture, agroindustrial, commerce, 

domestic, industrial, livestock, urban, services, and other uses. [R_AQUA, R_AGRI, R_AGROIND, 

R_COM, R_DOM, R_IND, R_LIV, R_URB, R_SERV, R_OTHER]. 

f) Volume available for extraction in the aquifer (hm3). Variable to be predicted [AGWA]. 

 

 

 

2.2 Machine learning algorithms 
 

A set of four ML algorithms commonly used for numerical prediction was selected, specifically with the implementations 

programmed in the Weka data mining suite (Frank et al., 2006). The following sections describe each algorithm and its 

parameterization for this work. 

 

1) Linear regression model trees M5'. The M5' algorithm is based on a decision tree built from a recursive algorithm, 

making routing decisions in nodes based on the attribute values. At the end of routing, each leaf node allows the value of an 

instance to be obtained through a linear regression model (Gonzalez-Sanchez et al., 2014) but also can generate a numerical 

value; both options were tested in this work. The option of pruning the tree was also considered, generating four possible 

combinations: model trees with pruning, model trees without pruning, constant value trees with pruning, and constant value 

trees without pruning. A minimum of 2 objects were left on each leaf node. 

 

2) Random Forests. Random Forest Regression (RFR) is based on the bagging method and random subspaces (Ganesh et al., 

2021). The algorithm starts by generating K sets obtained by randomly drawing examples with replacements from the 

learning set, and each set is used to create a regression tree. In the process of constructing each tree, each partition is the 

product of considering a small set of input variables at random (L. Wang et al., 2016), choosing to divide the variable with 

the lowest Gini index. For the regression task, the result is the average estimate of the K random trees in the forest. 

According to (Probst et al., 2019), the most relevant hyperparameters are the number of candidate variables per partition 

(m) and the number of trees (K). The same authors suggest a value of m=p/3 for regression problems (where p is the number 

of predictor attributes, 23 in this case), while Weka uses int (log2(p) + 1)). In this work, both options (5 and 8) were 

considered. These authors also suggest a value of 500 or 1000 for the number of trees. In addition, Weka allows you to 

specify the maximum depth of the trees using 5, 10, and without limits in this case. Therefore, for this technique, 12 

combinations of parameters were validated: m ={5,8}, K ={500,1000}, and a tree depth = {5,10, unlimited}. 

 

3) Support Vector Machines Regression. Support Vector Machines Regression (SVMR) belongs to a group of supervised 

statistical learning algorithms. In its simplest form, the objective of the technique is to obtain a linear function 

 with wRN and bR for a training set {(x1 ,y1),.. .,(xm ,ym )}. At most, the function f(x) should have a 

deviation ε from the current values y1 and, simultaneously, be as flat as possible. "Flatness" can be obtained with a small 

value for w. The optimization problem can be written as shown in (1) (Vapnik et al., 1997): 

 

 

 
 

 
 

 

Where  and  are introduced as slack variables for infeasible constraints. C is the regularization parameter and determines 

the number of accepted deviations greater than ε. If it is impossible to separate the set of examples with a linear function, the 

transformation of the original space is used using a non-linear function called kernel. For this work, the version of SVMR 

implemented in Weka is used, which applies an improved version of the sequential minimal optimization learning algorithm 

(Shevade et al., 2000) with C=1 and a polynomial kernel of degree 1. 
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4) Artificial Neural Networks (ANN). Artificial Neural Networks are divided into an input layer, an output layer, and one or 

more hidden layers. The input layer consists of neurons that receive signals or data from the environment (input attributes).  

The hidden layer provides degrees of freedom to present more complex features. The output layer comprises neurons that 

provide the neural network's response. ANNs are frequently used to classify and predict historical series models (Maimon 

& Rokach, 2009). Different ways exist to interconnect neurons in a neural network (topology). The most common topology 

and training scheme, multilayer perceptron trained by backpropagation, was used for this work. For the hidden layer, 

combinations of 5, 10, and 15 neurons were tested, with 1000, 5000, and 10000 training cycles with decay, both parameters 

used in similar works carried out previously (Almuhaylan et al., 2020). 

 

2.3 Evaluation  
 

The algorithms were evaluated using the percentage-split technique, so the learning set was divided into training and testing 

sets. The first subset was integrated with information from the first six years (1997, 2001, 2005, 2009, 2013, and 2015), using 

3870 samples (75% of the available records). The test subset was integrated with information from the last 2 years (2018 and 

2020), representing 25% of the remaining records. As these are numerical prediction models, the evaluation of the test set was 

carried out with the metrics of correlation coefficient (r), root mean square error (RMSE), and relative square error (RRSE), 

which are described in Table 3 (Gonzalez-Sanchez et al., 2014). 

Table 3 . Metrics for model evaluation. n is the total number of observations;  the real value of observation i; does the 

model estimate the value;  is the mean of the model's estimates;  is the mean of observations and . 

Metrics Units Calculation 

r (adim) 

 

RMSE (same as actual value) 

 

RRSE % 

 

 

3 Results 
 

This section shows the results of evaluating the algorithms for the test set (years 2018 and 2020). Results are presented for each 

technique, and an overall comparison between all techniques is made. 

 

3.1 Results by algorithm 

 
Table 4 shows the results of the M5' algorithm. The best values of each metric are highlighted in bold. Although model trees 

with pruning had a higher r, the lowest errors were obtained with a regression tree without pruning. 

Table 4 . Metric values obtained by M5' on the testing set 

Tree type M5' Pruning 
Metrics 

r RMSE RRSE 

Model tree 
Yes 0.949 69,405 39.86% 

No 0.945 74,502 42.78% 

Regression tree 
Yes 0.000 174,141 100.00% 

No 0.939 64,848 37.24% 

 

Table 5 shows the results of the RFR algorithm. The lowest RMSE and RRSE were obtained with a forest of 1000 trees, with 

m=5 and no depth limit. 
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Table 5 . Metric values obtained by Random-Forest on the testing set 

Forest size 

(trees) 
Depth limit 

Variables 

(m) 

Metrics 

r RMSE RRSE 

500 

10 
5 0.959 52,675 30.25% 

8 0.960 54,867 31.51% 

twenty 
5 0.958 53,128 30.51% 

8 0.960 54,752 31.44% 

Without 

limiting 

5 0.958 53,076 30.48% 

8 0.960 54,752 31.44% 

1000 

10 
5 0.961 50,938 29.25% 

8 0.960 54,582 31.34% 

twenty 
5 0.961 50,750 29.14% 

8 0.961 54,165 31.10% 

Without 

limiting 

5 0.961 50,681 29.10% 

8 0.961 54,126 31.08% 

 

Table 6 shows the results of the ANNs. The best values for the error metrics were found with 1000 training cycles and 10 

neurons in the hidden layer. 

Table 6 . Metric values obtained by the RNAs on the testing set 

Training cycles 

Neurons in the 

hidden layer 

Metrics 

r RMSE RRSE 

1000 

5 0.928 91.57 52.58% 

10 0.930 89.63 51.47% 

15 0.924 94.95 54.52% 

5000 

5 0.921 103.14 59.23% 

10 0.921 102.86 59.07% 

15 0.916 103.47 59.42% 

10000 

5 0.919 104.84 60.20% 

10 0.919 104.71 60.13% 

15 0.915 104.21 59.84% 

 

Finally, the SVMR technique was evaluated using the previously specified parameters. In this case, it was a single result, 

obtaining r=0.920, with an RMSE =104.675 and RRSE =60.11%. 

 

3.2 Comparison between algorithms 
 

Table 7 summarizes the best results for all the algorithms under analysis. It is observed that the RFR algorithm achieved the 

highest value for r and the lowest values for RMSE and RRSE. However, it should be considered that learning algorithms have 

varying degrees of sensitivity to their parameter values. For example, SVM is more sensitive than RF (Fang et al., 2020), and 

the efficiency of ANNs depends mainly on their topology and learning cycles (Haykin, 1999). Techniques like grid search, 

random search, or Bayesian optimization can help find the optimal hyperparameters for each algorithm, leading to fairer 

comparisons. 
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Table 7 . Results for evaluation metrics (all algorithms) 

Algorithm 
Metrics 

r RMSE RRSE 

M5' 0.949 69,405 39.86% 

RFR 0.961 50,681 29.10% 

RNA 0.930 89,630 51.47% 

SVMR 0.920 104,675 60.11% 

 

Once the algorithm that produces the best results has been determined, a more specific analysis can be done. Thus, the scatter 

plots in Figures 2 and 3 show the fit obtained by RFR in each year of the testing set. 

 

 
Fig. 2 . Actual versus RFR-estimated available volume for all aquifers (2018) 
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Fig. 3. Actual versus RFR-estimated available volume for all aquifers (2020) 

 

Due to the large number of aquifers, a frequency analysis can improve the visualization of errors made by the algorithm. Figures 

4 and 5 show the histogram of aquifers by available volume range for each year, overlaying the calculated frequency with the 

volume estimated by RFR. The comparison shows that the prediction has a shape that is very similar to the probability 

distribution of the actual AGWA value. However, it is also observed that the algorithm underestimates the number of aquifers 

with availability between the range of -50 to 0 hm3 and overestimates in the range of 0 to 50 hm3. It is consistent across the two 

years present in the testing set. It is easy to see a tendency for aquifers to move towards a state of availability below 0 (deficit), 

but the algorithm cannot identify all cases. 

 

 
Fig. 4 . Histogram of available volume ranges of aquifers and RFR estimates (2018) 
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Fig. 5. Histogram of available volume ranges of aquifers and RFR estimates (2020) 

 

Finally, the coincidences between the prediction of aquifers in deficit (with negative availability) for 2018 and 2020 were 

verified, also considering its positive counterpart, obtaining a coincidence of 81.24% for 2018 and 76.79% for 2020. If the 

comparison is conducted only with those aquifers with deficits, the coincidence is 55.10% and 48.72%, respectively. 

 

4 Conclusions 
 

Evaluating machine learning algorithms for predicting the available volume in aquifers and regression with random forests 

(RFR) obtained the best results, followed by M5', RNA, and SVMR. The advantage of RFR over M5' was expected, as the 

former is built using multiple trees. On the other hand, RNA and SVMR have more potential parametric combinations than 

RFR. In this work, the most common parametric values were used. However, learning algorithms have different sensitivity 

levels to their parameter values, so a deeper exploration into the tuning process (using grid search or random search, for 

example) could yield a fairer comparison. 

 

The classification of aquifers predicted by RFR to fall into deficit, given the prediction of the available volume, had a 

coincidence of 55.10% for 2018 and 48.72% for 2020. Although the estimates were consistent, the accuracy was relatively low. 

It is important to note that a deficit state occurs when availability is less than 0, so quantities slightly above this threshold are not 

considered in deficit. Since the RFR metrics are good, slightly widening the range to determine the risk of shortfall around the 

numerical prediction could increase the number of matches. From this perspective, using a two-class classification technique (in 

deficit/with availability) could be more appropriate. Validating this approach and comparing it with the results of numerical 

prediction remains a future task. 

 

From the above, it is concluded that RFR can acceptably predict water availability in aquifers in the short term but not the final 

deficit status. However, given the low RRSE obtained, RFR can be helpful for proactive groundwater management, improving 

the protection and conservation of the resource. In this sense, it is essential to note that it is not suggested that the responsibility 

for concessioning the extraction permits be left to a machine-learning model. The abstraction inherent in the construction 

process of these models can omit essential social and environmental elements, which is especially critical in water management. 

Relying solely on machine learning models for management poses an ethical dilemma. This process must be transparent, 

equitable, and responsible for all parties involved. 
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