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Abstract. Software Engineering is involved in all phases of 

the Software Development Life Cycle, implying a 

systematic and disciplined development process. Currently, 

there are optimization challenges within the phases and 

activities of Software Engineering, where a Genetic 

Programming (GP) approach can yield better results due to 

its individual representation. This Systematic Literature 

Review aims to analyze the current state of GP application 

in Software Engineering by identifying the phases and 

activities of software development where Genetic 

Programming has been applied and summarizing the 

advantages of using this technique. The results indicate that 

GP has been utilized in every phase of software 

development, predominantly in the construction phase. 

Moreover, Program Synthesis emerges as a promising area, 

significantly impacting new fields such as Genetic 

Improvement. 
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1 Introduction 

 
Industry 4.0 seeks to improve processes and products by incorporating new technologies, cloud computing, the 

Internet of Things, and Artificial Intelligence. Software Engineering, on the other hand, seeks to develop 

computer systems through a systematic, disciplined, and orderly process to obtain a quality product and reduce 

the number of defects. This implies that Software Engineering is present in all the life cycle phases of a software 

project (Boehm, 1976). 

 

Optimization is vital in this development process since it seeks to maximize the performance of software and 

minimize resource consumption. There are optimization problems within the phases and activities of Software 

Engineering that need to be solved since, during the construction of a project, several factors can be found that 

negatively influence its performance, production time, and reliability, among other aspects (Yanyan & Renzuo, 

2008). 

 

Genetic Programming (GP) (Koza, 1992) has been used in Software Engineering to represent code structures. 

It is reported that problems in the construction phase have been addressed with optimization algorithms (Robles-

Aguilar, 2021), specifically with GP for code refactoring (Chen, Zhang, & Zhao, 2009). However, Genetic 

Programming is not limited to the coding phase, as it has impacted activities such as Software reliability (Qi, 

Mao, Lei, Dai, & Wang, 2013), code repair (Rathore & Kumar, 2015), and defect prediction (Ernst & Gorton, 

2014), among others. Also, GP can produce more efficient programs than traditional programming methods 

since it focuses on code optimization. The nature of the representation of individuals in this approach allows it 
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to be used mainly in implementation or code construction. However, this research is based on the idea that it 

can be used in the other phases of software development. 

 

Therefore, this Systematic Literature Review aims to explore applications of Genetic Programming in the 

different phases of software development to present the current state of this optimization approach that allows 

software engineers to save resources in software projects. This research will allow software engineers to know 

optimization mechanisms that could be adjusted to the needs of each problem in different Software development 

activities. On the other hand, it will allow Artificial Intelligence researchers to know other GP application areas 

where improvements can be implemented to problems in the software area. 

 

This paper is organized as follows: Section 2 describes the background and related work. Section 3 details the 

method used to carry out this research work. Section 4 presents the results obtained. Finally, Section 5 draws 

conclusions and future work. 

 

2 Related Work 

 
Recent works have shown that Artificial Intelligence can bring benefits in each of the phases of software 

development, for example, in requirements analysis (Ernst, & Gorton, 2014), design (Wangoo, 2018), coding, 

and testing (Xie, 2013). It is reported that problems in the construction phase have been addressed with 

optimization algorithms (Robles-Aguilar et al., 2021), specifically with Genetic Programming for code 

refactoring (Chen, Zhang & Zhao, 2009). However, some literature reviews about GP were found in a manual 

search as related work described below. 

 

In (Espejo, Ventura, & Herrera, 2009), the authors reviewed the application of GP to classification, a task the 

most researched in machine learning and data mining. The authors showed the different ways in which this 

evolutionary algorithm can help in the construction of accurate and reliable classifiers.  

 

A review of the application of Genetic Programming in water resources engineering was found in Mehr et al. 

(2018), where the authors delve into its variants, such as multigene GP, linear GP, gene expression 

programming, and grammar-based GP. This review shows the benefits of Genetic programming in engineering 

and a wide range of applications in hydrological, hydraulic, and hydro climatological domains. 

 

Regarding Software engineering, in Afzal, & Torkar (2011), the authors report a systematic literature review 

on Software Engineering predictive modeling. This review covers 23 primary studies between 1995 and 2008. 

The review results show that symbolic regression using genetic programming has been applied in Software 

quality classification, Software cost/effort/size estimation, and Software fault prediction/software reliability 

growth modeling. 

 

This paper analyzes the predictive capability of search-based techniques for ascertaining four predominant 

software quality attributes, i.e., effort, defect proneness, maintainability, and change proneness. In a later review 

(Malhotra, Khanna & Raje, 2017), the authors systematically reviewed the application of search-based 

techniques for Software Engineering predictive modeling. They report that Genetic Programming was present 

in 39% of the studies that addressed effort estimation, but they found no studies where this technique is used in 

Maintainability Prediction or Change Prediction. 

 

Recently, a comprehensive review of the studies to improve the explainability or interpretability of machine 

learning models through GP (Mei et al., 2022) was identified. In this review, two groups related to explainable 

artificial intelligence by GP were generated. The first considers the interpretability, aiming to directly evolve 

more interpretable models by GP, On the other hand, the second focuses on post-hoc interpretability, which 

uses GP to explain other black-box machine learning models, or explain the models evolved by GP by simpler 

models such as linear models. This review shows the strong potential of GP for improving the interpretability 

of machine learning models and balancing the complex tradeoff between model accuracy and interpretability 

(Mei et al., 2022). 

 

Table 1 summarizes the objective of the search and the area of application. Additionally, Table 1 lists the 

number of studies selected and the coverage of years of each review. As can be seen in this section, reviews on 



Sánchez-García et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70. 

63 

 

the application of GP in other areas were found. Only one review in Software Engineering was found, however 

it does not cover all phases of Software development. It can also be observed that in Software Engineering, GP 

has been little explored compared to other metaheuristics. In summary, no Systematic Literature Review on the 

application of GP in Software Engineering was identified. For this reason, the main objective of this research 

is to describe the current state of the use of GP in each of the phases of the software development life cycle, 

emphasizing the benefits for (although not limited to) software engineers, software developers, and testers. 

 

Table 1. Related work summary. 

 

Ref Year Coverage Target Search Applied area Number of primary studies 

Espejo,  

Ventura 

& 

Herrera 

2009 1998 – 2008 
Genetic 

programming 
Machine learning 155 

Mehr et 

al. 
2018 1997 – 2018 

Genetic 

programming 

Water resources 

engineering 
150 

Afzal & 

Torkar 
2011 1995 – 2008 

Genetic 

programming 
Software estimation 23 

Malhotra, 

Khanna 

& Raje 

2017 1992 – 2015  
Search-based 

techniques 
Software estimation 78 

Mei et al. 2022 1995 – 2022 
Genetic 

programming 

Explainable 

artificial 

intelligence 

217 

 

3 Research Method 

 
The method used to carry out this systematic literature review is based on the guidelines proposed by 

Kitchenham & Charters (2007), described below. 

 

3.1 Resarch Questions 

 
The research questions that guided this systematic review and their motivations are shown in Table 2. 

 

Table 2. Research questions. 

 

Research question Motivation 

RQ1.- In which phases of software development 

have genetic programming been used? 

The purpose of this question is to know the phases 

of software development in which genetic 

programming has been used to identify promising 

areas of this technique or its variants 

RQ2.- In which activities of the software 

development phases have genetic programming 

been used? 

It is essential to identify the specific activities of 

each Software Engineering phase where genetic 

programming has been applied to promote 

improvements in software engineers 

RQ3.- What are the advantages of using genetic 

programming? 

It is important to know the benefits of applying 

genetic programming and why it is used in different 

Software Engineering activities 

 

 



Sánchez-García et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70. 

64 

 

3.2 Search strategy and data sources 

 
The terms used to search the primary studies are defined in Table 3. 

 

 

Table 3. Keywords and synonyms identified. 

 

Keyword Related terms 

Software engineering - 

Genetic programming GP 

 

Being an exploratory study, each phase of software development (such as requirements, design, coding, or 

testing) was not placed in the search string. In addition, the term “Software Engineering” was added, which 

implies a development process, instead of putting only the term “software” since studies referring to using 

software to test genetic programming in different areas could be included. The search string used is based on 

the search terms defined above and is made up as follows: 

 

“software engineering” AND “genetic programming” 

 

Table 4 shows the databases that were selected for the search of the primary studies and their website. 

 

Table 4. Data sources. 

 

Database Website 

IEEXplore https://ieeexplore.ieee.org/Xplore/home.jsp 

ScienceDirect https://www.sciencedirect.com/ 

ACM https://dl.acm.org/ 

SpringerLink https://link.springer.com/ 

 

3.3 Selection of primary studies 

 
The inclusion and exclusion criteria are described in Tables 5 and 6. These criteria are proposed for the selection 

of primary studies of this research. 

 

Table 5. Inclusion criteria. 

 

ID Description 

IC1 Studies with full access 

IC2 Studies published between 2017 and 2023 

IC3 Studies in the title or abstract allude to any of the phases or activities of software engineering 

IC4 Studies in the abstract indicate answering at least one research question 

 
Table 6. Exclusion criteria. 
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ID Description 

EC1 Studies in a language other than English 

EC2 Studies that are book chapters, presentations, abstracts, or technical reports 

EC3 Repeated or duplicated studies 

 

3.4 Selection procedure 

 
The primary study selection procedure consists of four stages. Figure 1 shows in detail the primary study 

selection criteria previously defined in section 3.3 that are applied in each stage. 

 

 
 

Figure 1. Primary study selection procedure. 

 

Table 7 shows in detail the results of each database during the four stages. The list of references for the 44 

primary studies selected can be found in "Appendix A: Primary Studies References." (2023). The template used 

to extract data from each primary study can be found in "Appendix B Data Extraction Template." (2023). The 

questions defined to evaluate the quality of primary studies can be found in "Appendix C Quality Assessment 

Questions." (2023).  

 

Table 7. Application of inclusion and exclusion criteria by stage. 

 

Stage IEEEXplore ACM SpringerLink ScienceDirect Total 

Initial search 1,934 1,545 139,851 560 143,890 

Stage 1 627 301 78,180 58 79,166 

Stage 2 13 196 374 46 629 

Stage 3 13 18 14 4 46 

Stage 4 13 13 14 4 44 

 

4 Results 

 
After applying the four selection stages, 44 primary studies were selected. Of these selected studies, 61% 

correspond to articles published in journals, while 39% are conference papers, as it is shown in Figure 2. Most 

of the studies belong to the source SpringerLink (31%), followed by ACM (30%), IEEE Xplore (30%), and 

ScienceDirect (9%). 
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Figure 2. Selected primary studies by publication type. 

 

The distribution of primary studies by year of publication was identified in Figure 3, where it can be seen that 

the majority of studies came from 2017 and 2021, and also, until March 2023, no study was selected with our 

selection criteria. In the following subsections, the most relevant information is extracted to answer each of the 

research questions.  

 

 
 

Figure 3. Selected primary studies by year. 

 

4.1 RQ1. In which phases of software development has genetic programming been 

used? 

 
As can be seen in Figure 4, the phase that has had the most applications of Genetic Programming is the 

construction phase, with 66% of the total selected studies. It was found that the tree structure used by Genetic 

Programming to represent its individuals (computer programs) is beneficial for the construction of software 

since it allows the creation of a new code from an existing code (Li et al., 2022); thus, removing branches from 

one tree to insert them into another (Langdon et al.,  2017), which promotes the improvement of both functional 

and non-functional properties (Sohn & Yoo, 2021), automatic code generation (Miller, 2020), as well as code 

reuse and restructuring (Krauss, 2017). 

 

Genetic Programming was found to be a tool that facilitates pattern identification (Huppe, Saied, & Sahraoui, 

2017) . This property allows us to identify code smells (Kessentini & Ouni, 2017), locate faults (Kim, Mun, 

Yoo & Kim, 2019), and patch generation (Cao, Liu, Shi, Chu, & Deng, 2021); the latter enables automatic 

program repair (Yuan & Banzhaf, 2020). On the other hand, the Testing phase is mentioned in 19% of the 
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articles. Wei et al. (2018) again point out the ability of genetic programming for pattern identification, which, 

according to their study, allows the identification of the worst-case scenario in the execution of software, as 

well as the detection of vulnerabilities and performance errors. Other authors propose that the application of 

genetic programming allows the automation of black box testing (Drusinsky, 2017) and the evaluation of 

graphical interfaces (Ines, Makram, Mabrouka, & Mourad, 2017).  

 

Regarding the Design phase, only 11% of the articles were found to mention it. It was found that genetic 

programming helps the automation of both prototype generation (Valencia-Ramírez et al., 2017) and the 

modeling of software product lines (Vescan, Pintea, Linsbauer, & Egyed, 2021). Finally, the Planning phase 

was found to be present in 2% of the articles and the Maintenance phase in 2%, indicating a lack of information 

on the areas of opportunity for genetic programming in these phases. 

 

 
 

Figure 4. Selected primary studies by phase. 

 

4.2 RQ2. In which activities of the software development phases have genetic 

programming been used? 

 
Twenty-nine papers that mention activities of software development phases involving the application of genetic 

programming were found. In the Planning phase, by applying genetic programming in the restructuring of plans 

and initializing the population of individuals with existing plans, we can reuse their information to generate 

new plans (Kinneer, Coker, Wang, Garlan, & Goues, 2018). 

 

In the Design phase, it was found that 67% of the items correspond to prototype generation. 33% of the articles 

refer to the modeling of Software Product Lines (SPL). This activity is achieved by automating the definition 

of basic elements and the way to combine them, to be subsequently composed and tested with real users and 

thus find the optimized compositions (Salem, 2017). The automatic generation of the generic models used by 

this activity is possible by utilizing an initial population of these and calculating the set of valid characteristics 

for each one to apply GP to them subsequently (Vescan, Pintea, Linsbauer, & Egyed, 2021).  

 

In the Construction phase, we identified that 32% of the items correspond to the activity of automatic program 

repair. This activity aims to generate error repairs without human intervention, without the need for special 

instrumentation or annotations in the source code (Sobania & Rothlauf, 2021). This application searches and 

generates modifications from an abstract syntax tree that can patch a bug in the underlying program and creates 

new program variants by mutation and crossover (Kinneer, Coker, Wang, Garlan, & Goues, 2018). A 32% of 

the articles mention the automatic coding of programs; for this activity, it is important to mention that one of 

the most relevant applications of genetic programming is the technique called program synthesis, which can 

automatize the coding of programs by automatically generating source code in a programming language, that 

maintains the constraints of a predefined specification (Sobania & Rothlauf, 2021). 
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It was determined that 31% of the articles corresponding to the identification of bugs in the software, which is 

achieved through the identification of recurrences (Yuan & Banzhaf, 2020) and sequence-by-sequence learning 

(Li, 2022). These properties are helpful in code smell identification (Kessentini & Ouni, 2017) and fault 

localization (Sohn, & Yoo, 2021). Finally, 5% of the articles mention that Genetic Programming supports code 

restructuring by identifying patterns within the code to optimize its fragments and reuse them to create new 

code (Krauss, 2017). 

 

In the testing phase, it was found that 67% of the articles talk about black box testing, in which the application 

of GP is helpful in discovering local variables, actions performed on output variables, counting loops, and while 

loops due to the ability of GP to discover a functional relationship between data features and to group them into 

categories (Drusinsky, 2017). Also, the application of Genetic Programming in black box testing is proper when 

identifying worst-case execution and vulnerabilities in programs by identifying patterns in data inputs (Wei, 

Chen, Feng, Ferles & Dillig, 2018). 33% of the articles allude to interface evaluation, where genetic 

programming allows the automatic generation of rules to evaluate their quality, providing previously defined 

quality metrics, context criteria, and a list of possible types of problems, taking advantage of the principle of 

Genetic Programming where individuals adapt to their environment through mutation and crossover (Ines, 

Makram, Mabrouka, & Mourad, 2017). 

 

4.3 RQ3. What are the advantages of using genetic programming? 

 
Based on the answers to questions RQ1 and RQ2, it was found that there are numerous advantages thanks to 

the mutation and crossover operators, the principles of biological evolution on which genetic programming is 

based, and its ability to identify patterns in the different phases and activities of software development. 

 

Genetic programming in the Planning phase serves to restructure plans, reducing the costs of operating in 

complex environments of change and uncertainty by adapting autonomously to change in the pursuit of its 

quality objectives (Kinneer, Coker, Wang, Garlan, & Goues, 2018). In the Design phase, prototyping (Salem, 

2017) and modeling of software product lines (Vescan, Pintea, Linsbauer, & Egyed, 2021) can be automated 

using genetic programming, significantly improving the performance of these activities (Valencia-Ramírez et 

al., 2017). In the Construction phase, the application of this technique helps in the automation of different 

activities such as program repair (Sobania, & Rothlauf, 2021), bug identification (Yuan, & Banzhaf, 2020), and 

code restructuring (Krauss, 2017). Obtaining the improvement of functional and non-functional properties, such 

as code size, execution time, or memory consumption (Sohn, & Yoo, 2021). Furthermore, genetic programming 

is a technique that has excellent flexibility since it offers the possibility of handling a large number of 

individuals and of reworking the solutions obtained by relaunching a new evolution from one or more 

previously obtained solutions so that, with its application, the activity of evaluating graphical interfaces can be 

automated and thus optimize the process involved  (Sohn, & Yoo, 2021). All this together helps a software 

engineer to do his job efficiently since it eliminates the manual part of his work and increases the quality of his 

results.  

 

5 Conclusions and Future Work 

 
A systematic Literature Review was carried out where the selection process of primary studies was divided into 

four phases where; after applying the previously defined selection criteria, 41 primary studies were obtained as 

a result. 

 

Although Genetic Programming is an Artificial Intelligence technique that uses concepts of biological evolution 

to create and optimize programs, the studies analyzed showed that it had been used in the different stages of 

software development, although the implementation phase predominates. The analysis of the studies also 

allowed us to identify the advantages of its application in both functional and non-functional properties, in 

addition to the usefulness for a software engineer to use this technique as an automation tool in the different 

processes that exist at the time of software development. As a result, the objectives of the research work were 

achieved.  
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It was found that Genetic Programming has a great relationship with well-established areas, for example, 

Program synthesis, which substantially impacts new fields such as Genetic Improvement. This field of science 

uses Genetic Programming to correct bugs in software and improve functional and non-functional software 

requirements (Krauss, 2017). Therefore, in future work, we will seek to identify the applications and advantages 

of these areas. 

 

References 

 
"Appendix A: Primary Studies References." (2023). Retrieved November 13, 2023, from 

https://drive.google.com/file/d/1XNJYEli1rDjU3SWQeYYBRYJy2aT67XOP/view?usp=drive_link 

"Appendix B Data Extraction Template." (2023). Retrieved November 13, 2023, from 

https://docs.google.com/document/d/1JQ4x7up_ZlkXBol26z500ff-wK4DlH14IWh274JBJp8/edit?usp=sharing 

"Appendix C Quality Assessment Questions." (2023). Retrieved November 13, 2023, from 

https://drive.google.com/file/d/1oXzxAj8LgK0tIfyG6kamhQHlWOOHfLUT/view?usp=drive_link 

Afzal, W., & Torkar, R. (2011). On the Application of Genetic Programming for Software Engineering Predictive Modeling: 

A Systematic Review. Expert Systems with Applications, 38(9), 11984-11997. 

Boehm (1976). Software Engineering. IEEE Transactions on Computers, 25(12), 1226-124. 

Cao, H., Liu, F., Shi, J., Chu, Y., & Deng, M. (2021). Automated Repair of Java Programs with Random Search via Code 

Similarity. In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C) 

(pp. 470 - 477). IEEE. 

Chen, H., Zhang, Y., & Zhao, J. (2009). Improved Genetic Programming Model for Software Reliability. In 2009 

International Asia Symposium on Intelligent Interaction and Affective Computing (pp. 164–167). IEEE. 

Drusinsky, D. (2017). Reverse Engineering Concurrent UML State Machines Using Black Box Testing and Genetic 

Programming. Innovations in Systems and Software Engineering, 13, 117-128. 

Ernst, N. A., & Gorton, I. (2014). Using AI to Model Quality Attribute Tradeoffs. In 2014 IEEE 1st International Workshop 

on Artificial Intelligence for Requirements Engineering (AIRE) (pp. 51–52). IEEE. 

Espejo, P. G., Ventura, S., & Herrera, F. (2009). A Survey on the Application of Genetic Programming to Classification. 

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(2), 121-144. 

Huppe, S., Saied, M. A., & Sahraoui, H. (2017). Mining Complex Temporal API Usage Patterns: An Evolutionary 

Approach. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) (pp. 274–

276). IEEE. 

Ines, G., Makram, S., Mabrouka, C., & Mourad, A. (2017). Evaluation of Mobile Interfaces as an Optimization Problem. 

Procedia Computer Science, 112, 235-248. 

Kessentini, M., & Ouni, A. (2017). Detecting Android Smells Using Multi-Objective Genetic Programming. In 2017 

IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft) (pp. 122–132). 

IEEE. 

Kim, Y., Mun, S., Yoo, S., & Kim, M. (2019). Precise Learn-to-Rank Fault Localization Using Dynamic and Static Features 

of Target Programs. ACM Transactions on Software Engineering and Methodology, 28, 1–34. 

Kinneer, C., Coker, Z., Wang, J., Garlan, D., & Goues, C. L. (2018). Managing Uncertainty in Self-Adaptive Systems with 

Plan Reuse and Stochastic Search. In Proceedings of the 13th International Conference on Software Engineering for 

Adaptive and Self-Managing Systems (pp. 40-50). 

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Software Engineering. 

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection (1st ed.). MIT 

Press. 



Sánchez-García et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70. 

70 

 

Krauss, O. (2017). Genetic Improvement in Code Interpreters and Compilers. In Proceedings Companion of the 2017 ACM 

SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity (pp. 

7–9). ACM. 

Langdon, W. B., Lam, B. Y. H., Modat, M., Petke, J., & Harman, M. (2017). Genetic Improvement of GPU Software. 

Genetic Programming and Evolvable Machines, 18, 5-44. 

Li, D., Wong, W. E., Jian, M., Geng, Y., & Chau, M. (2022). Improving Search-Based Automatic Program Repair with 

Neural Machine Translation. IEEE Access, 10, 51167-51175. 

Malhotra, R., Khanna, M., & Raje, R. R. (2017). On the Application of Search-Based Techniques for Software Engineering 

Predictive Modeling: A Systematic Review and Future Directions. Swarm and Evolutionary Computation, 32, 85-109. 

Mehr, A. D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M., & Yaseen, Z. M. (2018). Genetic Programming in Water 

Resources Engineering: A State-of-the-Art Review. Journal of Hydrology, 566, 643-667. 

Mei, Y., Chen, Q., Lensen, A., Xue, B., & Zhang, M. (2022). Explainable Artificial Intelligence by Genetic Programming: 

A Survey. IEEE Transactions on Evolutionary Computation, 27(3), 621-641, https://doi.org/10.1109/TEVC.2022.3225509 

Miller, J. F. (2020). Cartesian Genetic Programming: Its Status and Future. Genetic Programming and Evolvable Machines, 

21, 129-168. 

Qi, Y., Mao, X., Lei, Y., Dai, Z., & Wang, C. (2013). Does Genetic Programming Work Well on Automated Program 

Repair? In 2013 International Conference on Computational and Information Sciences (pp. 1875-1878). IEEE. 

Rathore, S. S., & Kumar, S. (2015). Comparative Analysis of Neural Network and Genetic Programming for the Number 

of Software Faults Prediction. In 2015 National Conference on Recent Advances in Electronics & Computer Engineering 

(RAECE) (pp. 328–332). IEEE. 

Robles-Aguilar, A., Ocharan-Hernandez, J. O., Sanchez-Garcia, A. J., & Limon, X. (2021). Software Design and Artificial 

Intelligence: A Systematic Mapping Study. In 2021 9th International Conference in Software Engineering Research and 

Innovation (CONISOFT) (pp. 132–141). IEEE. 

Salem, P. (2017). User Interface Optimization Using Genetic Programming with an Application to Landing Pages. 

Proceedings of the ACM on Human-Computer Interaction, 1, 1-17. 

Sobania, D., & Rothlauf, F. (2021). A Generalizability Measure for Program Synthesis with Genetic Programming. In 

Proceedings of the Genetic and Evolutionary Computation Conference (pp. 822-829). 

Sohn, J., & Yoo, S. (2021). Empirical Evaluation of Fault Localisation Using Code and Change Metrics. IEEE Transactions 

on Software Engineering, 47, 1605-1625. 

Valencia-Ramírez, J. M., Graff, M., Escalante, H. J., & Cerda-Jacobo, J. (2017). An Iterative Genetic Programming 

Approach to Prototype Generation. Genetic Programming and Evolvable Machines, 18, 123-147. 

Vescan, A., Pintea, A., Linsbauer, L., & Egyed, A. (2021). Genetic Programming for Feature Model Synthesis: A 

Replication Study. Empirical Software Engineering, 26, 1-29. 

Wangoo, D. P. (2018). Artificial Intelligence Techniques in Software Engineering for Automated Software Reuse and 

Design. In 2018 4th International Conference on Computing Communication and Automation (ICCCA) (pp. 1–4). IEEE. 

Wei, J., Chen, J., Feng, Y., Ferles, K., & Dillig, I. (2018). Singularity: Pattern Fuzzing for Worst Case Complexity. In 

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the 

Foundations of Software Engineering (pp. 213 - 223). ACM. 

Xie, T. (2013). The Synergy of Human and Artificial Intelligence in Software Engineering. In 2013 2nd International 

Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE) (pp. 4–6). IEEE. 

Yanyan, Z., & Renzuo, X. (2008). The Basic Research of Human Factor Analysis Based on Knowledge in Software 

Engineering. In 2008 International Conference on Computer Science and Software Engineering (pp. 1302–1305). IEEE. 

Yuan, Y., & Banzhaf, W. (2020). Toward Better Evolutionary Program Repair. ACM Transactions on Software Engineering 

and Methodology, 29, 1-53. 


