

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 15(2), May-Aug 2024, 160-172. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2024.v15i2.456

Statistical Evaluation of Categorical Encoders for Pattern Preservation in

Machine Learning Tasks

Eric Valdez-Valenzuela1, Angel Kuri-Morales2 and Helena Gomez-Adorno3

1 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de

México
2 Instituto Tecnológico Autónomo de México
3 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional

Autónoma de México

Emails: ericvaldez@comunidad.unam.mx, akuri@itam.mx,

helena.gomez@iimas.unam.mx

Abstract. Categorical attributes are prevalent in many datasets used

for training Machine Learning models. However, most ML models

are designed to handle only numerical inputs. Therefore,

converting these categorical attributes into numerical values is

necessary to utilize them effectively. During this conversion

process, it is essential to preserve the underlying patterns. A loss
of such information could adversely affect the performance of ML

algorithms. Several encoding techniques have been developed to

map categorical instances to numbers. This study evaluates
commonly used encoders alongside CESAMO, a novel encoder

designed to capture relationships between categorical attributes
and other variables using what is referred to as Pattern Preserving

Codes. We conducted a statistically supported assessment of these

categorical encoders using synthetic data and compared the
encoders’ performance. The results show that CESAMO

outperforms all other evaluated encoding techniques, confirming

its ability to identify patterns in categorical data effectively.

Keywords. Categorical encoding, synthetic data, machine learning,

data preprocessing

Article Info

Received May 23, 2024

Accepted Jun 1, 2024

1 Introduction

A significant number of machine learning (ML) algorithms exclusively process numerical attributes for analysis.

There are, nonetheless, some exceptions. Tree-based model algorithms and Naive Bayes can theoretically manage

both numeric and categorical data (Kuhn & Johnson, 2019). However, when these algorithms are implemented through

commonly used libraries like Scikit-learn (Pedregosa et. al., 2011), and XGBoost (Chen & Guestrin, 2016), the

necessity to transform categorical instances into numeric values arises anyway since these libraries exclusively accept

numeric inputs.

Real-world datasets typically comprise a mix of both categorical and numerical attributes. To effectively employ these

categorical variables in ML models, they must be processed through an encoding method, mapping all categorical

instances into numerical values. It is crucial that this mapping retains the patterns in the data. Otherwise, there is a

potential risk of information loss that can negatively affect the performance of ML algorithms. This implies that

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

161

selecting an appropriate encoding technique affects the model’s overall performance, as shown in Valdez et. al. (2021).

Transforming categorical attributes into numerical values is particularly crucial in clustering scenarios. Clustering

problems, usually unsupervised, lack prior information about a dependent variable or target. Instead, clustering

algorithms group unlabeled data into distinct clusters based on inherent patterns or similarities. Failing to preserve the

underlying relationships in categorical attributes can lead to inaccurate outcomes. Hence, it is essential to employ

encoders that effectively preserve the patterns.

Considering the importance of categorical encoders in ML tasks and their diverse impact on the performance of ML

models, assessing the effectiveness of these encoders in such scenarios is essential. While studies have investigated

the impact of encoding techniques on ML models, they often lack statistical rigor. These studies typically select a

fixed number of datasets and draw conclusions based on them. To the best of our knowledge, there is a shortage of

studies that extensively assess the performance of categorical encoders using statistical criteria to support the results.

In this study, our main goal is to conduct a quantifiable statistical assessment of the performance of encoder techniques

and compare them. To achieve this, we propose the use of synthetic datasets, as supporting our findings requires

evaluating the encoders on many datasets until reaching statistical significance. Moreover, the assessment includes a

novel type of encoder that captures the relations between categorical attributes and other attributes in a dataset through

Pattern Preserving Codes (PPCs). Our results reveal that the encoders mapping categorical instances to PPCs

outperform other encoders.

The paper is structured as follows: Section 2 covers previous studies that have measured and compared encoders.

Section 3 outlines the methodology used to evaluate the encoders' performance. Section 4 presents the experimental

results. Finally, in Section 5, we summarize our conclusions.

2 Related Work

Multiple studies have measured and compared the performance of various encoding techniques. As follows are listed

the most relevant and extensive ones that we found:

● Zhu et. al. (2024) explored how different encoders affect machine learning model performance with

categorical variables. They categorize models into ATI, tree-based, and other models. The study evaluates

14 encoders, including one-hot and target, across 8 common machine-learning models on 28 datasets,

showing that the one-hot encoder is optimal for ATI models and target encoders for tree-based models.

● Pargent et. al. (2019) investigated encoding strategies for high cardinality features in predictive modeling.

Through a benchmark, the study compares 9 encoders with 5 machine learning algorithms and 27 datasets

across regression, binary, and multiclass classification tasks. They found that regularized target encoding

emerges as the most effective strategy across all algorithms, outperforming traditional approaches like label

encoding.

● Matteucci et. al. (2024) presented a comprehensive benchmark of categorical encoders, addressing

limitations in previous studies by evaluating 32 configurations of encoders, using 48 combinations of

experimental factors, and testing on 50 datasets. Their findings revealed that Weight of Evidence performed

the best for decision trees, while for logistic regression, the Sum, One-Hot, Binary, and Weight of Evidence

consistently achieved higher ranks

● Seca & Mendes (2021) tested 16 encoding methods on 15 regression datasets using 7 predictive models.

According to their results, the top-performing general-purpose encoders identified were Catboost,

LeaveOneOut, and Target (all of these are supervised encoders).

While these works offer strong evidence indicating that some encoders’ performance is better than others, their

limitation lies in the lack of statistical support. In these studies, encoders are evaluated by subjectively selecting a

predetermined number of real-world datasets, with the largest evaluation comprising 50 datasets. However, for more

solid conclusions, evaluations should rely on statistical criteria.

Based on the previously mentioned disadvantage of the analyzed related works, arises the need for a method to

evaluate and compare encoding techniques with statistical rigor. This work proposes a methodology supported by

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

162

statistical analysis to objectively evaluate encoding techniques. The methodology is explained as follows.

3 Encoder Evaluation Methodology.

To evaluate and compare the categorical encoders, we aimed to determine their Minimum Error (ME), a statistical

measure that quantifies the performance of any method. Each encoder is associated with an Error Distribution (ED),

representing the population of all potential errors that may arise when applying the technique to problems. The ED is

characterized by its mean 𝜇
𝐸𝐷

 and 𝜎𝐸𝐷. The ME is defined as the value positioned at k standard deviations to the left

of the mean within the error distribution:

 𝑀𝐸 = 𝜇𝐸𝐷 − 𝑘 𝜎𝐸𝐷
(1)

Given that the ME depends on knowing the 𝜇
𝐸𝐷

 and 𝜎𝐸𝐷, it is required to determine first the ED of an encoding

technique. To achieve this, we assess the encoders across several datasets until a statistical criterion is satisfied.

Essentially, this criterion is based on obtaining errors until their mean normalizes. This will always occur as per the

Central Limit Theorem. The subsequent sections delve into a more detailed explanation of the rationale behind this

methodology, and the implementation of the activities to evaluate the encoders.

Minimum Error Metric

The ME is the metric we employed to statistically compare the encoders. This metric is based on Chebyshev's

inequality, which states that for any data set, at least a certain proportion of values can be found at a specified k

distance from the mean, regardless of the distribution shape, whether normal, bimodal, uniform or otherwise. Let X

be a random variable with mean μ and standard deviation σ. The Chebyshev's inequality is stated as follows:

 𝑃(|𝑋 − 𝜇 | ≥ 𝑘𝜎) ≤
1

𝑘2
 (2)

Selecting k = √5 , the probability of X deviating from its mean by more than √5𝜎 standard deviations is ~20%. This

is illustrated in Figure 1, where the red vertical dotted line denotes the values at -√5𝜎, and the green one at √5𝜎 . The

shaded areas in the tails of the distributions represent ~20% of the data. The ~80% falls between these two vertical

lines.

Let us assume that the distribution shown in Figure 1 represents the error distribution of an encoding technique. As

we are looking for a statistical metric for comparing the encoders, our focus is on the error situated at -k standard

deviations from the mean (the smaller the error, the better the encoding technique). We define the ME as the value

located at 𝜇 - √5𝜎 , which corresponds to the red vertical dotted line in Figure 1.

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

163

 Figure 1. Chebyshev inequality selecting k = √5

The ME indicates that the probability of encountering an error smaller than this when using an encoding technique is

less than ~10%, as the right side of the distribution comprises ~90% of the errors.

Synthetic Data Generation

Determining the Error Distribution (ED) of an encoding technique involves evaluating it with datasets until a stopping

criterion is met. Doing this with real-world datasets represents a challenge since statistical support for the results

demands a large number of datasets, and we lack prior knowledge regarding the exact number needed. To circumvent

this, we employed synthetic datasets.

The synthetic datasets were created through polynomial functions involving both numerical and categorical attributes

(code available: https://github.com/celestun/polynomial-dataset-generator). To emulate properties found in datasets

derived from real-world sources, we examined 10 real-world datasets to define their properties, such as the total

number of numerical and categorical attributes, dataset size, complexity of the target (linear, no-linear), and others.

The analyzed real-world datasets can be found in Appendix A, Table 3. These properties define the parameters of the

polynomials that will generate the synthetic datasets. The parameters of the polynomials, expressed in set-builder

notation, are shown in Table 1.

Table 1. Polynomial parameters to generate synthetic data

Parameter name Range Description

Number of variables: x {𝑥 | 𝑣 ∈ 𝑁, 5 ≤ 𝑣 ≤ 34 } Number of attributes in the

synthetic dataset.

Variables domain: d {d | d ∈ R,0 ≤ d ≤ 1 }

The domain of the

attributes.

Polynomial degrees: 𝑃𝑑 {𝑃𝑑 | 𝑃𝑑 ∈ 𝑁, 0 ≤ 𝑃𝑑 ≤ 11 }

The exponent of each

variable in the polynomial.

Polynomial terms: 𝑃𝑡 {𝑃𝑡 | 𝑃𝑡 ∈ N, 1 ≤ 𝑃𝑡 ≤ 13 } The number of terms of the

polynomial.

Coefficient values: c {c | c ∈ R, -1 ≤ c ≤ 1 } The value that multiplies

each term.

https://github.com/celestun/polynomial-dataset-generator

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

164

Number of variables in each

term: 𝑛𝑥
{𝑛𝑥 | 𝑛𝑥 ∈ N, 1 ≤ 𝑛𝑥 ≤ 5 }

The number of variables in

each term.

Dataset size: n {n | n ∈ N ,1000 ≤ n ≤ 3000 } The count of tuples

To create the synthetic datasets, the polynomial parameters were assigned random values within predefined ranges

(shown in Table 1), ensuring each generated dataset was unique. Given that the purpose of the synthetic datasets was

to evaluate categorical encoders, categorical attributes were included in the datasets. It was observed that

approximately 30% of the variables in the analyzed real-world datasets are categorical.

Evaluated encoders

In this study, the most commonly used encoding techniques were evaluated, which are described below.

● Ordinal or label encoding assigns integer values to each unique category instance. It is suitable for ordinal

categorical instances with a natural order. However, it is not recommended for nominal categorical variables,

which can result in poor performance. According to Hancock and Khoshgoftaar (2020), applying ordinal

encoding to nominal data introduces non-existent orders among categorical variables, potentially causing

scale issues due to arbitrary assignments of order and scale.

● One-hot encoding transforms categorical instances into binary vectors, where each unique category

corresponds to a binary digit (0 or 1) within the vector. This technique is well-suited for nominal data.

However, it doesn't capture similarities between distinct categorical values since it assigns only 0 or 1 to its

representations. Drawbacks of this method, as mentioned in Zheng and Casari (2018), include potential

computational inefficiency, limited adaptability to new categories, and the curse of dimensionality.

● Binary encoding is similar to One-Hot Encoding, but instead of adding a binary vector for each distinct

instance, it transforms the instance into a binary format by initially assigning an integer value to each category

and subsequently converting it into a binary representation. In the case of a feature with d unique values, this

process yields a total of log2(d) discrete values (Seger, 2018).

● Count Encoder assigns to each category instance the count or frequency of that category in the dataset. It is

a simple yet effective way to represent categorical data as numerical values. It takes advantage of the

frequency information of each category. The assumption is that the number of observations per category is

somewhat characteristic of the target (Galli, 2022).

● The Hashing Encoder hashes categorical instances into a fixed-size space, typically resulting in a smaller

dimensionality than One-Hot Encoding. It utilizes a hash function to map each category to a specific index

in the hash space (Weinberger et. al., 2009). While efficient in terms of memory usage and computation, this

method may lead to collisions where different categories are mapped to the same index, potentially causing

information loss.

A drawback of these methods (Ordinal, One-hot, Binary, Count, and Hashing encoders) is their lack of consideration

for potential patterns between the categorical attribute and other attributes in the dataset. However, alternative

techniques are specifically designed to find such relationships using codes that preserve these patterns.

We hence define Pattern Preserving Codes (PPCs) as those numerical values that retain the possible relations between

one selected categorical attribute and the remaining ones. Let's consider a collection of n-dimensional tuples (let's call

it U) with a total of m elements. There are n unknown functions of n-1 variables. We denote such function as fk:

𝑓𝑘(𝑣1, . . . , 𝑣𝑘−1, 𝑣𝑘+1, . . . , 𝑣𝑛); 𝑘 = 1, . . . , 𝑛 (3)

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

165

Let us further suppose that there exists a method allowing us to approximate fk (from the tuples) with Fk. Represent

the resulting n functions of n-1 independent variables as Fi, consequently:

 𝐹𝑘 ≈ 𝑓𝑘(𝑣1, . . . , 𝑣𝑘−1, 𝑣𝑘+1, . . . , 𝑣𝑛); 𝑘 = 1, . . . , 𝑛 (4)

The difference between fk and Fk will be denoted as ek such that, for attribute k and the m tuples in the dataset

𝑒𝑘 = 𝑚𝑎𝑥[𝑎𝑏𝑠(𝑓𝑘𝑖 − 𝐹𝑘𝑖)]; 𝑖 = 1, . . . , 𝑚 (5)

PPCs minimize ek for all k. This is so because only those codes that maintain the relationships between variable k and

the remaining n−1 variables (while doing so for every variable in the collection) effectively preserve the entire set of

relations (i.e., patterns) found in the database, as in (6).

 𝛯 = 𝑚𝑖𝑛[𝑚𝑎𝑥(𝑒𝑘; 𝑘 = 1, . . . , 𝑛)] (6)

Notice that this is a multi-objective optimization problem because complying with condition k in (5) for any given

value of k may induce non-compliance for a different possible k. Using the min-max expression of (6) corresponds to

selecting a particular point in Pareto’s front (Deb et. al., 2000).

Some encoders are designed to find these PPCs. One example is CENG: Categorical Encoding with Neural Networks

and Genetic Algorithms (Kuri, 2015). While this technique demonstrates accurate identification of PPCs using neural

networks and genetic algorithms, it is computationally expensive in terms of processing power and time. To reduce

the computational cost related to CENG, two algorithms were proposed: CESAMO (Kuri, 2018) and its multivariable

version CESAMMO (Valdez et. al., 2022).

CESAMO encoder, which stands for Categorical Encoding by Statistical Applied Modeling, relies on statistical and

numerical principles. The algorithm seeks PPCs for each categorical attribute in a dataset. To do so, it randomly selects

numerical values that we will refer to as candidate codes (cc). The cc are evaluated in an approximation function (F)

that finds the relationship between the categorical attribute and the other attributes in a dataset. The evaluation yields

an error (e). Candidate codes are evaluated until a stopping criterion is met. The PPCs are defined as those that obtained

the smallest error when evaluated in F. Finally, the categorical instances are replaced by the corresponding PPCs. The

algorithm of CESAMO can be found in Appendix B.

Two questions may arise: a) How to define the approximation function, and b) How to establish the stopping criterion

to determine when to cease sampling cc? Regarding A) the algorithm uses a mathematical model considering high-

order relations, which consists of a universal polynomial approximation:

 𝐹(𝑥) = 𝑐0 + ∑6
𝑖=1 𝑐𝑖𝑥

2𝑖−1 (7)

It was shown in Kuri & Cartas (2014) that any continuous function may be approximated with a linear combination

of monomials which has constant terms of odd degree. Regarding b), irrespective of the error distribution, the means

of the errors will converge to a Normal distribution, indicating statistical stability. Additional sampling will have

minimal impact on the characterization of the error population.

Categorical Encoders Evaluation

We aimed to assess the encoders' ability to retain patterns in categorical attributes. The better the encoder preserves

information within categorical attributes, the more effectively ML models perform when using these encoded datasets.

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

166

The synthetic datasets were converted into a classification problem, maintaining a balanced 50%-50% distribution of

the targets. The encoders processed each dataset. Following the encoding stage, the dataset was solved as a

classification problem by a supervised ML model. Given that the datasets were balanced, we used the Accuracy (acc)

as the performance metric for the ML models, and then we defined the error (e) as 𝑒 = 1 − 𝑎𝑐𝑐.

We employed five distinct ML models to avoid biasing the evaluation towards a single supervised ML model: a

Multilayer Perceptron Neural Network, a Logistic Regression, a Support Vector Machine, and the Gaussian Naive-

Bayes model. These were implemented using the Sklearn and XGBoost libraries. The evaluated encoders included

CESAMO, Binary, Hashing, One-hot, Ordinal, and Count encoders (code available:

https://github.com/celestun/categorical-encoders-benchmark). For each model-encoder combination, we followed the

next general steps to obtain the performance metrics:

● 1: Create a synthetic dataset using the polynomial function.

● 2: Apply the encoding technique and replace the categorical instances in the dataset.

● 3: Solve the encoded dataset with an ML algorithm and record the resulting error.

● 4: Repeat steps 1, 2, and 3 until 36 errors are reached.

● 5: Compute and record the mean of the errors.

● 6: Verify if the distribution of the errors’ mean is normal. If true, proceed to step 7; otherwise, go to step

1.

● 7: Conclude the sampling process, and determine the mean and standard deviation from the errors’ mean

distribution

In step 4, the selection of a sample size of 36 follows a general rule of thumb grounded in the Central Limit

Theorem, which states that as the sample size increases, the sample distribution tends to approximate a normal

distribution, irrespective of the underlying population distribution (Hogg et. al., 1977). In step 6, to verify if the

distribution is normal, the Л Distribution was implemented.

Distribution

Goodness-of-fit (GoF) is a statistical test that assesses how well sample data aligns with an expected distribution,

such as a normal distribution (in our case). Multiple methods have been proposed for assessing Normality. The

Chi-Squared (χ²), Shapiro-Wilk, Anderson-Darling, and Kolmogorov-Smirnov are the most frequently employed.

The constraint of the tests outlined in the preceding paragraph lies in their emphasis on either rejecting or not the

null hypothesis based on the significant evidence found. Failure to reject the null hypothesis does not confirm that

the distribution is normal; instead, it suggests insufficient evidence to reject the null hypothesis. The absence of

evidence, however, does not imply confirmation of normality. In our context, the objective is to confirm a normal

distribution.

The Л distribution was proposed in Kuri and Lopez (2017) to tackle this constraint. It ensures that a sample is

derived from a normal distribution with a certain probability. The foundation of Л distribution lies in the question:

How probable is it to compute an experimental value of Л larger than ξ for a sample that is expected to be normal?,

where Л is the value obtained after evaluating the data under equation 8, and ξ is a predefined critical value. To

answer this question, the sample distribution is divided into quantiles. Each quantile spans the same area under

the distribution curve. Figure 2 provides an example where the distribution is segmented into deciles (10

quantiles).

https://github.com/celestun/categorical-encoders-benchmark

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

167

Figure 2. Normal distribution segmented into deciles. Each decile spans 10% of the area under the curve.

Let Q represent the number of quantiles, 𝑂𝑖 denotes the number of observed events in the i-th quantile. 𝐸𝑖 is the number

of expected observations in the i-th quantile, and Φ is the minimum number of observations required per quantile.

Also, let p denote the probability that Л exceeds ξ when data is normally distributed, and there are at least Φ events in

all quantiles. Then:

 Л = ∑𝑄
𝑖=1

(𝑄𝑖 − 𝐸𝑖)2

𝐸𝑖
∧ [𝑂𝑖 ≥ 𝛷 ∀ 𝑖] (8)

4 Experimental results

The evaluation of the encoders required around 3,000 datasets for each encoder-model combination to satisfy the

statistical criterion, achieving normality. Once the Mean of the Error Distribution (MED) became Normal, we

determined its 𝜇
𝑀𝐸𝐷

 and 𝜎𝑀𝐸𝐷 . With these values, the ED mean 𝜇
𝐸𝐷

 and its standard deviation 𝜎𝐸𝐷 were determined

as follows:

 𝜇
𝐸𝐷

 ≈ 𝜇
𝑀𝐸𝐷

 , 𝜎𝐸𝐷 = √𝑠𝑠 · 𝜎𝑀𝐸𝐷 (9)

Where the sample size ss was 36. Table 2 shows the obtained values after calculating 𝜇
𝐸𝐷

 and 𝜎𝐸𝐷.

Table 2. 𝜇 and 𝜎 of the errors from the evaluated categorical encoders

Encoder Mean error Standard deviation

CESAMO 0.2994374188 0.0912776249

Hashing 0.3069885601 0.1028621334

Binary 0.3105365472 0.0909518922

One hot 0.3299986654 0.1008621334

Ordinal 0.3315438146 0.1014268199

Count 0.3572900108 0.1106407878

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

168

As can be seen in Table 2, CESAMO was the encoder that got the lowest mean error among all encoding techniques.

We calculated the ME, which is at −√5𝜎𝐸𝐷 to the left of 𝜇
𝐸𝐷

. Results are shown in Figure 3.

Figure 3. Minimum Error (𝜇
𝐸𝐷

 − √5𝜎𝐸𝐷) found for the evaluated encoders

Figure 3 shows the Minimum Error obtained by the evaluated encoders. As can be seen, CESAMO had the smallest

ME among all the encoders, followed by the One-hot encoder.

Excluding the CESAMO encoder, which is extensively evaluated for the first time, this finding is consistent with some

of the related works analyzed. For instance, Zhu et al., 2024, also observed that one-hot encoding performs better for

models based on Multilayer Perceptron, and Matteucci et al., 2024, similarly found that the one-hot encoder achieved

superior performance with the logistic regression model. While these studies identify specific model-encoder

combinations that yield the best results, our approach involves calculating averages per encoder (without maintaining

the resolution of the model-encoder relationship). Nonetheless, both studies confirm that the one-hot encoder

consistently ranks higher.

On the contrary, Figure 3 also shows that the encoder exhibiting the highest Minimum Error was the Ordinal Encoder,

surprisingly one of the most frequently utilized encoders in practice. The count (frequency) encoder ranked second

lowest in performance. This finding is consistent with the results of Pargent et al., 2019, who also observed poor

performance from Ordinal and Count encoders overall.

5 Conclusions

In this paper, we evaluated the performance of categorical encoders in preserving patterns during the conversion of

categorical attributes into numerical values. The evaluation was conducted with synthetic datasets, enabling us to

validate our findings statistically. The metric employed to measure and compare the performance of the categorical

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

169

encoders was the Minimum Error, which represents the value situated at 𝜇 − √5𝜎 of the Error Distribution of the

encoders.

Categorical encoders were combined with 5 Machine Learning models to measure their performance, assuming that

the better a categorical encoder preserves patterns, the better the performance of an ML model when using the encoded

dataset. On average, each encoder-model combination was evaluated on approximately 3000 datasets until the error

mean reached normality.

The results indicated that CESAMO achieved the lowest Minimum Error (indicating the best performance), followed

by the One-Hot encoder. Conversely, the Ordinal encoder, a widely used technique, exhibited the poorest performance

among the encoders. These findings suggest that CESAMO outperformed the other encoders due to its ability to

identify Pattern Preserving Codes, which maintain the relationship between the categorical attribute and other

attributes of the dataset. In contrast, the Ordinal encoder often introduces non-existent patterns when converting

categorical attributes into numbers, as it arbitrarily assigns integer values to categorical instances. These results align

with other extensive related works.

Acknowledgments

This work has been carried out with partial support from the DGAPA UNAM-PAPIIT project number IN104424 and

CONAHCYT project number CF-2023-G-64.

References

Kuhn, M., & Johnson, K. (2019). Feature engineering and selection: A practical approach for predictive models.

Chapman and Hall/CRC.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-

learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining (pp. 785-794).

Valdez-Valenzuela, E., Kuri-Morales, A., & Gomez-Adorno, H. (2021). Measuring the effect of categorical encoders

in machine learning tasks using synthetic data. In Advances in Computational Intelligence: 20th Mexican International

Conference on Artificial Intelligence, MICAI 2021, Mexico City, Mexico, October 25–30, 2021, Proceedings, Part I

20 (pp. 92-107). Springer International Publishing.

Zhu, W., Qiu, R., & Fu, Y. (2024). Comparative Study on the Performance of Categorical Variable Encoders in

Classification and Regression Tasks. arXiv preprint arXiv:2401.09682.

Pargent, F., Bischl, B., & Thomas, J. (2019). A benchmark experiment on how to encode categorical features in

predictive modeling. München: Ludwig-Maximilians-Universität München.

Matteucci, F., Arzamasov, V., & Böhm, K. (2024). A benchmark of categorical encoders for binary classification.

Advances in Neural Information Processing Systems, 36.

Seca, D., & Mendes-Moreira, J. (2021, March). Benchmark of encoders of nominal features for regression. In World

Conference on Information Systems and Technologies (pp. 146-155). Cham: Springer International Publishing.

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

170

Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural networks. Journal of big data,

7(1), 28.

Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: principles and techniques for data scientists.

" O'Reilly Media, Inc.".

Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learning: binary versus one-

hot and feature hashing.

Galli, S. (2022). Python feature engineering cookbook: over 70 recipes for creating, engineering, and transforming

features to build machine learning models. Packt Publishing Ltd.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., & Attenberg, J. (2009, June). Feature hashing for large scale

multitask learning. In Proceedings of the 26th annual international conference on machine learning (pp. 1113-1120).

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for

multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International

Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg.

Kuri-Morales, A. F. (2015, July). Categorical encoding with neural networks and genetic algorithms. In WSEAS

Proceedings of the 6th International Conference on Applied Informatics and. Computing Theory (pp. 167-175).

Kuri-Morales, A. (2018). Pattern discovery in mixed data bases. In Pattern Recognition: 10th Mexican Conference,

MCPR 2018, Puebla, Mexico, June 27-30, 2018, Proceedings 10 (pp. 178-188). Springer International Publishing.

Valdez-Valenzuela, E., Kuri-Morales, A., & Gomez-Adorno, H. (2022, October). CESAMMO: Categorical Encoding

by Statistical Applied Multivariable Modeling. In Mexican International Conference on Artificial Intelligence (pp.

173-182). Cham: Springer Nature Switzerland.

Kuri-Morales, A., & Cartas-Ayala, A. (2014). Polynomial multivariate approximation with genetic algorithms. In

Advances in Artificial Intelligence: 27th Canadian Conference on Artificial Intelligence, Canadian AI 2014, Montréal,

QC, Canada, May 6-9, 2014. Proceedings 27 (pp. 307-312). Springer International Publishing.

Hogg, R. V., Tanis, E. A., & Zimmerman, D. L. (1977). Probability and statistical inference (Vol. 993). New York:

Macmillan.

Kuri-Morales, A. F., & López-Peña, I. (2017). Normality from monte carlo simulation for statistical validation of

computer intensive algorithms. In Advances in Soft Computing: 15th Mexican International Conference on Artificial

Intelligence, MICAI 2016, Cancún, Mexico, October 23–28, 2016, Proceedings, Part II 15 (pp. 3-14). Springer

International Publishing.

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

171

Appendix A

Table 3. Real world datasets analyzed to generate the synthetic data

Dataset name Description

Abalone data It consists of biological measurements, including length, diameter, height, and weight of

abalones, along with the number of rings representing their age.

Car Evaluation Database It assesses the acceptability of cars based on various attributes. It includes features such

as price, maintenance cost, number of doors, seating capacity, and safety.

Hepatitis Domain It contains information related to the medical domain of hepatitis. It includes various

clinical and laboratory attributes such as age, sex, symptoms, and blood test results.

breast cancer wisconsin It is focused on breast cancer diagnosis. It encompasses features derived from digitized

images of breast cancer biopsies, including characteristics like cell nucleus properties.

cpu performance It is related to computer hardware performance. It includes attributes such as clock

cycle time, cache size, and other technical specifications.

Yeast Data Set It is centered around the study of yeast protein localization patterns. It comprises

attributes related to the amino acid sequences and other characteristics of yeast proteins.

Servo Data Set It focuses on the control of a servo system. It includes attributes related to the input and

output signals of the system

Ecoli Data Set It is dedicated to the study of the subcellular localization of proteins in Escherichia coli

(E. coli) bacteria. It includes attributes related to various protein properties

Adult Dataset Also known as the "Census Income" dataset, it contains demographic information about

adults, and the task is to predict whether an individual earns more than $50,000 per

year.

Bank Marketing Dataset: It contains information related to the direct marketing campaigns of a Portuguese

banking institution. The task is to predict whether a client will subscribe to a term

deposit (binary outcome: yes/no).

All these datasets are available at: https://archive.ics.uci.edu/

https://archive.ics.uci.edu/

Valdez-Valenzuela et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(2)

2024, 160-172.

172

Appendix B

CESAMO algorithm to transform categorical variables into numbers.

__

Algorithm 1: CESAMO encoder

__

1 For ca_to_map in ca_list:

2 While e_avg distribution != Gaussian:

3 cc ← randomly_generate_cc()

4 assign_cc_to_all_instances_in_ca_to_map()

5 i_var ← randomly_select_independent_var() # cannot be ca_to_map

6 e ← F(ca_to_map) # apply approx. function

7 e_list.append(e)

8 e_avg ← avg(e_list)

9 determine_if_distribution_became_gaussian(e_avg)

10 If e_avg distribution == Gaussian Then break Else continue

11 ppcs = set_ppcs(e_list) # set as ppcs those cc that yielded the min error

__

Where

ds = dataset

ca_to_map = categorical attribute to map to a numerical var

a_list = list with all the attributes in ds

ca_list = list with all the categorical attributes

i_var = independent variable to be used in the approximation, cannot be ca_to_map

e = error

e_avg = errors mean

cc = candidate code

F = Approximation function

