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Abstract. The detection of microbleeds in Magnetic Resonance 

Imaging (MRI) studies through the Susceptibility Weighted Image 

(SWI) technique is presented. The SWI technique has shown to 
play a relevant role in the identification of microbleeds, unlike 

conventional MRI techniques, the sensitivity is higher for 

detecting microbleeds and iron deposits. This work presents a 
technique for the quantitative detection of microbleeds through the 

implementation of Shannon entropy. It is complemented with a 

statistical analysis of the results and establishes a specific range 
that allows for the early detection of these structures in future 

research. Preliminary results suggest that this method represents a 

significant advancement in the accurate and timely detection of 
cerebral microbleeds, offering an alternative to traditional 

Magnetic Resonance approaches, suggesting that artificial 

intelligence is a promising path for deeper investigations in this 
field. 
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1 Introduction 
 

It is known that the Susceptibility Weighted Image (SWI) technique is useful in the diagnosis of neurodegenerative diseases such 

as Alzheimer's, Parkinson's disease, multiple sclerosis, and neuromuscular diseases. These pathologies generally involve the 

formation of microbleeds, which are directly related to progressive cognitive decline [1]. Cerebral microhemorrhages are tiny 

deposits of hemosiderin, which can manifest in Magnetic Resonance Imaging (MRI) or computed tomography (CT) images of the 

brain as hypointense areas. They tend to appear oval or circular with a diameter of 5 to 10 mm. These microhemorrhages are 

indicators of various brain disorders [2]. The detection of microhemorrhages presents a challenge in the diagnostic process due to 

their morphology and variability in size, which tends to increase with the progression of neurodegenerative disease [3]. The lack 

of sufficient contrast in the images makes microbleed detection difficult. Despite being a useful tool for detecting such pathologies, 

computed tomography presents the problem of not distinguishing between calcifications, veins, and microhemorrhages and even 

being prone to the "blooming" effect [1,3]. The SWI technique, with its image processing, provides susceptibility and high contrast 

in microhemorrhages compared to other techniques such as T2* and GRE, especially when performed at 1.5 Tesla [4]. SWI has 

higher sensitivity to these brain anomalies that cannot be detected by conventional MRI [5,6]. The detection of microbleeds 

depends on various parameters, which allow them to be classified based on size, intensity, location (usually in the white matter) 

[7], distribution, resolution, signal-to-noise ratio, echo time (TE), field strength, and susceptibility [8]. 

 

There are various techniques for the detection of microbleeds, ranging from classic methods such as thresholding, seed growing, 

among others, to slightly more advanced techniques based on specific patterns such as Fast Radial Symmetry Transform in 3D 

[9], methods that automatically segment images where each segment presents a probability of detecting certain objects (YOLO) 

[10], and even techniques that combine previous methods to classify the anomaly of interest more accurately (Bayesian classifiers) 

[11]. Currently, there are semi-automatic and automatic methods for the segmentation and detection of these microbleeds, which 

propose various techniques aimed at reducing detection time [12]. The use of neural networks allows for precise and automatic 

detection to improve classification capability [13], aiming to avoid manual detection, which tends to have errors, although they 
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are prone to false positives [14]. One of the main advantages of some algorithms is their quantitative approach, which allows us 

to rely on pure image information, thus avoiding false detection by the observer or even the expert [15]. 

 

In the present study, a technique is proposed for the detection of microbleeds using Shannon entropy in digital image processing. 

Entropy quantifies the amount of information in an image by measuring the uncertainty or randomness in its values. A higher 

entropy value indicates more information and thus better image quality. The entropy mentioned here is Shannon entropy, which 

is defined in terms of the probability of occurrence of pixel values in the original image. It is used to measure uncertainty in the 

information source and is expressed in terms of the number of gray levels present in the image [16]. 

 

The technique has been previously employed in various investigations focused on digital image processing for edge detection, 

such as object contours, obtaining a grayscale threshold automatically using the firefly method [17, 18]. Shannon entropy has also 

been utilized for edge detection using methods such as Baljit, Amar, Renyi, among others [19, 24], proposing a new measure of 

image randomness in the absence of patterns through block division [25], and even in image understanding based on creating 

multi-level images using Shannon entropy and differential evolution [26, 27]. In different studies, entropy-based methods have 

been proposed for various applications, such as multiple sclerosis identification and anomaly detection in mammography, tumor 

detection, cell identification, and subsequent reconstruction [16]. 

 

So far, there is no record of its application in the detection of cerebral microbleeds, especially with the specific method [28] that 

we are employing to address this issue. 

 

Following, in Section 2, the materials and methods employed in conducting this study are detailed, including a description of the 

database used and a more detailed explanation of the concept of Shannon entropy. In Section 3, the proposed method for 

microbleed detection is presented, along with an explanation of the algorithm used. Subsequently, in Section 4, the results obtained 

are analyzed, including a brief statistical analysis and interpretation of the findings. Finally, in the last section, the conclusions of 

the study are presented, and relevant acknowledgments are expressed. 

 

2 Materials and Methods 
 

The dataset used in this work consists of 57 MRI SWI scans from 30 patients with cerebral microbleeds, in addition to 100 healthy 

patients with 313 scans. The Shannon entropy method is intended to be used for the detection of cerebral microbleeds. 

 

2.1 IRM Dataset 

 
The dataset was published on May 11, 2021, under the name "Biomedical Informatics Group ResDevCons" by the Biomedical 

Informatics Group, led by Jurgen Mejan-Fripp, as part of the organization CSIRO (Australia), Austin Health, Heidelberg 

(Australia) [29]. The images are of the NIFTI-GZ type, with dimensions of 165.00x240.00 mm (176x256); 32-bit,14MB. 

 

2.2 Shannon Entropy 

 
Shannon entropy is a fundamental concept in information theory and probability, introduced by Claude Shannon in 1948. In 

general terms, it is used to quantify the uncertainty or degree of disorder present in a dataset or information system. 

 

In the realm of information theory, Shannon entropy is defined as the average measure of the information contained in a dataset, 

expressed in terms of the probabilities of occurrence of different outcomes. The higher the entropy, the greater the uncertainty in 

the data. Conversely, low entropy indicates that the data is more predictable. Mathematically, Shannon entropy, denoted as H(x) 

for a discrete variable X with n possible outcomes, is calculated using the formula: 

 

𝐻(𝑋) = −∑𝑃(𝑥𝑖) ∙ 𝑙𝑜𝑔2(𝑃(𝑥𝑖))

𝑛

𝑖=1

 (1) 

 

Where 𝑃(𝑥𝑖) represents the probability of outcome  𝑥𝑖 occurring. 

Shannon entropy can also be interpreted as the minimum average amount of bits required to represent the information contained 

in the random variable X. When the data is completely predictable (i.e., when the probability of one outcome is 1 and all others 
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are 0), the entropy is zero, indicating the absence of uncertainty and the lack of need for additional information to describe the 

data [29,30]. 

 

Shannon entropy has various applications in fields such as communication theory, data encoding, file compression, cryptography, 

image processing, among others. In the context of image processing, Shannon entropy is used to characterize the distribution of 

pixel intensities in an image and provide information about its content. One application is texture analysis, where entropy is used 

to quantify the variability or irregularity in the distribution of pixel intensities within image regions representing textures. The 

higher the entropy, the greater the variability in textures, which may indicate greater complexity or information in the image. This 

entropy is also used in image segmentation to divide an image into meaningful regions or classes based on the variability of pixel 

intensities [31-34]. 

 

2.3 Proposed Method for Microbleed Detection 

 
To microbleeds in MRI images, an algorithm utilizing Shannon entropy is applied. This is because of its beneficial nature in image 

processing, as it provides a quantitative measure of the information contained in an image, which is useful for assessing the 

complexity and information content of an image. The method presented in this work aims to detect cerebral microbleeds in a 

unique way, unlike previous approaches. This method allows for quantitative detection rather than qualitative detection, as 

traditionally done. Previous methods often rely on patterns, shapes, positions, intensities, among others, which can make them 

susceptible to errors during evaluation. When dealing with patients, precision is crucial, with minimal margin for error. Therefore, 

considering even the possibility of error elimination with the assistance of artificial intelligence is essential. 

 

The proposed method consists of the following general steps: 

1. Define a function to calculate the entropy of the 50 images from healthy patients. 

2. Divide each image into sections and calculate the entropy for each section. 

3. Calculate the means and standard deviations per section. 

4. Load a new image for analysis where the patient has microbleeds. 

5. Divide the new image into sections and calculate the entropy for each section, repeating steps 2 and 3 but for the new 

image. 

6. Compare the entropies of the new image with the means and standard deviations. 

 

 

 
Fig. 1. Algorithm used in phase one showing the process carried out with images of healthy patients. 
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Fig. 2. Algorithm used in phase two showing the process carried out with images of patients with microbleeds. 

 

The first phase involved selecting 50 images of healthy patients for processing using an algorithm specifically designed for 

obtaining entropy. The sample size was chosen according to the central limit theorem, as shown in Fig. 3. Each image was divided 

into 16 equal sections, allowing for a detailed examination of different areas, as illustrated in Fig. 4. 

 

   

   
 

Fig. 3. Images from the database used for cerebral microbleeds. 
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Fig. 4. Diagram outlining Phase I. 

 

Shannon entropy was implemented to assess the complexity of information in each image segment. This analysis was applied to 

the 50 images, obtaining entropies for each section in each image. Then, the mean and standard deviation of the entropies were 

calculated, providing a detailed insight into the variability in images of patients without microbleeds. In the second phase, images 

of patients with recorded microbleeds, part of a database of 57 images of non-healthy patients, were introduced. These images 

were processed similarly, dividing them into 16 sections and evaluating them in terms of entropy, as shown in Fig. 5. The Z-score 

was applied to quantify the standard deviations of entropy with respect to the mean of images from healthy patients, allowing for 

an accurate assessment of variations in image complexity. 

 

 
Fig. 5. Diagram outlining Phase II. 

 

The validation of the results involved a comparison using a different segmentation with 32 sections of different geometries. The 

similarity in entropy values confirmed the robustness of the results. 

 

3 Results and Discussion 
 

The results were obtained using a specific algorithm developed for this task, utilizing Anaconda Navigator and Spyder 5.4.3 on a 

laptop computer (LENOVO) 82FG with an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz processor, 2419 Mhz, 4 main 

processors, and 8 logical processors. The code used mainly consists of parameters for Shannon entropy, Z-score, and image type, 

which are essential to be grayscale images. 

In Figure 6, the results corresponding to the images segmented into 16 and 32 sections, respectively, are presented. 

 

                      
(a)                                                            (b) 

Fig. 6. Diagram outlining phase II (a) 16 sections, (b) 32 sections. 
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Below are some of the results obtained according to the selected images, along with their respective entropy values and their 

respective Z-scores. 

 

 
        Table 1                Table 2 

 

     Graph 1                                                                           Graph 2 

 

3.1 Statical Analysis 

 
A Pearson correlation analysis was conducted between entropy and Z-score values, providing a deeper understanding of the 

relationship between these parameters. The similarity in entropy values confirmed the robustness of the results obtained. 

Two scatterplots with regression lines were analyzed, representing entropy data along with their respective Z-score values, 

revealing correlations of 0.9418 and 0.8295, respectively. 

 

In the context of statistical analysis, the scarcity of entropy samples prompted the application of a Student's t-test for two 

independent samples. The purpose was to verify if the means were equal in order to combine both samples and obtain a larger 

sample. 

 

The result of the t-test yielded a p-value of 0.6516, which exceeds a common significance level of 0.05. This finding indicates 

that there is not enough evidence to reject the null hypothesis. Consequently, no significant difference has been found between 

the means of the two samples. 
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Using the larger sample, a standard error of the mean of 0.096 was determined. This allowed us to establish a confidence interval 

of 4.3362 to 4.6042 for the mean entropy of microbleeds, with a margin of error of 1.79%. 

 

Furthermore, an interval describing the possible presence of microbleeds through entropy was identified, located within a range 

of one standard deviation from 3.8174 to 5.123. 

 

3.2 Discussions 

 
The present study provides a quantitative representation of cerebral microbleeds through the measurement of their entropy. The 

results obtained are presented in Tables 1 and 2, which show the values corresponding to the sections where microbleeds were 

detected. To assess the disparity of these values with respect to the mean, the Z-score value is employed. The table shows the 

values of the sections containing at least one microbleed; in certain images, multiple microbleeds were identified, which were also 

recorded in the table. A correlation analysis between these variables is conducted using the Pearson coefficient. The results reveal 

a positive correlation between both variables, as illustrated in Figures 1 and 2, as expected since the obtained data are centered on 

the microbleed areas. Additionally, the correlation matrix yields values of 0.9417 and 0.8295 respectively. In future work, it is 

intended to verify with other databases whether there is replicability of these findings, thus confirming that these correlations 

persist. 

 

A limitation for the Student's t-test was the small sample size. However, one of the assumptions to consider is the normality of the 

data, and since there were slightly more than 30 data points in each sample, the test could be conducted to demonstrate that both 

are statistically different from a mean of 4, as both cases have extremely small p-values. With these results, a larger sample could 

be obtained, which is considered a strategy as it does not affect the representativeness of the sample used and does not influence 

the interpretation of the obtained results. These results allowed us to determine a confidence interval in which we can say with 

95% confidence that the true mean will lie between 4.3362 and 4.6042, with an error of 1.79%. 

 

Furthermore, in the study, according to the obtained data, an interval was found that allows us to detect a possible cerebral 

microbleed through its entropy. This interval is described by means of a standard deviation of the data. This study is considered 

an important step towards the statistical quantification of a microbleed. 

 

It is important to consider that this could be a significant step towards early detection of cerebral microbleeds for 

neurodegenerative diseases. 

 

It is crucial to mention that one of the limitations of this study lies in the lack of a sufficiently extensive and preprocessed database 

to conduct a more thorough analysis. As future work, similar research is proposed, testing different databases but with previously 

processed images and an adequate amount of data, in order to optimize and improve the accuracy of our study. This work is 

considered a preliminary study in the automatic processing of images using convolutional neural networks. 

 

4 Conclusions 
 

This study achieves the quantitative detection of cerebral microbleeds through the statistical analysis of entropy, obtaining a range 

for potential microbleed detection. The values obtained provide valuable information that can significantly contribute to the early 

detection of these anomalies in the human brain. Despite being a preliminary work, its relevance is highlighted as it represents an 

important step towards the precise identification of microbleeds. This quantitative approach not only expands our understanding 

of these conditions but could also have a significant impact on the diagnosis and early treatment of patients with cerebral 

microbleeds. For future work, improving the code in terms of efficiency is expected, i.e., adding metrics to the study to enhance 

detection capability including time. 
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