
 

 
www.editada.org 

International Journal of Combinatorial Optimization Problems and 

Informatics, 15(3), Sep-Dec 2024, 183-204. ISSN: 2007-1558. 

 https://doi.org/10.61467/2007.1558.2024.v15i3.423 

_______________________________________________________________________________________ 

 

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved. 

Robust Linear Discrete Control for a Hexacopter: Experimental Results 
 

Omar-Jacobo Santos-Sánchez1, Mario Ordaz2, Patricio Ordaz1,  

Hugo Romero-Trejo1, Orlando García-Pérez1 

1Research Center on Technology of Information and Systems, Autonomous University of Hidalgo State, 

Pachuca, Hidalgo, México 
2Departamento de Ingeniería Eléctrica y Electrónica, TecNM / Campus Pachuca (IT Pachuca) 

E-mails: omarj@uaeh.edu.mx 

mario.oo@pachuca.tecnm.mx 

jesus_ordaz@uaeh.edu.mx 

rhugo@uaeh.edu.mx 

orlando_garcia@uaeh.edu.mx 
 
Abstract. This paper presents a discrete-time robust linear control 

method for tracking a hexacopter's trajectory in the presence of 

external disturbances. The control of multi-rotor type unmanned 
aerial vehicles (UAVs) has gained considerable attention recently 

due to their various applications, such as crop spraying in precision 

agriculture. The control of UAVs requires robustness to reject 
disturbances and accommodate dynamic uncertainties. To achieve 

this goal, the robust discrete-time control action is designed in two 

stages. The first stage utilizes the solution of a difference Riccati-

equation to guarantee system stability in an optimal sense. The 

second stage provides system robustness against external 

disturbances and uncertain dynamics. Furthermore, the Lyapunov 
stability theory for discrete linear systems is used to derive system 

asymptotic stability. Finally, experimental results of the 

hexacopter flight are provided to illustrate the effectiveness of the 
presented control law. 
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1 Introduction 
 

In recent years, unmanned aerial vehicles (UAVs) have become a subject of study for the control community due to their 

numerous applications. These include monitoring and inspecting areas with limited access, biodiversity conservation, aerial 

inspection and chemical spraying of crops, monitoring energy facilities and pipelines, and monitoring air quality, as noted by 

Tyokumbur, E. T. [25] and Sanca, A. S. [25]. However, the challenges that UAVs present for automatic control cannot be 

ignored. The different applications of automatic control in UAVs require analyzing the problems that may arise. According to 

Tripolitsiotis, A. [24], the main challenges facing the control design for UAVs are the autonomy of operating time and the 

robustness of the controller against external disturbances generated by wind currents. Multirotor type UAVs have captured 

attention as they offer significant advantages over other aircraft. An unmanned aerial vehicle with a greater number of motors 

can move larger loads, which means more power but also greater energy consumption, resulting in reduced autonomy time. 

According to Arellano-Muro, C. A. [4], the hexacopter configuration and its number of motors allow for better load distribution 

in its structure, as well as the transport of objects with greater mass compared to UAVs with smaller numbers of motors. 

 

Generally, the dynamic model of UAVs is studied by obtaining the Euler-Lagrange equations. Subsequently, under certain 

assumptions, the principle of separation of dynamics into subsystems is used for control purposes. Various solutions have been 

proposed to solve some of the problems associated with the control of UAVs, particularly hexacopters. For example, Rajappa, S. 

[21] proposes a different architecture to the traditional one, where the propellers are inclined and controlled using linearizing 

feedback. Durham, W. C. [10] studies the problem of minimization by assigning several controls for the generation of specific 

moments of the body axis in the UAV. Alaimo, A. [3] employs a linear quadratic regulator to tune a PD controller and a PID for 

height control tasks, which reduces the steady-state error to zero and stabilizes the hexacopter. Pose, C. D. [20] proposes an 

optimal control that minimizes the force exerted by the motors, which improves the maneuverability of the system by 
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considering different actuators restrictions. Falconi, G. P. [11] presents an adaptive backstepping control that tolerates different 

disturbances and considers a linear model for the actuators. Busarakum, S. [8] designs a controller with sliding modes on the 

dynamic model of a hexacopter for altitude control tasks, which is insensitive to external disturbances and uncertainties in the 

parameters. Artale, V. [5] approximates the mathematical model and control for a UAV using a neural network suitable for 

stabilization and trajectory tracking tasks. Ao Bai [7] discusses trajectory tracking with yaw angle control for a quadrotor UAV 

that contemplates non-modeled parametric and dynamic disturbances. The control proposal presented in [7] involves a robust 

method based on L2 gain and dissipation theory that demonstrates uniform ultimate error bounds. The authors decompose the 

dynamics of the UAV into subsystems to separately control position and height and provide simulation results to validate their 

approach. In contrast, Mohammad Javad Mahmoodabadi proposes a robust adaptive backstepping controller in [17] for 

stabilizing a UAV with highly nonlinear dynamics and strong coupling. By using the descending gradient method and sliding 

modes, the controller parameters are adjusted to improve the UAV's response to disturbances and uncertainties in the model. 

Later on, Ghulam E Mustafa Abro [1] presents a contribution where he uses an optimization algorithm to reduce both the error 

and energy consumption of a quadrotor UAV. He also presents the experimental results of his proposal. In his contribution, he 

designs an intelligent controller for trajectory following tasks. To obtain the nonlinear dynamics of the UAVs using the Newton 

Euler method, Abro proposes a state observer. This is necessary since the UAV is, by nature, an underactuated system. The 

proposed height control is designed using fuzzy-based sliding modes, while the position control is obtained using hyperbolic 

functions. The authors present the numerical validation of their proposal. In another contribution, Chengxing Lv [16] proposes 

an energy-based control for USVs using perturbation observers. This method optimizes the energy and improves the 

performance of USVs in trajectory-following tasks, even in the presence of unknown environmental perturbations. In the first 

contribution, an observer is designed to estimate disturbances, and the control based on the observed energy allows for 

exponential convergence of the error to zero. The author presents a comparative study of simulation results to validate their 

proposal. In another paper, Pengyuan Shao [23] applies a model based on the variation of linear parameters, along with a 

structural PID controller robustly penalized in its proportional part, for flapping wing UAVs. The proposal developed can 

capture the response of the original nonlinear model with lower error than the Jacobian method for linearization. The numerical 

results allow the author to establish conditions for the designed controller to maintain stable flights with satisfactory robustness 

and performance in practice. It is worth noting that the results reported in the literature by the authors only present simulation 

results using a continuous time-domain mathematical model. They do not consider the implementation of their control laws on a 

hexacopter. Furthermore, their primary motivation differs from providing robustness to the control system, which is an 

important objective in any task involving external environments that can be assigned to hexacopter-type UAVs. 

 

The article presents an experimentally validated robust linear control of discrete nature for linear systems subject to external 

disturbances. The controller has two terms linked to state feedback, one arbitrarily chosen and the other providing robustness to 

the system against disturbances. This controller is implemented on a hexacopter-type UAV, whose dynamics are divided into 

subsystems, linearized, and discretized around a fixed point, while still maintaining a centralized control system. The penalty of 

the controller parameters for the robust term could be solved in different ways. The main contributions of this work can be 

summarized as follows: 

• By employing exact linearization in the hexacopter dynamics, it is possible to implement a discrete robust 

linear controller in a centralized manner for each of the subsystems to control the position and altitude. 

• The implemented control law employs a discrete LQR controller in the first term, which penalizes a 

performance index to ensure stability in the optimal sense. At the same time, the second term guarantees 

asymptotic stability by defining the matrix P, a parameter of the robust control term, which gives a solution to 

the discrete-time Lyapunov equation used in its synthesis. 

• The implemented control law endows the hexacopter with robustness in both autonomous and non-

autonomous flights, thereby enabling the operator to perform complex maneuvers manually, thanks to the 

contribution of orientation control. 

 

The document is organized as follows: Section 1 introduces the topic covered in this work and outlines the related literature 

published previously. In Section 2, we apply the Newton-Euler method to derive the dynamic model of the hexacopter, which is 

divided into subsystems and discretized around a fixed point using the Euler derivative. This enables separate control over x, y, 

and z positions, as well as roll, pitch, and yaw angles. Section 3 reports the synthesis of the discrete robust linear control, 

considering external perturbations and uncertainties. Section 4 describes the experimental platform, while Section 5 presents the 

numerical and experimental results. Finally, Section 6 provides the conclusions. 
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2 Dynamic Model 
 

 

The hexacopter depicted in Figure 1 is a multi-rotor aircraft system that consists of six rotors. Traditionally, the mathematical 

model consists of two parts. The first part is defined by (x, y, z) and denotes the translational part, while the second part is 

defined by the East-North-Up (ENU) coordinates. In this work, the mathematical model of the multi-rotor aerial vehicle 

considered is proposed by Alaimo, A. [2], Arellano-Muro [4], and Moussid [18], and is as follows: 
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where Ix, Iy, Iz representing the inertia of the body, Jp defines the rotor-propeller inertia, m = 1.7118 kg is the mass of unmanned 

aerial vehicle (UAV),  4 2 5 1 6 3Ω ω ω ω ω ω ω= + + − − −
, with iω

 are the angular speeds of the motors i, and 
τ , θτ , ψτ  

are the torques that allow performing the swing-lift-turn movements defined below 

 

 
( )1 5 6 2τ cos30l f f f f = + − −

 

( )( )θ 3 4 5 1 2 6τ sin30l f f f f f f= − + − + −
                                (3) 

 
( )ψ 1 6 3 4 2 5τ ,c f f f f f f= + + − − −

 
 

where fi is described as 
2

i i if k ω= , ki=1 are positive constants, which refers to the scaling between the angular speed of the 

motor and the linear force produced, associated in this case with the thrust, c=0.5 N is a constant parameter which refers to the 

scaling factor of force against moment, in this case it is related to the drag, and l=267.5 mm is the center of mass length for each 

motor. 
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Figure 1. Coordenate frames in hexacopter. 

 

To write, system (1)-(2) in the standard nonlinear system representation, consider next variable change 1  x x= , 2x x= , 

3x y=
, 4x y=

, 5x z=
, 6x z=

, 7x =
,  8x =

, 9x =
, 10x =

, 11x =
 , 12x =

, the inputs 1u u= , 2 θτu = , 

3 τu =
, 4 τu =

, 5 Ωu =
. In this way and with the equations that describe the translational dynamics of the hexacopter 

defined by the equation (1) it is noted that the equation (2) can be expressed as follows: 

 1 2x x=
 

 

( ) ( ) ( ) ( ) ( )( )1 7 11 11 9 7
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sin sin cos sin cosu x x x x x
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=

 

 3 4x x=
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x
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− +
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 5 6x x=
 

( ) ( )( )1 9 7

6
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x g

m
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                                             (4) 
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Notice that, the above dynamical model can be written in subsystems z, ψ ,    x −  and  θy − . Therefore, these subsystems 

remain as: 

 

 

( ) ( )( )
5 6

1 9 7

6

cos cos

x x

z u x x
x g

m

=


= 
= −

  

 

( )
11 12

12 10 8 4

ψ
y x

z z

x x

I I l
x x x u

I I

=


= −
= +

  

( ) ( ) ( ) ( ) ( )( )

( )

1 2

1 7 11 11 9 7

2

7 8

8 10 12 8 5 2

sin sin cos sin cos
   θ 

y z p

x x x

x x

u x x x x x
x x

m

x x

I I J l
x x x x u u

I I I





=


+
− = =


=


−

= − +
                    (5) 

 

( ) ( ) ( ) ( ) ( )( )

( )

3 4

1 11 7 11 9 7

4

9 10

10 8 12 10 5 3

cos sin sin sin cos
       

px z

y y y

x x

u x x x x x
y x

m

x x

JI I l
x x x x u u

I I I







=


− +
− = =


=


− = + +


  

Proposing the controls 
'

2u , 
'

3u , 
'

4u  and 5u  as: 

 

 

( )
'

2 10 12 2

1y zx

x x

I II
u x x u

l I I

 −
 = − − −
 
   

( )'

3 8 12 3

1y x z

y y

I I I
u x x u

l I I

 −
= − + − 

 
                                            (6) 



Omar-Jacobo Santos-Sánchez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(3) 2024, 183-
204. 

188 

 

 

( )
'

4 10 8 4

y xz

z

I II
u x x u

l I

 −
 = − −
 
   

 

5

1

p

u
J

=

 

On the other hand, the 1u  control is proposed as follows: 
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m
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                                           (7) 

and substituting this expression in the equation (5), an exact system linearization is achieved by means of states feedback, 

obtaining the following form for each subsystem: 
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Next, by using Euler's method 

 

( )
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i
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h
+
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=

                                                (9) 

to obtain the discrete-time dynamics of subsystems described in (8). Thus, following discrete-time subsystems are attached. 

Subsystems z  and 
ψ

 are given by: 
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subsystem ( ) ( )θx k k−  discreetly is written as: 
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subsystem ( ) ( )y k k−  discreetly is written as: 
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Just notice that previous subsystems representation can be represented in the standard linear discrete-time representation, in the 

way García, O., Santos, O. [12] uses it: 
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and the subsystem ( )ψ k  in the form (11) is rewritten as: 
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in the subsystems ( ) ( )θx k k−  and y ( ) ( )k k−  some nonlinearities are evident. Due to this and the characteristics of the 

control to be implemented, a linearization of these subsystems is performed around the stable equilibrium, that is, at the origin. 

For example, in the subsystem ( ) ( )θx k k− , the variable 

 
( ) ( ) ( )1 2 11x k hx k x k+ = +

 
linearized at the origin, it remains as: 

 
( ) ( )1 11x k x k+ =

 

Thus, the representation in state space of the discrete-time subsystem ( ) ( )θx k k−  , linearized at the origin is: 
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and the corresponding linearization for the subsystem ( ) ( )y k k−  is: 
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On the other hand, the non-linear form of the subsystem ( ) ( )θx k k−  can be rewritten as: 
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Where    0,1,  , k N=  , with sampling time h. 

 

The controller presented in this document is based on the main idea that the subsystems are linear (using exact linearization or 

assumptions about the orientation angles), and then the control capacity is verified in the local sense. Theoretically, the 

synthesized controllers could be applied without restrictions on the initial conditions and stable points. However, in practice, this 

is not always possible due to the assumption that the models are linear. To validate this, an experimental study is conducted. 
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3 Linear Robust Control Design 
 

It is important to mention that the design of the control law presented here is based directly on Chen, Y. H. [9], and is applied to 

the linearized dynamics of a hexacopter. To the best of the authors' knowledge, this control law has been reported in the 

literature but has never been experimentally tested before. 

 

To this end, consider the discrete-time difference equation (11), with disturbances as: 

 

( ) ( ) ( ) ( ) ( )( )1 ,σ , ,x k Ax k Bu k Cv x k k k+ = + +
                            (16) 

 

with ( )0 0x k x= , where  : 0,1,2,k K =  , the state ( ) nx k R , the control ( ) mu k R , the disturbance 

( )( )σ pv k R  and the uncertainties ( )σ sk R . The matrices A, B and C are of appropriate dimensions. The value of 

mapping ( )σ   is unknown. Hereafter, for the system (16), next assumptions are fulfilled, see for example Chen, Y. H.[9]: 

 

Assumption 1. The pair ( ),A B  is stabilizable. That is, there is a constant gain matrix  
m nK R  , such that all eigenvalues of 

A A BK= +  are strictly within the unit circle. 

 

Assumption 2. The matrix B is of full rank: ( )rank B m= . 

 

Assumption 3. The mapping ( )v   is continuous. 

 

Assumption 4. There is a prescribed compact set Σ sR , such that ( )σ k    k. 

 

Assumption 5. There is a matrix D, such that: 

 

   C BD= . 

 

In addition, there is a constant 1γ 0 , such that for all 
nx R , σ Σ , k K , as mentioned by Khalil, H.K.[15]: 

 

( ) 1,σ, γ .v x k x
                                                   (17) 

 

The objective is to design a control law ( )u k   that is linear at ( )x k , such that the resulting solution of the closed-loop system 

is asymptotically stable. 

 

The control design is only based on the possible level of uncertainty (in this case Σ ). For the uncertain system (16), the 

following control scheme is proposed by Chen, Y. H. [9]. 

 

( ) ( ) ( )γu k Kx k B PAx k= −
                                           (18) 

 

where  0P    is the only solution of the Lyapunov equation for discrete-time linear systems 

 

0A PA P Q− + =
                                                   (19) 
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Note. The control scheme (18) consists of two parts: ( )Kx k   and ( ) γ  B PAx k− . The first to stabilize the nominal system, 

that is ( ) ( ) ( )1x k Ax k Bu k+ = + , while the second part is destined to offset the effect due to uncertainties. 

 

Theorem 1. Consider the uncertain discrete-time system (16). Assume that the above assumptions are fulfilled. The control 

scheme (18) makes the system asymptotically stable if γ  0   and 
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Considering for the nominal system ( ) ( ) ( )1x k Ax k Bu k+ = + , ΔV  has the form: 

 

 
   ΔV Ax Bu P Ax Bu x Px= + + −

 
 

and u Kx= , in this way, thereby, so: 

 

 
   Δ ,V Ax BKx P Ax BKx x Px= + + −

 

 ΔV x A  PAx x Px= −  

 
Δ   ,V x A PA P x = −   
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that satisfies the equation (19), therefore: 

 

 
Δ ,V x Qx= −

 
for the nominal system. 

 

Therefore ΔV  for the disturbed system (16) can be written as: 

 

 
ΔV x Qx= −

 

( ) ( )γ γB B PAx Dv P B B PAx Dv   + − + − +
                                 (21) 

 
( )2 γ .x A PB B PAx Dv+ − +

 
For the first term of the previous equation, Rayleigh's inequality can be applied, which states that: 
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min maxλ λ ,M x x Mx M x 
 

 

and is applicable for any real symmetric matrix. Therefore 

 

 
( ) 2

minλ .x Qx Q x−  −
 

Now, for the second term of (21), it has 

 

 
( ) ( )γ γB B PAx Dv P B B PAx Dv   − + − +

     

 
( ) 2λmax B PB B PAx Dv − +

 

 

( ) ( )
2

2 2 2 2

1 12
max

B PAx
B PB

D x B PADx




 

 
 
 + +   

 
( ) 2

2: η γ ,x=
 

where 

 

 
( ) ( )

2

2 max 1η γ : λ γ γB PB B PA D = +   
 

This reveals the negative contribution of the control law (18) on ΔV , allowing to define the asymptotic stability of the system 

(16). Analyzing the last term on the right side of the equation (21) for the equation (18), it turns out that: 

 

 
( )2   γ 2γ  x A PB B PAx Dv x A PBB PAx− + = −

 

 2  x A PBDv+  

 

2 2 2

12γ 2γB PA x B PADx − +
 

proposing the variables 
1    B PAx =  and 2 1ρ γ Dx= , the previous equation is rewritten as: 

 

2 2 1 2
1 1 2 1

2ρ ρ
2γρ 2ρ ρ 2γ ρ ,

2γ

 
− + = − + 

   

Now, the variables 
2ρΛ

2γ
=   and 1Π ρ=   are defined and it is known that ( )

2 2 20 Λ Π Λ 2ΠΛ Π − = − + , then: 
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2 20 Λ 2ΠΛ Π , − +

 

 
2 22ΠΛ Π Λ−   

and substituting the values of Λ  and Π  is obtained 

 

2

21 2 2
1

ρ ρ ρ
2γ 2 ρ ,

2γ 2γ

  
−   

     

 

2
2 1 2 2
1 2

ρ ρ γρ
2γ ρ 2 ,

2γ 2γ

 
− +  
   

 

2
2 2
1 1 2

ρ
2γρ 2ρ ρ

2γ
− + 

 

and substituting the values of 1ρ  and 2ρ   in the previous equation, it is rewritten as 

 

2 2 2
2 2 2 1

1

γ
2γ 2γ

2γ

D x
B PAx x B PADx− + 

 
 

 

( )
2 2 2

21
2

γ
: δ γ

2γ

D x
x=

 
where: 

 

( )
2 2

1
2

γ
δ γ : ,

2γ

D
=

 
the above, we have: 

 
( )( ) 2

min 2 2Δ λ η δ ,V Q x − − −
 

 
( ) ( )2 2λ η δ λmin minQ Q− − =

 

 

( )
2 2

2
1

max 1

γ
λ γ γ 0

2γ

D
B PB B PA D − + −  

 
then 

 
( ) ( )

2

12γλ 2γλ γ γ ]min maxQ B PB B PA D  +   

 

2 2

1γ | | .D+
 

 

This demonstrates that ΔV  is defined negatively in a region outside a sphere centered at the origin. That is, the asymptotic 

stability of the system (16) under the control action (18) is concluded.  

 

The term ( )Kx k  in the control law (18), which is applied to stabilize the nominal system, is obtained by means of a linear 

quadratic regulator and in this case, it minimizes a performance index J , given by: 

 

( ) ( ) ( )( )
1k

J x k Qx u k Ru k


=

= +
                                      (22) 

 

where the 
Q

 and R  matrices with appropriate dimensions are used to penalize the state's convergence speed and energy 

consumption respectively, mentioned by Kirk, D. E.[14] and Athans, M.[6]. 

 



Omar-Jacobo Santos-Sánchez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(3) 2024, 183-
204. 

195 

 

The following section presents the experimental results, the conditions, and circumstances under which the flight is performed 

with the control action (18). 

 

 

 

4 Experimental Platform 
 

 

The dynamics of the hexacopter has a movement of 6 degrees of freedom (DOF), three for angular orientation and three for 

position. The experimental platform used allows angular movement in roll, pitch, and yaw angles ( θ ,   and ψ ) and 

displacements along the x, y, z axes. The coordinated control of the six rotors ( ) ( )1   3   6 2   4    5f f f f f f+ + − + +   increase 

the desired z altitude, x motion is produced by changing ( ) ( )1   4    5     2   3    6f f f f f f+ + − + +  and y motion is produced by 

changing ( ) ( )2    5     4    6f f f f+ − + . 

 

The platform used for testing was built on the generic "S550" airframe, made of carbon fiber and featuring a 535mm wheelbase. 

A "Pixhawk 2.4.8" flight controller was mounted on this chassis, which is based on a 32-bit ARM Cortex M4 core with an FPU 

processor running at 168MHz, 256KB of RAM, and 2MB of flash memory. The flight controller includes an integrated inertial 

unit, which consists of two accelerometers, two 14-bit resolution magnetometers, a 16-bit gyroscope, and an MS5611-01ba 

barometer with 10cm resolution. This flight controller has five UART serial ports, three receiver inputs (RF, Spektrum DSM, 

Futaba S.BUS, and PPM Sum Signal), an I2C port, SPI, two CAN ports, and two ADC ports. The data obtained through 

telemetry and GPS during the experiments were stored in a micro-SD memory card on the Pixhawk, and later processed through 

a program developed in MATLAB, which allows for the creation of various graphs. Furthermore, it is comprised of the 

following components, which can be seen in Figure 2: 

 

 
Figure 2. Elements of the hexacopter-type experimental platform. 

 

1. Generic airframe model S550. 

2. 10 4.5  inch propellers, made of polymer.  

3. Brushless motors brand T-Motor of 880kV, with 435 g of thrust at 50%  acceleration. 

4. 40A ESC, opto type 

5. 16-channel 2.4GHz FrSky Taranis X7Q transmitter, with X8R receiver in s-bus mode. 

6. M8N SE100 RadioLink GPS Module 

7. LiPo batteries of 14.8v to 1550mAh, and 100c, connected in parallel. 

8. Pixhawk 2.4.8 Flight Controller, with FMU V2. 

 

The net mass of hexacopter is 1.7118 kg, which includes the elements presented in the previous list, except the transmitter. 

 

The custom firmware that includes the programming of both the rotational and translational dynamics, together with the control 

law (18), was programmed in the Windows 10  Professional environment, on the IDE Eclipse Juno Release for C/C++ with the 
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PX4 toolchain and loaded via micro-USB on Pixhawk 2.4.8  with Mission Planner 1.3.77 . Likewise, the calibration of the 

GPS, magnetometer, accelerometer, electronic speed controllers, and the binding of transmitter with receiver and calibration of 

channels on transmitter, was done with Mission Planner 1.3.77 . 

 

By programming custom firmware in C++ language on the Eclipse Juno IDE for the control law (18) that includes the dynamics 

of rotation and translation of the hexacopter, it is possible to store signals in the micro-SD memory of the Pixhawk. These 

signals include current, torque, voltage, and speed in the rotors, which are determined with the help of the ESCs, as well as the 

x, y, and z positions and angles of roll, pitch, and yaw, which are determined by the magnetometer, gyroscope, and GPS. This 

allows for the state variables 1x
, 2x

,..., 12x
 to be obtained and their respective error variables to be generated by subtracting 

the actual state from the desired state, which is determined by the parametric equations of the path to follow. The error variable 

is then used to calculate the control signals, which are converted into voltages for the hexacopter rotors using dynamic rotation 

and translation equations. The voltages calculated by the FC are sent to its outputs, which are connected to the different ESCs. 

On one end, the ESCs are connected to the battery through the battery eliminator circuit (BEC), and on the other end, they are 

connected to the rotors. The voltage demanded by the ESC, together with the signal from the FC, is translated into high-

frequency pulses and transmitted to the rotors through the output of each ESC, causing the rotors to turn at different speeds, 

which corrects their trajectory and closes the control loop. This can be seen in the schematic of Figure 3. 

 
Figure 3. Scheme of Closed-loop UAV hexacopter type and control system. 

 

It is worth mentioning that the maximum wind speed during the flight of the UAV, presented in Section 5, was measured using a 

XRCLIF-818 Portable Digital Anemometer. This anemometer has a range of 0 - 30m/s, a resolution of 0.1m/s, a threshold of 

0.1m/s, and an accuracy of   5% . 

 

 

5 Experimental Results 
 

This section presents the numerical and experimental results that validate the control law (18) described in Section 3 and its 

application to the dynamics of a hexacopter-type UAV for trajectory tracking. Initially, the numerical results obtained from 

simulations carried out in MATLAB, both on the command line and Simulink, are presented. The results presented in subsection 

5.1 provide a perspective on the considerations for the implementation and evaluation of the main proposal of this work, as well 

as a possible overview of the experimental results. Subsection 5.2 presents the experimental results obtained from the 

implementation of the control law (18), which includes stabilization and trajectory tracking tasks. 

 

5.1 Numerical results 

 

This subsection presents the results obtained from simulating the control law (18) on the dynamics of a hexacopter using 

MATLAB. It is worth noting that the results of this simulation, performed on both the MATLAB and Simulink command line, 

consist of a set of differential equations that establish the UAV's dynamics under the control action (18). These equations are 

solved using the ode8 (Dormand-Price) integration algorithm, with a fixed integration step of 
31 10−  and shape preservation in 

all integration blocks, since it is a discrete system. 
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Initially, the characteristics of the trajectory to be carried out, the matrices Q   and R  that penalize the control (18) for each 

subsystem in the hexacopter and the initial conditions for numerical validation are established. Subsequently, the graphic 

response of position, control and position error for each subsystem is presented, along with the trajectory tracking ( )x k , 

( )y k , ( )z k  and the description of each graph observed. 

 

For the numerical validation, a trajectory tracking task is proposed, where the sampling time is considered equal to that of the 

Pixhawk, 10h =  ms, with the initial conditions ( )0 0.0x = m, ( )0 0.0y = m, ( )0 3.0z = m, ( )ψ 0 0.0o= . The desired 

trajectory is defined by the parametric equations of a circumference of radius 4r = m, in the form: 

 

 
( ) ( )( )cos αdx k r k=

 

 
( ) ( )( )sin αdy k r k=

 
 

and ( ) 3.0d fz h = m, where ( )α 5.1566ok =  is the angle of advance every instant h in the tracking of the trajectory, which 

allows completing the circumference in a time of 69.8131  seconds. 

 

The control (18) for the subsystem z  is written as 

 

 
( ) ( ) ( )γ ,z z z z z z zu k K x k B P A x k= −

 
 

where the matrices ( )57.31,16.35zQ diag=  and 0.1413zR =  that minimize a performance index of the form (22) and 

γ 1.29512z =  strengthens the control against external disturbances. 

 

The numerical response of ( )z k , the control action (18) and the position error in ( )z k , with the penalty of the mentioned 

matrices, is observed in Figure 4. 

 

 

Figure 4. Altitude, error, and control signal at ( )z k . 
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For the subsystem ( )ψ k , the control law (18) is written as: 

 

 
( ) ( ) ( )4 ψ ψ ψ ψ ψ ψ ψγu k K x k B P A x k= −

 
 

where the matrices ( )ψ 29.31,68.65Q diag=  and 
ψ 1.0314R =  minimize a performance index of the form (22) and 

ψγ 11.93=  robustly penalizes the control. 

 

For ( ) ( )θx k k− , the control action (18) is: 

 

 
( ) ( ) ( )2 θ θ θ θ θ θ θγu k K x k B P A x k= −

 
 

where ( )θ 1.41,1.56,1.41,1.22Q diag= , θ 0.792R =   minimize a performance index of the form (22) and θγ 2.79=   

gives robustness to the control. 

 

 

Figure 5. Position, error, and control signal at ( )x k . 

 

The response of ( )x k , the control action and the error in ( )x k , is presented in Figure 5. 

 

For the subsystem ( ) ( )y k k− , the control (18) has the form: 

 

 
( ) ( ) ( )3 γ ,u k K x k B P A x k      = −

 
 

with design parameters ( )1.43,1.15,1.23,0.82Q diag = , 0.82R =  and γ 4.321 = , which define the response of the 

subsystem ( ) ( )y k k−  shown in Figure 6. 
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Figure 6. Position, error, and control signal at ( )y k . 

 

Finally, in Figure 7, the trajectory ( )x k , ( )y k ,  of the UAV is presented in the follow-up task. 

 

 

Figure 7. Trajectory tracking ( )x k , ( )y k , ( ).z k  ( ).z k  

 

The steady-state error observed in the previous graphs is mainly due to the nature of the control. In its simplest form, it is a PD 

controller. This error also depends on the state and control penalty in equation (18), in the design parameters Q, R, and γ . To 

reduce this error, an integral term can be included in its structure, which modifies the stability analysis presented in section 3. In 

Figures 5 and 6, smaller magnitude errors are observed than those shown in Figure 4 The reason for this behavior is associated 
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with the fact that the height control in Figure 4 represents a regulation task, where the reference does not change with time, and 

the steady-state error is evident. This is a defect of the linear nature and the PD form of the control law. In contrast, for x and 
y

, where the reference is a function of time, the error can be reduced along the trajectory. 

 

5.2 Experimental Results 

 

The experimental results presented in this document were carried out in an outdoor environment with the purpose of testing the 

control law (18) under uncertainties that present real magnitudes, which can change in an unpredictable way over time. The task 

assigned to this set of experiments was to track a circular trajectory, which was chosen because the parametric equations of this 

trajectory allow for intense interaction between the rotational and translational dynamics of the hexacopter. 

 

For the experiments presented graphically in this section, a sampling time   1  0h ms=  is considered, with the following initial 

conditions: ( )0 0.0x = m, ( )0 0.0y = m, ( )0 3.0z = m, ( )ψ 0 0.0= . With a maximum wind speed measured during the 

experiment of 5.9 /m s . And a desired trajectory that is defined by the parametric equations of the circumference, of radius 

   4r m= , as: 

 

 
( ) ( )( )cos αdx k r k=

 

 
( ) ( )( )sin αdy k r k=

 
 

and ( ) 3.0d fz hk =  m. Where 
( )α 5.1566ok =

 is the angle in degrees that the trajectory advances each instant h , which 

defines the task execution time in 69.8131  seconds. 

 

The control (18) for the subsystem z  is written as: 

 

 
( ) ( ) ( )γ ,z z z z z z zu k K x k B P A x k= −

 
 

Where 
0.1413zR =

, 
γ 38.9z = . 

 

For the subsystem 
( )ψ k

, the control law (18) is defined as: 

 

 
( ) ( ) ( )4 ψ ψ ψ ψ ψ ψ ψγu k K x k B P A x k= −

 
 

 

ψ

29.31 0

0 68.65
Q

 
=  
   

 

ψ 1.0314R =
 y ψγ 11.93=

. 

 

For from 
( ) ( )θx k k−

, the control action (18) is: 

 

 
( ) ( ) ( )2 θ θ θ θ θ θ θγu k K x k B P A x k= −
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1.41 0 0 0

0 1.56 0 0
,

0 0 1.41 0

0 0 0 1.22

Q

 
 
 =
 
 
   

 

θ 0.792R =
 y θγ 2.79=

. 

 

For the subsystem 
( ) ( )y k k−

, the control (18) has the form: 

 

 
( ) ( ) ( )3 θ θγ ,u k K x k B P A x k    = −

 
 

 

1.43 0 0 0

0 1.15 0 0
,

0 0 1.23 0

0 0 0 0.82

Q

 
 
 =
 
 
   

0.82R =  and γ 4.321 = . 

 

Figures 8, 9 and 10 are divided into three subfigures, the first one is related to position, the second one represents the control 

signal, and the third one shows the error signal. 

 

Figure 8 shows the position z  in the upper part, also defined as height, in which a tracking that is maintained in a region close 

to the reference is observed. The low magnitude oscillations are mainly due to the environmental conditions associated with 

wind currents. 

 

Figure 8. Altitude, error, and control signal at ( ).z k  
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In Figure 9 shows the displacement in x, where a tracking that is maintained around the reference is observed. This figure shows 

that about 40  seconds after starting the tracking, the air currents manage to remove the hexacopter from the reference in 

position x. 

 

Figure 9. Position, error, and control signal at ( ).x k  

 

Figure 10 shows the displacement in y, in which a follow-up is observed that remains in a region close to the reference during 40  

seconds. And the error changes over time due to the air currents that the UAV receives in different fronts. 

 

Figure 10. Position, error, and control signal at ( ).y k  

 

Figure 11 shows the tracking ,  , x y z  in three-dimensional space, where the effectiveness of the control (18) is observed even 

when wind currents from different directions are present, with maximum speeds measured in the experiment of 5.9  m/s 
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Figure 11. Trajectory tracking ( ) ( ) ( ), ,x k y k z k . 

 

 

6 Conclusion 
 

This paper presented experimental results of a robust discrete-time control scheme for performing hexacopter trajectory tracking 

tasks. It is worth noting that the performance index (22) is associated with both terms of the control law (18). The first term 

corresponds to a linear quadratic regulator (LQR), which is optimal in a local sense for each subsystem. The solution to the 

Riccati-type difference equation yields the matrix weight.  

 

The second term provides robustness for each hexacopter subsystem. The solution of the Lyapunov equation for discrete-time 

linear systems improves the robustness of this control term. The   parameter in this second term allows for arbitrary modification 

of the robustness of each subsystem in the face of possible disturbances associated with the tasks to be performed and the flight 

environment. In this way, allows the possibility of establishing robustness limits to disturbances that each subsystem can be 

subjected to without losing stability characteristics. 
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