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Abstract. Mathematical models help simulate system dynamics 

and identifying parameters impacts prediction and control. 

Various techniques exist for parameter estimation. The DC motor 

is commonly used for position and speed control due to its ease of 

use and precision, especially in low-power applications. However, 

accurately parameterizing with low error can be challenging. Few-

shot learning, which involves identifying relevant parameters 

from a small amount of data, has gained popularity and is 

particularly useful when working with limited datasets. This work 

presents a new technique for identifying system transfer functions 

using few-shot learning. It assigns a unique signature value to each 

system and has been successfully tested on 1500 randomly 

generated systems. The approach reduced the search space 

significantly, enabling successful identification of all systems 

using a genetic algorithm. R-square values ranged from 0.99 to 

1.0, with only 5% of samples falling out of range. 
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1 Introduction 
 

Mathematical models are used to replicate the dynamics of systems, which contain parameters representing physical constants 
like mass, inductance, capacitance, and viscous friction. These parameters are usually easy to measure, but they can change during 

system operation, which can significantly affect the prediction or control of system dynamics. Over the years, several parameter 

estimation techniques have been developed, including least square, output error, filtering, filter error, artificial neural networks, 

genetic algorithms, and their derivations. A deep and comprehensive analysis of these techniques is in (Raol et al., 2004) with a 

focus on their general application rather than specific use cases. 

 

System identification is a critical area of research that involves creating models that accurately reflect the behavior of real-world 

systems, especially first and second order systems. In industrial settings, precise control systems are essential for web transport 

systems, and recent studies such as the one in (Giannoccaro & Sakamoto, 2022) have developed a direct identification method 

that is tailored to address this need. This highlights the importance of evolving methodologies in system identification, which play 

a crucial role in improving the efficiency and control of complex systems. 
 

The DC motor is a popular choice for position and speed control applications due to its precision and ease of use, especially in 

low power applications. However, controlling the DC motor requires a mathematical model, which is essentially a linear, second-

order system (Ishmeen & Jaswinder, 2018; Rahmatullah et al., 2023; Suman & Giri, 2016). 
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To express the mathematical model of a system, one can use different forms such as a differential equation, state space equation, 

or transfer function using Laplace transform. The transfer function comprises poles, zeros, and gain, which constitute the system 

parameters. The process of determining the parameter values is called identification or estimation, and one can perform it either 

online or offline (Ishmeen & Jaswinder, 2018; Poovizhi et al., 2017; Semenov et al., 2018). 

 

According to Luengo in (Luengo et al., 2020), more than 300 articles on parameter estimation research have been summarized 

using the Monte Carlo method. This method is considered effective for real-world applications involving statistical signal 

processing. 
 

Timofeev in (Timofeev et al., 2018) compared three methods for identifying parameters in linear regression models using 

computational simulation: ordinary least squares, weighted least squares, and Williamson algorithm. 

 

Odhano's in (Rojas et al., 2018) deals with identifying parameters of oceanographic monitoring vehicles. This is crucial for 

intelligent control of the system. The process involves using empirical methods to estimate added mass and damping parameters, 

while rigid body parameters are estimated through computational modeling. To ensure accuracy, experimental tests are also 

conducted for parameter estimation. 

 

In Gyuk et.al. in (Gyuk et al., 2018), researchers utilized artificial intelligence to identify nine parameters of a mathematical model 

for the metabolism process of individuals who receive insulin due to type 2 diabetes. The approach combines Genetic Algorithms 
and brute force, resulting in better mean square error and Clarke's Error Grid Analysis compared to other studies on this topic. 

Estimating motor parameters is a well-researched topic with numerous articles emphasizing the use of automatic control and 

artificial intelligence techniques. 

 

The paper Obeidat in (Obeidat et al., 2013), presents a method for parameter estimation of a PMDC motor using quantized output 

observations from sensors. The method is validated through simulation and experimentation, achieving a TSE of less than 0.001 

in some tests. 

 

Lian et. al. developed a method in (Lian et al., 2019) to determine the inertia of a synchronous permanent magnet motor. They 

found a sampling period of 25 ms and gains of kp=0.008 and ki=0.8 to be optimal through experimentation. The direct calculation 

method had a 0.7% percentage error, while the proportional integral regulation method had zero overshoot, a settle time of 13.1 
ms, and a steady state error of 0. 

 

Artificial intelligence (AI) tools have gained popularity for parameter identification of electrical motors. This technology has 

proven its effectiveness in optimizing motor performance and enhancing overall efficiency. With its ability to accurately determine 

key parameters, AI is a valuable asset in the field of motor engineering. 

 

Rubaai and Kotaru in (Rubaai & Kotaru, 2000) proposed a method to identify a DC motor using a Multilayered Feedforward 

Artificial Neural Network with dynamic back propagation. The method accounted for nonlinearities, showed low tracking error, 

and had shorter convergence time than the literature-reported DBP learning algorithm. 

 

Machine learning, an AI technique, has proven highly effective in various fields, including rotating electrical machines, due to its 

ability to analyze complex data and identify patterns. 
 

In (Cosmin & Sorin, 2023), Cosmin and Sorin conducted a study where they used reinforcement learning (RL) to control a DC 

motor with a two-quadrant converter. They trained the model offline to generate optimal control for speed regulation and achieved 

remarkable results. They recorded a rise time of 28 ms in 110 training episodes, with no long-term error. Furthermore, the tracking 

was admirable for frequencies below 20 Hz when a sine input was used. 

 

Han et al. in (Han et al., 2022) conducted a study on fault detection in a Brushless DC motor using XGBoost, neural network, and 

convolutional neural network to detect demagnetization failure by measuring mechanical radial vibration. The three machine 

learning methods showed satisfactory results in predicting the demagnetization values, with the convolutional neural network 

achieving the lowest error rates of 0.3 RMSE. 

 
Integral Reinforcement Learning was used in (Bujgoi & Sendrescu, 2022) Bujgoi and Sendrescu to control DC motors in a method 

that can handle continuous domain systems. A critic neural network is used to evaluate performance. The study includes simulation 
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and experimental tests using National Instruments hardware and software, showing that the controller can effectively regulate at 

varying levels. 

 

Few-shot learning is an attractive subcategory of machine learning for identifying relevant parameters from a small amount of 

data. Object detection and image recognition are popular research fields that utilize this technique. 

 

Li and Liu in (Li & Liu, 2022) developed a few-shot learning method using the Topic Snowball Model to extract structured 

knowledge from text and create a knowledge graph. Their study found that the Topic Snowball model performed better than the 
Neural Snowball when few initial seeds were used, although precision was slightly lower. 

 

In a study by Ma et.al. in (Ma et al., 2023), Few-Shot Learning was explored as a fault diagnosis method. The study presented a 

classification of fault diagnosis methods, which included analytical model, qualitative knowledge, and data-driven approaches. 

The latter was further divided into statistical analysis, signal processing, and machine learning, where Few-Shot Learning was 

highlighted. 

 

In this work, we propose a new technique for identifying the transfer function of systems using a few-shot learning approach. Our 

method uses a unique signature value assigned to each system. To test our approach, we applied a signal with varying length and 

frequency to 1500 randomly generated systems including 500 1st order systems, 500 2nd order systems and 500 motor systems. 

For all the experiments we collected six numerical values using exact time sampling. By reducing the signal components and 
simplifying the search space, we were able to significantly reduce the data size. As a result, we successfully identified all the 

transfer functions of the randomly generated systems using a genetic algorithm with R-square in ranges 0.99-1.0 with maximum 

5% of samples out of the range. 

 

2 Materials and Methods 
 

2.1 First Order Systems and Transfer Function 
 

First-order systems are characterized by having a single time constant and their behavior can be modeled using a first-order linear 

differential equation. This equation emerges by analyzing processes where the rate of change of a quantity is proportional to the 

difference between the current input and output (Chuk, 2012a). This model is prevalent in systems such as simple electrical 

circuits, thermal processes, and biological systems. Let's consider a simple thermal system as an example. 

 

Suppose an object with heat capacity( 𝐶 ) that exchanges heat with its surroundings at a rate proportional to the temperature 

difference (𝑇(𝑡) − 𝑇amb)(𝑇amb), where is the ambient temperature. Newton's law of cooling gives us (Márquez-Rubio et al., 2010):  

Here ( 𝑘 ), it's a heat transfer coefficient. 

 

Normalizing temperature as y(𝑡) =
𝑇(𝑡)−𝑇amb

𝑇inicial−𝑇amb
 and assuming an input x(𝑡) that affects temperature, reformulated in equation (1) 

like in (Márquez-Rubio et al., 2010): 

𝜏
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑦(𝑡) = 𝐾x(𝑡) (1) 

where: 

τ is the time constant of the system. It represents the time required for the system to reach approximately 63.2% of its final value 

in response to a step input. It reflects how quickly the system responds to changes in input. 

 

𝑦(𝑡) is the output of the system. 

 

𝐾 is the gain of the system that relates x(𝑡) to its effect on 𝑦(𝑡)), functioning as an amplification or attenuation factor. 

x(𝑡) is the input of the system. 

 

Time constant ( τ) and gain ( 𝐾 ) are critical parameters. The value of τ indicates how fast the system reaches its steady state. 

The transfer function, typically denoted as 𝐺(𝑠), is defined as the ratio of the Laplace transform of the output (response) of the 

system to the Laplace transform of the input (excitation), assuming all initial conditions are zero. It is expressed in equation (2) 
as in (Campos-Caba & Winckler, 2023): 
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𝐺(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
(2) 

where: 

𝑌(𝑠) is the Laplace transform of the output, 

𝑋(𝑠) is the Laplace transform of the input, 

𝑠 is a complex variable representing frequency (s = σ + jω in engineering terms, where j is the imaginary unit). 

 

The general transfer function for a first-order system is in equation (3). 

𝐺(𝑠) =
𝐾

𝜏𝑠 + 1
(3) 

 

2.2 Second Order Systems and Transfer Function 

 
Second-order systems are described with a second-degree linear differential equation. This equation is typical in systems where 

not only the output and its rate of change are important, but also the acceleration of that output (second derivative). Common 

examples include mass-spring-damper systems, RLC circuits, and certain control systems (Tourón et al., 2023). 

 

We consider a system with a mass( 𝑚 ), a shock absorber with a damping coefficient ( 𝑏 ), and a spring with constant ( 𝑘 ). 
Newton's second law as in equation (4). 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 𝐹(𝑡) (4) 

 

Where 𝑥(𝑡) is the displacement and 𝐹(𝑡) is an applied external force. This equation is characteristic of systems where output, its 

rate of change, and its acceleration are relevant. 

 

General Formula: Normalizing and assuming 𝐹(𝑡) = 𝐾𝑥(𝑡) (where 𝑥(𝑡) is a normalized input and ( 𝐾 ) its effect on strength), 

we get equation (5) as in  (Molina, n.d.): 

𝑑2𝑦(𝑡)

𝑑𝑡2
+ 2𝜁ω𝑛

𝑑𝑦(𝑡)

𝑑𝑡
+ ω𝑛

2𝑦(𝑡) = ω𝑛
2𝐾𝑥(𝑡) (5) 

 

where: 

ω𝑛 = √
𝑘

𝑚
 It is the natural undampened frequency of the system. It is the intrinsic frequency of oscillation of the system in the 

absence of damping, indicating the natural tendency to oscillate (Peñasco-Goel et al., 2023). 

 

 ζ =
𝑏

2√𝑚𝑘
   It's the damping factor. It controls the nature of the system's response, determining whether it is under-damped 

(oscillatory), critically damped (fast without oscillating), or overdamped (slow and non-oscillatory) (Peñasco-Goel et al., 2023). 

 

𝐾 is the gain of the system. Similar to the first-order case, it defines the magnitude of the system's response to a given input 
(Peñasco-Goel et al., 2023). 

 

Step response: The response depends on the value of  ζ. 

• For  ζ < 1  (under-damped), the response oscillates with a frequency of   𝜔𝑑 = 𝜔𝑛√1− 𝜁
2. 

• For  ζ =  1  (critically dampened), the response does not oscillate, but quickly approaches its final value. 

• For  ζ >  1  (over-damped), the response also does not oscillate and is closer to its final value (Peñasco-Goel et al., 2023). 

 

Key Parameters: Natural frequency (ω𝑛), damping factor ( ζ), and gain ( 𝐾 ) are crucial in determining system response.  
 

The general transfer function for a second-order system is in equation (6) (Alvarez Brotons, 2004): 

𝐺(𝑠) =
𝐾𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

(6) 

In both 1st and 2nd order systems, the formulation of the differential equation is based on fundamental physical principles. The 

time constant ( τ) in first-order systems and the natural frequency (ω𝑛) along with the damping factor ( ζ) in second-order systems 
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are crucial parameters that describe how the system responds to different stimuli. These parameters are often the focus of analysis 

in system design and response optimization, are usually determined experimentally or calculated from the physical properties of 

the system (Olivar-Castellanos et al., 2023). 

 

The solution of these differential equations provides the system response function, which describes how the output of the system 

evolves over time in response to specific inputs. 

 

Understanding these systems and their parameters is essential in a variety of practical applications. For example, in process control, 
optimizing the response of a first-order system may involve adjusting the time constant to improve the speed of response without 

causing instability. In vibration control systems (second order), adjusting the damping factor and natural frequency is key to 

minimizing unwanted oscillations (Chuk, 2012b). 

 

2.3 DC Motor model and Transfer Function 

 
A DC motor is a device that converts direct current electrical energy into mechanical energy in the form of rotation. The rotation 

occurs due to the interaction between the magnetic field of the stator and the current flowing in the rotor windings. In control 

systems, a mathematical representation that relates the input and output of a system, known as a transfer function, is often used to 

describe and analyze the behavior of dynamic systems. The DC motor model can be synthetized in the electrical (equation (7)), 
mechanical (equation (8)) and electrotechnical force (equation (9)) equations as shown in the Fig. 1 (Poovizhi et al., 2017; 

Semenov et al., 2018). 

 

 
Fig. 1. Model of DC motor 

 

𝑉(𝑡) = 𝑅 ⋅ 𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑒(𝑡) (7) 

𝐽
𝑑ω(𝑡)

𝑑𝑡
= −𝑏𝜔(𝑡) + 𝑘 ⋅ 𝑖(𝑡) (8) 

𝑒(𝑡) = 𝑘 ⋅ 𝜔(𝑡) (9) 
 

 

For obtaining the transfer function we start by combining electrical and electromechanical force equations as in equation (10). 
 

𝑉(𝑡) = 𝑅 ⋅ 𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑘 ⋅ 𝜔(𝑡) (10) 

 

Then we use mechanical and electrical equations fixed for current and relate them as in equation (11). 
 

𝐽
𝑑ω(𝑡)

𝑑𝑡
+ 𝑏𝜔(𝑡) = 𝑘 ⋅

𝑉(𝑡) − 𝑘 ⋅ ω(𝑡)

𝑅 + 𝐿
𝑑
𝑑𝑡

(11) 

 

 

Applying Laplace transform and rearranging we get equation (12) with the transfer function of speed to voltage. 

 

𝐺(𝑠) =
Ω(𝑠)

𝑉(𝑠)
=

𝑘

((𝐽𝑠 + 𝑏) ∗ (𝐿𝑠 + 𝑅) + 𝐾2)
(12) 
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Similarly, we get equation (13) with the transfer function of position to voltage adding an extra integrator. 

𝐺(𝑠) =
Θ(𝑠)

𝑉(𝑠)
=

𝑘

((𝐽𝑠 + 𝑏) ∗ (𝐿𝑠 + 𝑅) + 𝐾2)𝑠
(13) 

 

 

2.4 Signature 

 
Identification with classical control methods uses test signals like the step response and measures parameters associated with the 

TFs, as described in 2.1, 2.2, and 2.3. However, identifying those parameters demands using signals with several samples.  

Since supervised algorithms like the GA imply working with populations with several chromosomes across generations evaluating 

the cost function, training could result in a slow and inefficient learning process. 
 

The signature method proposed in this work changes those signals with several samples by six numerical components. 

Nevertheless, to still have representative information for identifying a transfer function. From the input to the system response, 

the six components must be unique. 

Therefore, the signature 𝑠 is a function that maps the signal containing the 𝑛𝑠 samples of the system’s output y(𝑡) after receiving 

and input signal 𝑥(𝑡), obtaining only six representative components of those changes, i.e., s(𝑥(𝑡), y(𝑡)): 𝑅𝑛𝑠 ↦ 𝑅𝟞. 

In order to get signature components that are representative of the system’s behavior, the 𝑥(𝑡) signal must produce changes in 

length and frequency, allowing an optimization algorithm to perceive the system’s constants, as other identification methods in 

classical control described in  2.1, 2.2, and 2.3. 

 

Consequently, we use the 𝑥(𝑡) defined in equation (14) with three stages containing variations in length, faster, and slower 

frequencies, depending on the settling time with 2% of the variation (𝑡𝑠2%). The first one is a step signal maintained at 0 volts 

input during 
𝑡𝑠2%

2
, then increases from 0 to 12 volts in 

𝑡𝑠2%

10
 ms and remains at 12 volts until reaching 𝑡𝑠2%. The second one variates 

length from 0 to 12 volts progressively with 
𝑡𝑠2%

𝑡
 and frequency with the time-squared 𝑡2 from 0 to 1,000 ⋅ 𝑡𝑠2%

2 Hz. The third one 

variates in length from 0 to 12 volts with 
𝑡𝑠2%

𝑡
  and frequency with 𝑡2  from 0 to 0.5 ⋅ 𝑡𝑠2%

2 Hz.  

 

𝑥(𝑡) =

{
 
 
 
 

 
 
 
 0, 0 ≤ 𝑡 ≤

𝑡𝑠2%
2

12 ⋅min(
𝑡 −

𝑡𝑠2%
2

𝑡𝑠2%
10

) ,
𝑡𝑠2%
2

≤ 𝑡 ≤ 𝑡𝑠2%

12 ⋅
𝑡𝑠2%
𝑡

⋅ sin(1000𝑡2), 𝑡𝑠2% ≤ 𝑡 ≤ 2𝑡𝑠2%

12 ⋅
𝑡𝑠2%
𝑡

⋅ sin(0.5𝑡2), 2𝑡𝑠2% ≤ 𝑡 ≤ 3𝑡𝑠2%

(14) 

 

Additionally, the 𝑥(𝑡) signal can generate less data for simulation when reducing the number of samples, allowing it to require 

fewer training points in a supervised learning algorithm. Moreover, this approach reduces the number of training points used in 

few-shots learning. 

 

The process with few-shots learning used in this work with signature components starts by supplying 𝑥(𝑡) signal to the1st order 
system, second order system or motor system. 

 

The Fig. 2 shows the results of applying 𝑥(𝑡) signal with 5,000 samples generated to a motor with 𝐽 = 3.2284E− 06, 𝑏 =
3.5077E− 06, 𝐾 =  0.0274, 𝑅 =  4.0000, 𝐿 = 2.7500E− 06 and 𝑡𝑠2% = 0.08001600320064013. Similarly, the Fig. 3 

shows 𝑥(𝑡) for the same motor but with six samples and Fig. 4 shows the six samples stem, showing directly the components of 

the signature. 
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Fig. 2. Example of input signal 𝑥(𝑡) for signature generation with 5,000 samples. 

 
Fig. 3. Example of input signal 𝑥(𝑡) for signature generation with six samples. 

 
Fig. 4. Stem of example input signal 𝑥(𝑡) for signature generation with six components. 

 

𝑥(𝑡) produces different results with different samples, but even with fewer points, it is still representative, reducing the required 

data for training as occurs in the few-shots approach in Fig. 5. 
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Fig. 5. Signature system identification reducing samples for few-shots learning. 

 

In the case of the motor system described before, the output y(𝑡) is also the angular position of the motor θ(𝑡). The results of 

applying 𝑥(𝑡) with 15,000 samples are in Fig. 6. 

 
Fig. 6. Output y(𝑡) = θ(𝑡) after simulation with 𝑥(𝑡) using 15,000 samples. 

 

Similarly, the signature response θ(𝑡) decreases its samples or components if 𝑥(𝑡) decreases too. Fig. 7 shows the output signature 

obtained with six samples in 𝑥(𝑡), and Fig. 8 shows the stem of the same output with precise signature components used as training 

points in our proposal. However, as fewer components in θ(𝑡), less representative is the signal. Therefore, the user must find a 

good value of samples for training and converge to a suitable candidate solution. 
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Fig. 7. Output 𝑦(𝑡) = 𝜃(𝑡) after simulation with 𝑥(𝑡) using 6 samples. 

 
Fig. 8. Stem of 𝑦(𝑡) = 𝜃(𝑡) after simulation with 𝑥(𝑡) using 6 samples. 

 

2.4 Genetic Algorithm 

 
Understanding these systems and their parameters is essential in a variety of practical applications. For example, in process control, 

optimizing the response of a first-order system may involve adjusting the time constant to improve the speed of response without 

causing instability. In vibration control systems (second order), adjusting the damping factor and natural frequency is key to 

minimizing unwanted oscillations (Chuk, 2012b). 

 

The genetic algorithm is a search technique based on Charles Darwin's theory of natural selection. It selects the fittest candidates 

for reproduction to generate the next generations (Khatri et al., 2023). 

In the natural selection process, the fittest candidates from a population are selected to produce better offspring. The offspring 

inherit the characteristics of their parents and, if the parents have better fitness, their offspring will have a better chance of surviving 

(Khatri et al., 2023). This process is repeated to create a generation with the fittest candidates. This concept can be applied to a 
hunt problem by selecting the best results from a set. The genetic algorithm involves five phases (Aziz et al., 2023; Nilanjan Dey, 

2023). 

1. Original population  

2. Fitness function  

3. Selection  

4. Crossover  

5. Mutation original Population  

 

In the application to solve a problem with genetic algorithms it may vary depending on the problem but in general the following 

steps are followed (Jebari & Madiafi, 2013; Nilanjan Dey, 2023): 

 

1. Problem Definition: To begin with a genetic algorithm, you must first identify the problem you want to solve, set a clear 
objective, and specify the variables to optimize or discover. 

2. Gene Encoding: Define the variables or features that will make up each individual in the population to represent candidate 

solutions. 

3. Generate an Initial Population: Generate a group of possible solutions to start your genetic algorithm, either randomly or 

using an appropriate initialization method. 

4. Fitness Function: Create a fitness function to assess candidate solutions' quality for problem optimization. Assign a numerical 

value to each individual that reflects its quality relative to the objective. 

5. Selection: Select individuals for reproduction based on their fitness, with higher fitness individuals being more likely to be 

chosen. Use different methods for selection, such as roulette wheel or tournament selection. 
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6. Crossover: Create new offspring by combining selected candidate solutions in pairs. 

7. Mutation: This allows for the introduction of diversity into the population and prevents premature convergence. 

8. Replacement: Determine how individuals from the previous generation will be replaced by the new offspring. 

9. Termination Criterion: Define a criterion that signals when the algorithm should halt. This can be a maximum number of 

generations, achieving a target fitness value, or any other problem-specific criterion. 

10. Iteration: Iterate through steps 5 to 9 for several generations until the termination criterion is met. 

11. Result: Upon meeting the termination criterion, you will obtain a solution that approximates the optimal solution according 

to your fitness function. This solution represents the best solution found by the genetic algorithm(Jebari & Madiafi, 2013; 
Nilanjan Dey, 2023). 

 

Key operators in a Genetic Algorithm include selection, crossover, and mutation. These operators are responsible for generating 

new diversity and driving the evolution of the population towards optimal solutions 

(Alzanin et al., 2023). 

 

Selection: Selection methods, such as roulette wheel, tournament, or rank-based selection, determine which individuals are chosen 

for reproduction based on their fitness (Altarabichi et al., 2023). 

 

Crossover: Crossover combines genetic information from two or more parents to create offspring. Common types of crossovers 

include single-point, multi-point, and uniform crossover (Altarabichi et al., 2023). 
 

Mutation: Mutation introduces random changes into a chromosome's genes to explore new solutions in the search 

space(Altarabichi et al., 2023). 

 

In this work we use a genetic algorithm with tournament selection, single-point crossover and unform mutations all those 

mechanisms are described below: 

 

Selection Metod 

 

Tournament selection (Algorithm 1) involves randomly choosing a small number of individuals from the population (𝑃) with 

limit in the population size (𝑃𝑠), referred to as the tournament size (𝑡𝑠), and then selecting the best individual from that group for 

reproduction. This process is repeated multiple times to form the new generation as shown in the pseudocode below (Alzanin et 

al., 2023; Jebari & Madiafi, 2013; Nilanjan Dey, 2023). 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

function Tournament (𝑃, 𝑡𝑠)  
for 0 to 𝑃𝑠    

Set best to 0 
for 0 to 𝑡𝑠  

Get current random element from population  
If current element’s fitness > best fitness 
Current = best  
End if 

End for 
Add best to mating pool.  
End for 

Algorithm 1 Tournament Selection 

 

Advantages: Tournament selection maintains good genetic diversity, allowing even less fit individuals a chance of being selected. 

It can adapt well to multimodal problems with multiple optimal solutions (Alzanin et al., 2023; Jebari & Madiafi, 2013; Nilanjan 

Dey, 2023). 

 

Disadvantages: The choice of tournament size can significantly impact algorithm performance, and determining the optimal size 

can be challenging. It does not guarantee that the fittest individuals are selected on every occasion (Alzanin et al., 2023; Jebari & 

Madiafi, 2013; Nilanjan Dey, 2023). 
 

Crossover 

 

 The primary goal of crossover is to generate offspring that inherit favorable traits from both parents, potentially leading to the 

convergence towards optimal or improved solutions within the search space (Kieszek et al., 2023). The crossover mechanism with 

one single crossover point work with the below elements: 
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• Selection of Crossover Points: In the case of single-point or multi-point crossovers, random crossover points are selected 

on the parents' chromosomes. 

• Offspring Creation: Segments of the parents' chromosomes before and after the crossover points are exchanged to form 

the chromosomes of the offspring. 

• Number of Offspring: Depending on the genetic algorithm's design, crossover can generate one or more offspring for 

each pair of parents. 
 

In this method, one single random crossover point is chosen on the chromosomes of the parents, and the segments before and after 

that point are exchanged to create offspring. The Algorithm 2 shows how it works (Ali & Saeed, 2023). 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

function SinglePointCrossover(parent1, parent2): 
      length = length(parent1) 
      crossover_point = random_integer(1, length - 1) 
      child1 = [] 
      child2 = [] 
 for i in range(length): 

 if i < crossover_point: 
 child1.append(parent1[i]) 
 child2.append(parent2[i]) 

 else: 
 child1.append(parent2[i]) 
 child2.append(parent1[i]) 

 return child1, child2 
end SinglePointCrossover 

Algorithm 2 Single-Point Crossover 

 

Mutation 

 

Mutation is a fundamental operator in genetic algorithms that introduces randomness into the population by individually altering 

genes within an individual. Mutation plays a critical role in maintaining genetic diversity within the population and helps prevent 

premature convergence towards a suboptimal solution (Zeng et al., 2022). The mutation process implies working with the below 

elements: 
 

Selection of the Individual. First, one or more individuals from the population are selected to undergo mutation. Selection can be 

random or follow specific criteria. 

 

Selection of Genes. Next, one or more genes are chosen from the selected individual to be mutated. Gene selection is often random, 

with a mutation rate determining the probability of mutating each gene (Greenstein et al., 2023). 

 

Gene Modification.  The selected genes are then modified according to a mutation process. The nature of this modification depends 

on the problem and can vary widely. Some common examples of mutation include (Gen & Lin, 2023): 

• Bit Mutation. - In. binary problems, such as combinatorial optimization problems, a bit is flipped, changing 0 to 1 or 

vice versa. 

• Value Mutation. In numerical problems, gene values are altered by adding or subtracting a small random value. 

• Permutation Mutation: In problems involving permutations (e.g., the traveling salesman problem), two elements in a 

sequence may be swapped. 

• Insertion or Deletion Mutation: In problems with sequences (e.g., genetic sequence design), an element can be inserted 

or removed from the sequence (Gen & Lin, 2023). 

 

Creation of the New Individual: 

The mutated individual is created by taking the original genes of the individual, with the mutated genes replacing the previously 

selected genes. This results in a new individual that is now part of the population (Gen & Lin, 2023). 

 

Mutation Rate: 

The mutation rate (𝑃𝑚) is a critical parameter that controls the probability of an individual gene being mutated. A low mutation 

rate can maintain genetic stability within the population, while a high rate can increase exploration of the search space for 

solutions. The choice of the mutation rate depends on the problem and should be experimentally tuned to strike an appropriate 

balance between exploration and exploitation(Gen & Lin, 2023). The Algorithm 3 describe the process of mutation. 
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function Mutation (individual, 𝑝𝑚): 
    mutated_individual = copy(individual) 
    for i in range(length(mutated_individual)): 
        random_value = random_uniform (0, 1) 
        if random_value < 𝑝𝑚: 
            mutated_gene = mutate_gene(mutated_individual[i]) 
            mutated_individual[i] = mutated_gene 
    return mutated_individual 
end Mutation 

Algorithm 3 Mutation 

 

3 Results and Discussion 
 

Our experiment includes obtaining the metrics and analyze 1500 randomly generated transfer functions with 500 1st order systems, 

500 2nd order systems, and 500 motor systems according to the structures defined in sections 2.1, 2.2, and 2.3. 

 

3.1 Results 1st Order Systems 
 

We test the system identification with the 1st order systems by randomly generating a 500 transfer functions with the few-shots 

approach described in 2.4. The first ten randomly generated transfer functions with the structure defined in 2.1 and their 

corresponding six signature components (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) are in Table 1. 

Table 1. First ten randomly generated 1st order transfer functions with six components. 

ID Randomly Generated Transfer Function 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

1 
0.548813503927325

0.715189366372419𝑠+ 1.0
 0.00E+00 9.50E-01 5.38E-01 1.00E+00 5.43E-01 -6.12E-01 

2 
0.417022004702574

0.720324493442158𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 7.48E-01 3.98E-01 -7.00E-01 

3 
0.435994902142004

0.0259262318278913𝑠+ 1.0
 0.00E+00 1.00E+00 5.64E-01 -7.78E-01 -4.64E-01 -3.85E-02 

4 
0.550797902574576

0.708147822618105𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 9.92E-01 5.37E-01 -5.92E-01 

5 
0.967029839013677

0.547232249175722𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 -8.83E-01 -5.26E-01 7.00E-01 

6 
0.221993171089739

0.870732306177376𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 -8.96E-01 -5.34E-01 -5.14E-01 

7 
0.892860151436002

0.331979805301177𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 -5.93E-01 -3.61E-01 7.13E-01 

8 
0.0763082893739572

0.779918792240115𝑠+ 1.0
 0.00E+00 9.54E-01 5.40E-01 -8.43E-01 -5.02E-01 -1.00E+00 

9 
0.873429402791816

0.968540662820932𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 7.90E-01 4.22E-01 8.22E-01 

10 
0.0103741538857

0.501874592148739𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 2.45E-01 1.13E-01 9.47E-01 

 

After that, we use the GA to optimize the 500 randomly generated TFs, obtaining the TFs and signature components in Table 2. 

These results use the input parameters experimentally selected for the GA (𝑃𝑠 = 2000, 𝑡𝑠 = 100, 𝑛𝑔 = 2, 𝑛𝑎 = 16, 𝑝𝑚 = 0.04, 

𝑑𝑒𝑐 = 65,535, 𝑔 = 15,000, 𝑐𝑑 = 1.00 + E − 05) and the cost function is the Mean Square Error (MSE) between the coefficients 

of the desired signature (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) and those obtained (𝑐1𝑜, 𝑐2𝑜, 𝑐3𝑜, 𝑐4𝑜, 𝑐5𝑜, and 𝑐6𝑜). We use 𝑛𝑔 = 2, because 

the two genes optimized are the gain 𝐾 and the τ time constant used in first order systems as described in 2.1. 

Table 2. Results first ten TFs and signature coefficients obtained for 1st order systems with GA. 

ID Transfer Function Obtained with GA 𝒄𝟏𝒐 𝒄𝟐𝒐 𝒄𝟑𝒐 𝒄𝟒𝒐 𝒄𝟓𝒐 𝒄𝟔𝒐 

1 
0.548378728923476

0.718822003509575𝑠+ 1.0
 0.00E+00 9.47E-01 5.39E-01 9.98E-01 5.44E-01 -6.09E-01 

2 
0.416983291371023

0.714564736400397𝑠+ 1.0
 0.00E+00 1.00E+00 5.64E-01 7.49E-01 3.96E-01 -7.03E-01 

3 
0.435919737544823

0.0257419699397269𝑠 + 1.0
 0.00E+00 1.00E+00 5.62E-01 -7.82E-01 -4.62E-01 -3.76E-02 

4 
0.548378728923476

0.706370641641871𝑠+ 1.0
 0.00E+00 9.97E-01 5.63E-01 9.89E-01 5.34E-01 -5.90E-01 

5 
0.969314106965743

0.545601586938277𝑠+ 1.0
 0.00E+00 1.00E+00 5.67E-01 -8.87E-01 -5.26E-01 7.04E-01 

6 
0.222751201647974

0.87888914320592𝑠+ 1.0
 0.00E+00 9.99E-01 5.71E-01 -8.94E-01 -5.38E-01 -5.15E-01 
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7 
0.887373159380484

0.329655909056229𝑠+ 1.0
 0.00E+00 9.97E-01 5.61E-01 -5.92E-01 -3.58E-01 7.11E-01 

8 
0.0766765850308995

0.78619058518349𝑠+ 1.0
 0.00E+00 9.55E-01 5.45E-01 -8.42E-01 -5.06E-01 -1.00E+00 

9 
0.872083619439994

0.957808804455634𝑠+ 1.0
 0.00E+00 1.00E+00 5.63E-01 7.91E-01 4.19E-01 8.23E-01 

10 
0.0107423514152743

0.531258106355383𝑠+ 1.0
 0.00E+00 1.01E+00 6.03E-01 2.58E-01 1.22E-01 9.57E-01 

 

 

Table 3 shows the cost value for the best and worst chromosomes in the population, the number of generations required to reach 

the desired cost 𝑐𝑑 = 1.00 + E− 05, the average time per generation, and the MSE, MAE, MAPE, and R-square metrics for the 

obtained six-component signature in 1st order systems. Additionally, we show in Fig. 9 the convergence diagram comparison in 

best fitness for the first ten 1st order systems. 

Table 3. Metrics of the first ten solutions with six component signatures in 1st order systems. 

id best worst MSE MAE MAPE R2 Generations 

Average 
time per 

generation 
(seconds) 

1 4.08E-06 1.20E+00 4.08E-06 1.70E-03 2.31E-03 1.00E+00 1.00E+00 3.73E+00 

2 6.21E-06 9.70E-04 6.21E-06 2.14E-03 3.23E-03 1.00E+00 5.22E+02 2.48E-02 

3 5.32E-06 3.49E-01 5.32E-06 1.92E-03 6.42E-03 1.00E+00 4.20E+01 1.80E-01 

4 7.6E-06 7.87E-01 7.60E-06 2.44E-03 3.46E-03 1.00E+00 1.40E+01 3.88E-01 

5 6.58E-06 4.48E-01 6.58E-06 1.96E-03 2.41E-03 1.00E+00 1.60E+01 3.33E-01 

6 7.78E-06 4.92E+00 7.78E-06 2.22E-03 3.62E-03 1.00E+00 8.60E+01 7.42E-02 

7 8.52E-06 3.48E-01 8.52E-06 2.23E-03 4.04E-03 1.00E+00 3.10E+01 1.80E-01 

8 7.94E-06 6.78E+01 7.94E-06 2.14E-03 3.55E-03 1.00E+00 8.50E+01 7.54E-02 

9 7.38E-06 4.42E-01 7.38E-06 2.25E-03 3.62E-03 1.00E+00 1.10E+01 4.78E-01 

10 4.08E-06 2.87E-04 2.87E-04 1.26E-02 3.56E-02 9.98E-01 1.50E+04 1.89E-02 

 

Fig. 9. Convergence diagram comparison in best fitness for the first 10 1st order systems. 

Similarly, to identify the effect using the few-shots approach for training, we re-evaluate the candidate solutions using a signature 

with 15,000 components, i.e., without reducing the data for measuring. The MSE, MAE, MAPE, and R-square in this evaluation 

are in Table 4, showing the error increments changing from six to 15,000 components. However, the almost all the first ten trained 

TFs per 1st order system remain below 1% MAPE in the 15,000 samples evaluation. Despite that the ID 9 experiment presents 

1.69% of MAPE it is an outlier as we show in the binomial test. 
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Table 4. Metrics of the first ten 1st order solutions with 15,000 component signatures. 

ID MSE MAE MAPE R2 

1 1.28E-06 7.25E-04 1.33E-02 1.00E+00 

2 2.26E-06 9.22E-04 2.53E-02 1.00E+00 

3 3.86E-07 3.15E-04 6.45E-03 1.00E+00 

4 5.96E-06 1.18E-03 6.91E-03 1.00E+00 

5 2.72E-06 9.29E-04 6.74E-03 1.00E+00 

6 4.70E-06 1.20E-03 4.90E-02 1.00E+00 

7 1.34E-05 1.77E-03 2.02E-02 1.00E+00 

8 6.55E-06 1.28E-03 7.67E-01 1.00E+00 

9 4.58E-06 1.28E-03 1.69E+00 1.00E+00 

10 1.28E-06 7.25E-04 1.33E-02 1.00E+00 

 

 

Furthermore, we obtain the step response in the desired transfer functions, which is a widely used criterion for system identification 

in classical control and compare them with the response of the obtained transfer functions. The metrics of this comparison are 

provided in Table 5. 

Table 5. Metrics of the first ten 1st order systems step responses comparison. 

ID MSE MAE MAPE R2 

1 6.31E-07 7.34E-04 1.85E-03 1.00E+00 

2 3.33E-07 3.98E-04 1.60E-03 1.00E+00 

3 2.66E-07 3.54E-04 1.38E-03 1.00E+00 

4 4.16E-06 1.93E-03 3.87E-03 1.00E+00 

5 5.74E-06 2.36E-03 2.99E-03 1.00E+00 

6 3.01E-07 4.94E-04 2.62E-03 1.00E+00 

7 1.91E-05 4.00E-03 4.71E-03 9.99E-01 

8 7.84E-08 2.50E-04 3.50E-03 1.00E+00 

9 1.99E-06 1.23E-03 2.13E-03 1.00E+00 

10 7.73E-08 2.47E-04 2.54E-02 9.85E-01 

 

Fig. 10 presents a boxplot that helps us to understand the variability of the metrics obtained from the 500 1st order systems. The 

analysis reveals that the R-square metrics, namely R2r, R2so, and R2s, show an average of 1.0 for the system response, regression 

with a signature of 6, and regression with 15,000 points. 
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Fig. 10. Boxplot comparison of the different metrics with the system response, the signature with 6 and with 15,000 

points, for the 500 1st order systems. 

Fig. 11, Fig. 12 and Fig. 13 show the dispersion curves for the system response (R2r), regression with signature of six points 

(R2so), and with 15,000 points (R2s), respectively. These figures provide insights into the averages of the R-square metrics for 

the 500 1st order systems. The curves' means are around 1.0, with upper and lower boundaries of 0.92 and 1.075 in the worst case. 

 

 

 

Fig. 11. Dispersion curve of R-square in the system response for the 500 1st order systems. 

 

Fig. 12. Dispersion curve of R-square in signature with 6 points for the 500 1st order systems. 
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Fig. 13. Dispersion curve of R-square in signature with 15,000 points for the 500 1st order systems. 

 

Moreover, we conducted an analysis to determine the boundaries of variation and the quality of regression obtained from GA 

transfer function using the six components signature. To evaluate the R-square metrics, we used a binomial test with an acceptable 

range of variation between 0.99 and 1.0 for the 500 randomly generated 1st order systems. We accepted up to a 5% probability of 

having a metric outside this range. The results for the system response (R2s) Table 6, regression with 6 components signature in 

Table 7, and 15,000 components signature in Table 8. 
 

Our analysis showed that in all the regressions, we successfully maintained outliers in the range of 0.99-1.0 below 5%. 

 

 

Table 6. Binomial test for R2 in the response of the system in the 500 1st order systems. 

Data Value 

Range 0.99-1.0 

Values within the range 490 

Values outside the range 10 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 10 

p-value result 9.308629941783915e-04 

F-statistic 0.02 

 

Table 7. Binomial test for R2 in the 6-points signature regression in the 500 1st order systems. 

Data Value 

Range 0.99-1.0 

Values within the range 498 

Values outside the range 2 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 2 

p-value result 6.544572734615963e-09 

F-statistic 0.004 

 

Table 8. Results of binomial test for R2 with 15,000 points signature regression in the 500 1st order systems 

Data Value 

Range 0.99-1.0 

Values within the range 499 

Values outside the range 1 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 1 

p-value result 4.132695012586317e-10 

F-statistic 0.002 
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3.2 Results 2nd Order Systems 
 

We also test the system identification with the 2nd order systems by randomly generating a 500 transfer functions with the few-

shots approach described in 2.4. The first ten randomly generated transfer functions with the structure defined in 2.2 and their 

corresponding six signature components (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) are in Table 9. 

 

Table 9. First ten randomly generated 2nd order transfer functions with six components. 

ID Randomly Generated Transfer Function 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

1 
56.5612383213192

1.0𝑠2+ 20.3598943275128𝑠+ 103.060944959563
 0.00E+00 1.00E+00 1.00E+00 9.89E-01 9.04E-01 2.47E-01 

2 
43.4145792251058

1.0𝑠2 + 8.16492993608866𝑠+ 104.1062071918
 0.00E+00 1.00E+00 1.40E-01 8.74E-01 1.15E-01 3.57E-01 

3 
4.63148266119851

1.0𝑠2+ 6.19039825846692𝑠+ 10.6227908593528
 0.00E+00 8.93E-01 1.00E+00 7.82E-01 7.72E-01 9.34E-01 

4 
55.9810075619527

1.0𝑠2+ 13.9306821634323𝑠+ 101.636203224963
 0.00E+00 1.00E+00 7.51E-01 7.48E-01 6.03E-01 1.34E-01 

5 
69.4136420588061

1.0𝑠2+ 23.2596491540277𝑠+ 71.7802484043353
 0.00E+00 1.00E+00 7.11E-01 3.27E-01 1.94E-01 6.09E-01 

6 
30.4266977664568

1.0𝑠2+ 14.2061143186503𝑠+ 137.06141327274
 0.00E+00 1.00E+00 6.83E-01 9.18E-01 6.90E-01 4.91E-02 

7 
35.6606982254408

1.0𝑠2+ 15.4358428683643𝑠+ 39.9398474308514
 0.00E+00 9.38E-01 7.25E-01 1.00E+00 7.29E-01 7.53E-01 

8 
8.89926040864939

1.0𝑠2+ 18.1082776924122𝑠+ 116.622459783335
 0.00E+00 6.62E-01 9.92E-01 -5.33E-01 -1.00E+00 -8.37E-02 

9 
140.551858875296

1.0𝑠2+ 32.2004976658335𝑠+ 160.919541323017
 0.00E+00 1.00E+00 7.48E-01 -2.14E-01 -2.03E-01 2.10E-01 

10 
0.667061063449609

1.0𝑠2+ 14.3659568817935𝑠+ 64.3002861533706
 0.00E+00 7.80E-01 1.00E+00 -6.68E-01 -9.94E-01 2.36E-02 

 

 

After that, we use the GA to optimize the 500 randomly generated TFs, obtaining the TFs and signature components in Table 10. 

These results use the input parameters experimentally selected for the GA (𝑃𝑠 = 2000, 𝑡𝑠 = 100, 𝑛𝑔 = 3, 𝑛𝑎 = 16, 𝑝𝑚 = 0.04, 

𝑑𝑒𝑐 = 65,535, 𝑔 = 15,000, 𝑐𝑑 = 1.00 + E − 05) and the cost function is the Mean Square Error (MSE) between the coefficients 

of the desired signature (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) and those obtained (𝑐1𝑜, 𝑐2𝑜, 𝑐3𝑜, 𝑐4𝑜, 𝑐5𝑜, and 𝑐6𝑜). We use 𝑛𝑔 = 3, because 

the three genes optimized are the gain 𝐾 and the natural undampened frequency 𝜔𝑛  and the damping factor 𝜁 used in 2nd order 

systems as described in 2.2. 

 

Table 10. Results first ten TFs and signature coefficients obtained for 2nd order systems with GA. 

ID Transfer Function Obtained with GA 𝒄𝟏𝒐 𝒄𝟐𝒐 𝒄𝟑𝒐 𝒄𝟒𝒐 𝒄𝟓𝒐 𝒄𝟔𝒐 

1 
56.9977427416421

1.0𝑠2+ 20.6784751146128𝑠+ 104.132783322838
 0.00E+00 9.96E-01 9.95E-01 9.88E-01 9.01E-01 2.49E-01 

2 
45.8741517270323

1.0𝑠2+ 8.43630160775223𝑠+ 110.252403309046
 0.00E+00 1.00E+00 1.34E-01 8.76E-01 1.12E-01 3.57E-01 

3 
4.5559846626064

1.0𝑠2+ 6.09950296067459𝑠+ 10.460217729257
 0.00E+00 8.89E-01 1.00E+00 7.78E-01 7.73E-01 9.30E-01 

4 
53.7881002030657

1.0𝑠2+ 12.8750994713425𝑠+ 98.0911383239066
 0.00E+00 1.01E+00 7.48E-01 7.39E-01 6.04E-01 1.22E-01 

5 
66.9455967859891

1.0𝑠2+ 22.170740966962𝑠 + 69.1040777055474
 0.00E+00 1.01E+00 7.12E-01 3.26E-01 1.93E-01 6.11E-01 

6 
30.7974285371641

1.0𝑠2+ 14.6102966708585𝑠+ 138.525015729791
 0.00E+00 9.95E-01 6.86E-01 9.19E-01 6.92E-01 5.43E-02 

7 
37.9416727734761

1.0𝑠2+ 16.6054268064669𝑠+ 42.4043713156955
 0.00E+00 9.36E-01 7.24E-01 1.00E+00 7.29E-01 7.57E-01 

8 
9.32431058210019

1.0𝑠2 + 19.05830618256𝑠+ 120.3127966131
 0.00E+00 6.72E-01 9.92E-01 -5.31E-01 -9.94E-01 -9.43E-02 

9 
133.999885017814

1.0𝑠2+ 30.7838627490388𝑠+ 153.140388962096
 0.00E+00 9.97E-01 7.55E-01 -2.13E-01 -2.05E-01 2.09E-01 

10 
0.411569967456178

1.0𝑠2+ 8.77451553114811𝑠+ 45.5612125291227
 0.00E+00 9.96E-01 9.95E-01 9.88E-01 9.01E-01 2.49E-01 

 

 

Table 11 shows the cost value for the best and worst chromosomes in the population, the number of generations required to reach 

the desired cost 𝑐𝑑 = 1.00 + E− 05, the average time per generation, and the MSE, MAE, MAPE, and R-square metrics for the 
obtained six-component signature in 2nd order systems. Additionally, we show in Fig. 14 the convergence diagram comparison in 

best fitness for the first ten 2nd order systems. 
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Table 11. Metrics of the first ten solutions with six component signatures in 2nd order systems. 

id best worst MSE MAE MAPE R2 Generations 

Average 
time per 

generation 
(seconds) 

1 9.98E-06 4.28E-04 9.98E-06 2.62E-03 3.64E-03 1.00E+00 5.86E+02 2.90E-02 

2 9.36E-06 2.25E-05 9.36E-06 2.30E-03 1.26E-02 1.00E+00 1.99E+03 1.72E-02 

3 8.84E-06 1.01E-05 8.84E-06 2.63E-03 3.00E-03 1.00E+00 3.68E+03 1.83E-02 

4 5.91E-05 5.91E-05 5.91E-05 5.89E-03 2.00E-02 1.00E+00 1.50E+04 1.70E-02 

5 7.09E-06 1.90E-01 7.09E-06 1.87E-03 2.92E-03 1.00E+00 1.16E+02 6.36E-02 

6 9.35E-06 1.52E-05 9.35E-06 2.41E-03 1.93E-02 1.00E+00 8.94E+02 1.97E-02 

7 5.54E-06 1.58E-01 5.54E-06 1.74E-03 2.05E-03 1.00E+00 2.35E+02 3.78E-02 

8 4.04E-05 4.04E-05 4.04E-05 4.77E-03 2.51E-02 1.00E+00 1.50E+04 1.71E-02 

9 9.48E-06 1.14E-02 9.48E-06 2.13E-03 4.57E-03 1.00E+00 4.61E+02 5.16E-02 

10 9.98E-06 4.28E-04 4.30E-03 4.98E-02 6.49E-01 9.92E-01 1.50E+04 1.82E-02 

 

Fig. 14. Convergence diagram comparison in best fitness for the first 10 2nd order systems. 

 

Similarly, to identify the effect using the few-shots approach for training, we re-evaluate the candidate solutions using a signature 
with 15,000 components, i.e., without reducing the data for measuring. The MSE, MAE, MAPE, and R-square in this evaluation 

are in Table 12, showing the error increments changing from six to 15,000 components. However, almost all the ten trained TFs 

per 2nd order system remain below 1% MAPE in the 15,000 samples evaluation. Despite that the ID 11 experiment presents 

11.15% of MAPE it is an outlier as we show in the binomial test. 

 

Table 12. Metrics of the first ten 2nd order solutions with 15,000 component signatures. 

ID MSE MAE MAPE R2 

1 9.37E-06 1.92E-03 8.15E-02 1.00E+00 

2 3.72E-04 8.52E-03 6.09E-01 9.98E-01 

3 1.30E-06 7.60E-04 1.14E-01 1.00E+00 

4 1.50E-04 6.53E-03 4.99E-01 1.00E+00 

5 9.15E-06 1.92E-03 7.70E-02 1.00E+00 

6 2.70E-05 2.60E-03 9.89E-02 1.00E+00 
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7 1.49E-05 2.32E-03 1.19E-01 1.00E+00 

8 1.27E-04 6.00E-03 8.36E-01 1.00E+00 

9 1.27E-05 1.95E-03 3.86E-02 1.00E+00 

10 1.08E-02 5.90E-02 1.15E+01 9.77E-01 

 

 

Furthermore, we obtain the step response in the desired transfer functions, which is a widely used criterion for system identification 

in classical control and compare them with the response of the obtained transfer functions. The metrics of this comparison are 

provided in Table 13. 

Table 13. Metrics of the first ten 2nd order systems step responses comparison. 

ID MSE MAE MAPE R2 

1 3.45E-06 1.71E-03 3.73E-03 1.00E+00 

2 2.00E-05 3.22E-03 1.08E-02 9.98E-01 

3 2.73E-07 4.13E-04 2.41E-03 1.00E+00 

4 2.02E-05 3.69E-03 8.77E-03 9.99E-01 

5 1.14E-05 3.02E-03 4.57E-03 1.00E+00 

6 5.34E-07 5.84E-04 3.19E-03 1.00E+00 

7 5.17E-06 1.91E-03 4.88E-03 1.00E+00 

8 4.89E-07 6.25E-04 1.33E-02 9.99E-01 

9 3.73E-06 1.76E-03 4.37E-03 1.00E+00 

10 3.45E-06 1.71E-03 3.73E-03 1.00E+00 

 

 

Fig. 15 presents a boxplot that helps us to understand the variability of the metrics obtained from the 500 2nd order systems. The 
analysis reveals that the R-square metrics, namely R2r, R2so, and R2s, show an average of 1.0 for the system response, regression 

with a signature of 6, and regression with 15,000 points, respectively. 

 

 

Fig. 15. Boxplot comparison of the different metrics with the system response, the signature with 6 and with 15,000 

points, for the 500 2nd order systems. 

Fig. 16, Fig. 17 and Fig. 18 show the dispersion curves for the system response (R2r), regression with signature of six points 

(R2so), and with 15,000 points (R2s), respectively. These figures provide insights into the averages of the R-square metrics for 

the 500 2nd order systems. The curves' means are around 1.0, with upper and lower boundaries of 0.98 and 1.020 in the worst case. 
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Fig. 16. Dispersion curve of R-square in the system response for the 500 2nd order systems. 

 

Fig. 17. Dispersion curve of R-square in signature with 6 points for the 500 2nd order systems. 

 

Fig. 18. Dispersion curve of R-square in signature with 15,000 points for the 500 2nd order systems. 

 

Moreover, we conducted an analysis to determine the boundaries of variation and the quality of regression obtained from GA 

transfer function using the six components signature. To evaluate the R-square metrics, we used a binomial test with an acceptable 

range of variation between 0.99 and 1.0 for the 500 randomly generated 2nd order systems. We accepted up to a 5% probability of 

having a metric outside this range. The results for the system response (R2s) Table 14, regression with 6 components signature 

in Table 15, and 15,000 components signature in Table 16. 

 

Our analysis showed that in all the regressions, we successfully maintained outliers in the range of 0.99-1.0 below 5%. 

 

Table 14. Binomial test for R2 in the response of the system in the 500 2nd order systems. 

Data Value 

Range 0.99-1.0 

Values within the range 492 

Values outside the range 8 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 8 

p-value result 1.2196053082001523 e-04 
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F-statistic 0.016 

 

Table 15. Binomial test for R2 in the 6-points signature regression in the 500 1st order systems. 

Data Value 

Range 0.99-1.0 

Values within the range 499 

Values outside the range 1 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 1 

p-value result 4.132695012586317e-10 

F-statistic 0.002 

 

Table 16. Results of binomial test for R2 with 15,000 points signature regression in the 500 2nd  order systems 

Data Value 

Range 0.99-1.0 

Values within the range 499 

Values outside the range 1 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 1 

p-value result 4.132695012586317e-10 

F-statistic 0.002 

 

 

 

 

3.2 Results Motor Identification 

 

The first stage in the proposed method starts by generating a 500 DC motor dataset for validating the transfer function 
identification achieved with the few-shots signature approach described in 2.4.  The first ten randomly generated transfer functions 

and their corresponding six signature components (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) are in Table 17. 

Table 17. First ten randomly generated transfer functions with the components of their signature. 

ID Randomly Generated Transfer Function 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

1 
0.391796194446569

9.8234408137143 ⋅ 10−10𝑠2+ 0.00126344210671416𝑠+ 0.15515071791453
 0.00E+00 1.35E-01 4.50E-01 6.34E-01 9.51E-01 1.00E+00 

2 
7.43436312741763 ⋅ 10−5

2.58571841214713 ⋅ 10−10𝑠2+ 0.000532685639229194𝑠 + 0.00092011570628111
 0.00E+00 1.13E-01 4.05E-01 5.81E-01 8.76E-01 1.00E+00 

3 
0.357280610621161

7.74350474154462 ⋅ 10−10𝑠2+ 0.000801898049318912𝑠+ 0.127697119213499
 0.00E+00 1.49E-01 5.01E-01 6.76E-01 9.55E-01 1.00E+00 

4 
0.189088080293414

2.07799573291231 ⋅ 10−9𝑠2+ 0.00118876038975219𝑠+ 0.0372826597621439
 0.00E+00 2.83E-01 1.00E+00 8.84E-01 2.30E-01 9.62E-02 

5 
0.632244833977175

2.85071140511024 ⋅ 10−9𝑠2+ 0.00292052608327723𝑠 + 0.401386224878578
 0.00E+00 1.38E-01 4.86E-01 6.65E-01 9.44E-01 1.00E+00 

6 
0.134367450970627

4.58091182819256 ⋅ 10−10𝑠2+ 0.000861586393993046𝑠+ 0.0214340381014662
 0.00E+00 1.66E-01 5.89E-01 7.55E-01 9.56E-01 1.00E+00 

7 
0.533798929987591

4.06116969101815 ⋅ 10−10𝑠2+ 0.000157293755739376𝑠+ 0.284999781955137
 0.00E+00 3.79E-01 9.02E-01 9.47E-01 9.99E-01 1.00E+00 

8 
0.284966000436581

3.15306285748907 ⋅ 10−10𝑠2+ 0.000233250220978434𝑠+ 0.0835895526754455
 0.00E+00 2.31E-01 6.82E-01 8.09E-01 9.85E-01 1.00E+00 

9 
0.564976451139048

8.58823205088309 ⋅ 10−10𝑠2+ 0.00195898544909002𝑠+ 0.321370696582876
 0.00E+00 1.52E-01 5.04E-01 6.78E-01 9.57E-01 1.00E+00 

10 
0.322252640537195

6.22884258808504 ⋅ 10−12𝑠2+ 5.8661566754782 ⋅ 10−6𝑠+ 0.10413053916331
 0.00E+00 4.46E-01 9.09E-01 9.54E-01 1.00E+00 1.00E+00 

 

 

After that, we use the GA to optimize the 500 randomly generated TFs, obtaining the TFs and signature components in Table 18. 

These results use the same input parameters experimentally selected for the GA (𝑃𝑠 = 1000, 𝑡𝑠 = 2, 𝑛𝑔 = 5, 𝑛𝑎 = 16,    𝑝𝑚 =

0.08, 𝑑𝑒𝑐 = 1,000, 𝑔 = 10,000, 𝑐𝑑 = 1.00 + E− 05) and the cost function is the MAPE between the coefficients of the desired 

signature (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, and 𝑐6) and those obtained (𝑐1𝑜, 𝑐2𝑜, 𝑐3𝑜, 𝑐4𝑜, 𝑐5𝑜, and 𝑐6𝑜). 
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Table 18. Results of the first ten TFs and signature coefficients obtained with GA. 

ID Transfer Function Obtained with GA 𝒄𝟏𝒐 𝒄𝟐𝒐 𝒄𝟑𝒐 𝒄𝟒𝒐 𝒄𝟓𝒐 𝒄𝟔𝒐 

1 
0.39465

2.26899992 ⋅ 10−10𝑠3+ 0.00127277669844898𝑠2+ 0.156278426208𝑠
 0.00E+00 1.35E-01 4.50E-01 6.34E-01 9.51E-01 1.00E+00 

2 
0.00034

1.63502955 ⋅ 10−9𝑠3+ 0.00243601297434437𝑠2+ 0.004208071077𝑠
 0.00E+00 1.13E-01 4.05E-01 5.81E-01 8.76E-01 1.00E+00 

3 
0.35287

1.065423513 ⋅ 10−9𝑠3+ 0.000792032702404111𝑠2+ 0.126119553609𝑠
 0.00E+00 1.49E-01 5.01E-01 6.76E-01 9.55E-01 1.00E+00 

4 
0.19668

3.8234262 ⋅ 10−10𝑠3+ 0.00123651982205871𝑠2+ 0.038780234136𝑠
 0.00E+00 2.83E-01 1.00E+00 8.84E-01 2.30E-01 9.62E-02 

5 
0.63093

1.486766944 ⋅ 10−9𝑠3+ 0.00291444768139098𝑠2+ 0.400553157376𝑠
 0.00E+00 1.38E-01 4.86E-01 6.65E-01 9.44E-01 1.00E+00 

6 
0.15551

1.90768675 ⋅ 10−10𝑠3+ 0.000997181219258281𝑠2+ 0.024806743912𝑠
 0.00E+00 1.66E-01 5.89E-01 7.55E-01 9.56E-01 1.00E+00 

7 
0.53201

4.0680684 ⋅ 10−11𝑠3+ 0.000156837315841788𝑠2+ 0.284044123978𝑠
 0.00E+00 3.79E-01 9.02E-01 9.47E-01 9.99E-01 1.00E+00 

8 
0.29155

3.61943768 ⋅ 10−10𝑠3+ 0.000238615417425186𝑠2+ 0.085521838031𝑠
 0.00E+00 2.31E-01 6.82E-01 8.09E-01 9.85E-01 1.00E+00 

9 
0.56325

1.14732653 ⋅ 10−10𝑠3+ 0.00195307263427662𝑠2+ 0.32038746885𝑠
 0.00E+00 1.52E-01 5.04E-01 6.78E-01 9.57E-01 1.00E+00 

10 
0.32313

1.367769 ⋅ 10−11𝑠3+ 5.866448428706 ⋅ 10−6𝑠2+ 0.104414467493𝑠
 0.00E+00 4.46E-01 9.09E-01 9.54E-01 1.00E+00 1.00E+00 

 

 

Table 19 shows the cost value for the best and worst chromosomes in the population, the number of generations required to reach 

the desired cost 𝑐𝑑 = 1.00 + E− 05, the average time per generation, and the MSE, MAE, MAPE, and R-square metrics for the 

obtained six-component signature. Additionally, we show in Fig. 19 the convergence diagram comparison in best fitness for the 
first ten motors. 

 

Table 19. Metrics of the first ten candidate solutions with six component signatures. 

id best worst MSE MAE MAPE R2 Generations 

Average 
time per 

generation 
(seconds) 

1 8.84E-06 2.31E-03 3.74E-11 4.33E-06 8.84E-06 1.00E+00 3.62E+03 2.64E-02 

2 8.23E-06 6.72E-04 1.57E-11 2.98E-06 8.23E-06 1.00E+00 7.49E+03 2.45E-02 

3 9.93E-06 5.33E-04 2.71E-11 3.93E-06 9.93E-06 1.00E+00 5.23E+03 2.52E-02 

4 9.62E-06 6.68E-04 1.70E-10 7.79E-06 9.62E-06 1.00E+00 5.52E+03 2.49E-02 

5 8.16E-06 1.36E-03 1.50E-11 3.17E-06 8.16E-06 1.00E+00 3.37E+03 2.62E-02 

6 6.14E-06 4.18E-04 1.65E-11 3.54E-06 6.14E-06 1.00E+00 8.24E+03 2.58E-02 

7 8.90E-06 4.50E-04 2.39E-10 7.61E-06 8.90E-06 1.00E+00 6.53E+03 2.50E-02 

8 8.86E-06 1.44E-04 4.22E-11 5.36E-06 8.86E-06 1.00E+00 5.15E+03 2.31E-02 

9 3.12E-06 1.31E-03 5.43E-12 1.77E-06 3.12E-06 1.00E+00 3.39E+03 2.50E-02 

10 8.91E-06 4.52E-04 6.47E-11 4.99E-06 8.91E-06 1.00E+00 4.67E+03 2.55E-02 

 

Fig. 19. Convergence diagram comparison in best fitness for the first 10 motors 
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Similarly, to identify the effect using the few-shots approach for training, we re-evaluate the candidate solutions using a signature 

with 15,000 components, i.e., without reducing the data for measuring. The MSE, MAE, MAPE, and R-square in this evaluation 

are in Table 20, showing the error increments changing from six to 15,000 components. However, the trained TFs per DC motor 

remain below 1% MAPE in the 15,000 samples evaluation.  

 

Table 20. Metrics of the first ten candidate solutions with 15,000 component signatures. 

ID MSE MAE MAPE R2 

1 1.50E-06 1.07E-03 1.26E-05 1.00E+00 

2 2.49E-10 1.32E-05 1.10E-05 1.00E+00 

3 1.19E-06 9.57E-04 7.62E-06 1.00E+00 

4 9.72E-07 8.63E-04 1.48E-05 1.00E+00 

5 2.50E-07 4.38E-04 3.56E-06 1.00E+00 

6 9.41E-09 8.53E-05 3.20E-06 1.00E+00 

7 1.18E-06 9.50E-04 1.60E-06 1.00E+00 

8 7.09E-06 2.33E-03 9.57E-06 1.00E+00 

9 1.96E-07 3.87E-04 3.09E-06 1.00E+00 

10 5.58E-06 2.07E-03 3.37E-06 1.00E+00 

 
 

Furthermore, we convert the transfer functions acquired by the GA that express the relationship between position and voltage to 

those that relate speed and voltage by eliminating an s integrator in the transfer functions. This conversion enables us to model 

and contrast the step response, which is a widely used criterion for system identification in classical control. The outcomes of this 

conversion are provided in Table 21. 

Table 21. Metrics of the first ten candidate solutions among the step responses of the speed in the DC motors. 

ID MSE MAE MAPE R2 

1 2.30E-09 4.03E-05 5.98E-05 1.00E+00 

2 8.13E-13 8.16E-07 1.45E-05 1.00E+00 

3 1.50E-09 2.94E-05 5.21E-05 1.00E+00 

4 9.71E-09 9.55E-05 5.30E-05 1.00E+00 

5 3.75E-10 1.36E-05 5.86E-05 1.00E+00 

6 1.71E-09 3.79E-05 1.28E-05 1.00E+00 

7 4.32E-07 1.74E-04 7.95E-04 1.00E+00 

8 2.79E-09 4.44E-05 3.65E-05 1.00E+00 

9 3.66E-10 1.23E-05 4.43E-05 1.00E+00 

10 3.44E-06 1.72E-04 2.05E-04 1.00E+00 

 

 

Fig. 20 presents a boxplot that helps us to understand the variability of the metrics obtained from the 500 motors. The analysis 

reveals that the R-square metrics, namely R2r, R2so, and R2s, show an average of 1.0 for the system response, regression with a 
signature of 6, and regression with 15,000 points. 
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Fig. 20. Boxplot comparison of the different metrics with the system response, the signature with 6 and with 15,000 

points, for the 500 motors. 

Fig. 21, Fig. 22 and Fig. 23 show the dispersion curves for the system response (R2r), regression with signature of six points 

(R2so), and with 15,000 points (R2s), respectively. These figures provide insights into the averages of the R-square metrics for 

the 500 motors. The curves' means are around 1.0, with upper and lower boundaries of 0.99 and 1.02. 

 

 

Fig. 21. Dispersion curve of R-square in the system response for the 500 motors. 

 

Fig. 22. Dispersion curve of R-square in signature with 6 points for the 500 motors. 

 

Fig. 23. Dispersion curve of R-square in signature with 15,000 points for the 500 motors. 
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Moreover, we conducted an analysis to determine the boundaries of variation and the quality of regression obtained from GA 

transfer function using the six components signature. To evaluate the R-square metrics, we used a binomial test with an acceptable 

range of variation between 0.99 and 1.0 for the 500 randomly generated motors. We accepted up to a 5% probability of having a 

metric outside this range. The results for the system response (R2s) are in Table 22, regression with 6 components signature in 

Table 23, and 15,000 components signature in Table 24. 

 

Our analysis showed that in all the regressions, we successfully maintained outliers in the range of 0.99-1.0 below 5%. 
 

Table 22. Results of binomial test for R2 in the response of the system 

Data Value 

Range 0.99-1.0 

Values within the range 492 

Values outside the range 8 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 8 

p-value result 0.00012196053082001523 

F-statistic 0.016 

 

Table 23. Results of binomial test for R2 in the signature regression with 6 points 

Data Value 

Range 0.99-1.0 

Values within the range 492 

Values outside the range 8 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 8 

p-value result 4.132695012586317e-10 

F-statistic 0.002 

 

Table 24. Results of binomial test for R2 in the signature regression with 15,000 points 

Data Value 

Range 0.99-1.0 

Values within the range 492 

Values outside the range 1 

Null hypothesis p 0.05 

Expected value 25 

Observed p value 1 

p-value result 4.132695012586317e-10 

F-statistic 0.002 

 

 

 

4 Conclusions 
 

In this work, we present a new method for identifying transfer function systems using a few-shot learning technique. Our approach 

involves assigning a distinctive signature value to each system, which we generate by exposing the system to an input signal of 

varying length and frequency, and recording six numerical values through precise time sampling. By reducing the signal 

components to just six parameters, our method simplifies and reduces the search space, making it much easier to identify transfer 

function systems. 

 

In order to verify the effectiveness of our method, we conducted extensive testing on a total of 1500 transfer functions, randomly 

generated from three different categories: 500 1st order systems, 500 2nd order systems, and 500 motor systems. The optimization 

process involved minimizing the Mean Squared Error (MSE) for 1st and 2nd order systems, and the Mean Absolute Percentage 
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Error (MAPE) for motor systems. The objective was to compare the generated transfer function against the one optimized using 

the Genetic Algorithm (GA). 

 

We performed an analysis on transfer functions, comparing signature and step response metrics with 6 and 15,000 components. 

Our approach utilized the GA method and yielded highly significant results, with R-square values ranging from 0.99 to 1.0. We 

evaluated the accuracy of our approach using a binomial test, which produced metrics within the expected range with a 5% 

probability. 

 
Our research has demonstrated that the application of the signature method to optimize transfer functions yields results of high 

quality, even when the number of components increases from six to 15,000. Furthermore, the optimization processing time for 

each generation averaged at 2.51E-02 seconds. Our approach significantly improves existing methods and facilitates the 

identification process by simplifying the procedure and reducing the required time. 

 

The outcomes of our study demonstrate that the methodology we employed holds substantial promise for future applications in 

system identification, control, and automation. Our findings suggest that this approach can be effectively harnessed to achieve 

superior precision, efficiency, and safety in control systems. These promising results highlight the significance of further research 

and development in this field to fully exploit its potential and investigate its broader implications. 

 

4.1 Future work 

 

Within the scope of this study, we have exclusively identified transfer functions of 1st, 2nd order systems and DC motors using 

genetic algorithms. Nevertheless, we believe that the process signature method, in conjunction with few-shot approaches, has the 

potential to be extended to other models or transfer functions of any kind. We recommend repeating the process and assessing the 

results with different systems to evaluate its effectiveness, and test this approach using other different optimizing algorithms. 
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