

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 14(3), Sep-Dec 2023, 61-70. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2023.v14i3.408

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Genetic Programming in Software Engineering: A Systematic Literature Review

Ángel Juan Sánchez-García*, Leslie Loaiza-Meseguer, Jorge Octavio Ocharán-Hernández and Juan Carlos

Pérez-Arriaga

1Facultad de Estadística e Informática, UV. Xalapa, Veracruz México.

leslielm63@gmail.com, {angesanchez, jocharan, juaperez}@uv.mx

Abstract. Software Engineering is involved in all phases of

the Software Development Life Cycle, implying a

systematic and disciplined development process. Currently,

there are optimization challenges within the phases and

activities of Software Engineering, where a Genetic

Programming (GP) approach can yield better results due to

its individual representation. This Systematic Literature

Review aims to analyze the current state of GP application

in Software Engineering by identifying the phases and

activities of software development where Genetic

Programming has been applied and summarizing the

advantages of using this technique. The results indicate that

GP has been utilized in every phase of software

development, predominantly in the construction phase.

Moreover, Program Synthesis emerges as a promising area,

significantly impacting new fields such as Genetic

Improvement.

Keywords: Genetic programming ·Software Engineering ·

Systematic Literatura Review · Optimization

 Article Info
Received 11 Sep, 2023

Accepted 11 Dec, 2023

1 Introduction

Industry 4.0 seeks to improve processes and products by incorporating new technologies, cloud computing, the

Internet of Things, and Artificial Intelligence. Software Engineering, on the other hand, seeks to develop

computer systems through a systematic, disciplined, and orderly process to obtain a quality product and reduce

the number of defects. This implies that Software Engineering is present in all the life cycle phases of a software

project (Boehm, 1976).

Optimization is vital in this development process since it seeks to maximize the performance of software and

minimize resource consumption. There are optimization problems within the phases and activities of Software

Engineering that need to be solved since, during the construction of a project, several factors can be found that

negatively influence its performance, production time, and reliability, among other aspects (Yanyan & Renzuo,

2008).

Genetic Programming (GP) (Koza, 1992) has been used in Software Engineering to represent code structures.

It is reported that problems in the construction phase have been addressed with optimization algorithms (Robles-

Aguilar, 2021), specifically with GP for code refactoring (Chen, Zhang, & Zhao, 2009). However, Genetic

Programming is not limited to the coding phase, as it has impacted activities such as Software reliability (Qi,

Mao, Lei, Dai, & Wang, 2013), code repair (Rathore & Kumar, 2015), and defect prediction (Ernst & Gorton,

2014), among others. Also, GP can produce more efficient programs than traditional programming methods

since it focuses on code optimization. The nature of the representation of individuals in this approach allows it

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

62

to be used mainly in implementation or code construction. However, this research is based on the idea that it

can be used in the other phases of software development.

Therefore, this Systematic Literature Review aims to explore applications of Genetic Programming in the

different phases of software development to present the current state of this optimization approach that allows

software engineers to save resources in software projects. This research will allow software engineers to know

optimization mechanisms that could be adjusted to the needs of each problem in different Software development

activities. On the other hand, it will allow Artificial Intelligence researchers to know other GP application areas

where improvements can be implemented to problems in the software area.

This paper is organized as follows: Section 2 describes the background and related work. Section 3 details the

method used to carry out this research work. Section 4 presents the results obtained. Finally, Section 5 draws

conclusions and future work.

2 Related Work

Recent works have shown that Artificial Intelligence can bring benefits in each of the phases of software

development, for example, in requirements analysis (Ernst, & Gorton, 2014), design (Wangoo, 2018), coding,

and testing (Xie, 2013). It is reported that problems in the construction phase have been addressed with

optimization algorithms (Robles-Aguilar et al., 2021), specifically with Genetic Programming for code

refactoring (Chen, Zhang & Zhao, 2009). However, some literature reviews about GP were found in a manual

search as related work described below.

In (Espejo, Ventura, & Herrera, 2009), the authors reviewed the application of GP to classification, a task the

most researched in machine learning and data mining. The authors showed the different ways in which this

evolutionary algorithm can help in the construction of accurate and reliable classifiers.

A review of the application of Genetic Programming in water resources engineering was found in Mehr et al.

(2018), where the authors delve into its variants, such as multigene GP, linear GP, gene expression

programming, and grammar-based GP. This review shows the benefits of Genetic programming in engineering

and a wide range of applications in hydrological, hydraulic, and hydro climatological domains.

Regarding Software engineering, in Afzal, & Torkar (2011), the authors report a systematic literature review

on Software Engineering predictive modeling. This review covers 23 primary studies between 1995 and 2008.

The review results show that symbolic regression using genetic programming has been applied in Software

quality classification, Software cost/effort/size estimation, and Software fault prediction/software reliability

growth modeling.

This paper analyzes the predictive capability of search-based techniques for ascertaining four predominant

software quality attributes, i.e., effort, defect proneness, maintainability, and change proneness. In a later review

(Malhotra, Khanna & Raje, 2017), the authors systematically reviewed the application of search-based

techniques for Software Engineering predictive modeling. They report that Genetic Programming was present

in 39% of the studies that addressed effort estimation, but they found no studies where this technique is used in

Maintainability Prediction or Change Prediction.

Recently, a comprehensive review of the studies to improve the explainability or interpretability of machine

learning models through GP (Mei et al., 2022) was identified. In this review, two groups related to explainable

artificial intelligence by GP were generated. The first considers the interpretability, aiming to directly evolve

more interpretable models by GP, On the other hand, the second focuses on post-hoc interpretability, which

uses GP to explain other black-box machine learning models, or explain the models evolved by GP by simpler

models such as linear models. This review shows the strong potential of GP for improving the interpretability

of machine learning models and balancing the complex tradeoff between model accuracy and interpretability

(Mei et al., 2022).

Table 1 summarizes the objective of the search and the area of application. Additionally, Table 1 lists the

number of studies selected and the coverage of years of each review. As can be seen in this section, reviews on

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

63

the application of GP in other areas were found. Only one review in Software Engineering was found, however

it does not cover all phases of Software development. It can also be observed that in Software Engineering, GP

has been little explored compared to other metaheuristics. In summary, no Systematic Literature Review on the

application of GP in Software Engineering was identified. For this reason, the main objective of this research

is to describe the current state of the use of GP in each of the phases of the software development life cycle,

emphasizing the benefits for (although not limited to) software engineers, software developers, and testers.

Table 1. Related work summary.

Ref Year Coverage Target Search Applied area Number of primary studies

Espejo,

Ventura

&

Herrera

2009 1998 – 2008
Genetic

programming
Machine learning 155

Mehr et

al.
2018 1997 – 2018

Genetic

programming

Water resources

engineering
150

Afzal &

Torkar
2011 1995 – 2008

Genetic

programming
Software estimation 23

Malhotra,

Khanna

& Raje

2017 1992 – 2015
Search-based

techniques
Software estimation 78

Mei et al. 2022 1995 – 2022
Genetic

programming

Explainable

artificial

intelligence

217

3 Research Method

The method used to carry out this systematic literature review is based on the guidelines proposed by

Kitchenham & Charters (2007), described below.

3.1 Resarch Questions

The research questions that guided this systematic review and their motivations are shown in Table 2.

Table 2. Research questions.

Research question Motivation

RQ1.- In which phases of software development

have genetic programming been used?

The purpose of this question is to know the phases

of software development in which genetic

programming has been used to identify promising

areas of this technique or its variants

RQ2.- In which activities of the software

development phases have genetic programming

been used?

It is essential to identify the specific activities of

each Software Engineering phase where genetic

programming has been applied to promote

improvements in software engineers

RQ3.- What are the advantages of using genetic

programming?

It is important to know the benefits of applying

genetic programming and why it is used in different

Software Engineering activities

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

64

3.2 Search strategy and data sources

The terms used to search the primary studies are defined in Table 3.

Table 3. Keywords and synonyms identified.

Keyword Related terms

Software engineering -

Genetic programming GP

Being an exploratory study, each phase of software development (such as requirements, design, coding, or

testing) was not placed in the search string. In addition, the term “Software Engineering” was added, which

implies a development process, instead of putting only the term “software” since studies referring to using

software to test genetic programming in different areas could be included. The search string used is based on

the search terms defined above and is made up as follows:

“software engineering” AND “genetic programming”

Table 4 shows the databases that were selected for the search of the primary studies and their website.

Table 4. Data sources.

Database Website

IEEXplore https://ieeexplore.ieee.org/Xplore/home.jsp

ScienceDirect https://www.sciencedirect.com/

ACM https://dl.acm.org/

SpringerLink https://link.springer.com/

3.3 Selection of primary studies

The inclusion and exclusion criteria are described in Tables 5 and 6. These criteria are proposed for the selection

of primary studies of this research.

Table 5. Inclusion criteria.

ID Description

IC1 Studies with full access

IC2 Studies published between 2017 and 2023

IC3 Studies in the title or abstract allude to any of the phases or activities of software engineering

IC4 Studies in the abstract indicate answering at least one research question

Table 6. Exclusion criteria.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

65

ID Description

EC1 Studies in a language other than English

EC2 Studies that are book chapters, presentations, abstracts, or technical reports

EC3 Repeated or duplicated studies

3.4 Selection procedure

The primary study selection procedure consists of four stages. Figure 1 shows in detail the primary study

selection criteria previously defined in section 3.3 that are applied in each stage.

Figure 1. Primary study selection procedure.

Table 7 shows in detail the results of each database during the four stages. The list of references for the 44

primary studies selected can be found in "Appendix A: Primary Studies References." (2023). The template used

to extract data from each primary study can be found in "Appendix B Data Extraction Template." (2023). The

questions defined to evaluate the quality of primary studies can be found in "Appendix C Quality Assessment

Questions." (2023).

Table 7. Application of inclusion and exclusion criteria by stage.

Stage IEEEXplore ACM SpringerLink ScienceDirect Total

Initial search 1,934 1,545 139,851 560 143,890

Stage 1 627 301 78,180 58 79,166

Stage 2 13 196 374 46 629

Stage 3 13 18 14 4 46

Stage 4 13 13 14 4 44

4 Results

After applying the four selection stages, 44 primary studies were selected. Of these selected studies, 61%

correspond to articles published in journals, while 39% are conference papers, as it is shown in Figure 2. Most

of the studies belong to the source SpringerLink (31%), followed by ACM (30%), IEEE Xplore (30%), and

ScienceDirect (9%).

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

66

Figure 2. Selected primary studies by publication type.

The distribution of primary studies by year of publication was identified in Figure 3, where it can be seen that

the majority of studies came from 2017 and 2021, and also, until March 2023, no study was selected with our

selection criteria. In the following subsections, the most relevant information is extracted to answer each of the

research questions.

Figure 3. Selected primary studies by year.

4.1 RQ1. In which phases of software development has genetic programming been

used?

As can be seen in Figure 4, the phase that has had the most applications of Genetic Programming is the

construction phase, with 66% of the total selected studies. It was found that the tree structure used by Genetic

Programming to represent its individuals (computer programs) is beneficial for the construction of software

since it allows the creation of a new code from an existing code (Li et al., 2022); thus, removing branches from

one tree to insert them into another (Langdon et al., 2017), which promotes the improvement of both functional

and non-functional properties (Sohn & Yoo, 2021), automatic code generation (Miller, 2020), as well as code

reuse and restructuring (Krauss, 2017).

Genetic Programming was found to be a tool that facilitates pattern identification (Huppe, Saied, & Sahraoui,

2017) . This property allows us to identify code smells (Kessentini & Ouni, 2017), locate faults (Kim, Mun,

Yoo & Kim, 2019), and patch generation (Cao, Liu, Shi, Chu, & Deng, 2021); the latter enables automatic

program repair (Yuan & Banzhaf, 2020). On the other hand, the Testing phase is mentioned in 19% of the

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

67

articles. Wei et al. (2018) again point out the ability of genetic programming for pattern identification, which,

according to their study, allows the identification of the worst-case scenario in the execution of software, as

well as the detection of vulnerabilities and performance errors. Other authors propose that the application of

genetic programming allows the automation of black box testing (Drusinsky, 2017) and the evaluation of

graphical interfaces (Ines, Makram, Mabrouka, & Mourad, 2017).

Regarding the Design phase, only 11% of the articles were found to mention it. It was found that genetic

programming helps the automation of both prototype generation (Valencia-Ramírez et al., 2017) and the

modeling of software product lines (Vescan, Pintea, Linsbauer, & Egyed, 2021). Finally, the Planning phase

was found to be present in 2% of the articles and the Maintenance phase in 2%, indicating a lack of information

on the areas of opportunity for genetic programming in these phases.

Figure 4. Selected primary studies by phase.

4.2 RQ2. In which activities of the software development phases have genetic

programming been used?

Twenty-nine papers that mention activities of software development phases involving the application of genetic

programming were found. In the Planning phase, by applying genetic programming in the restructuring of plans

and initializing the population of individuals with existing plans, we can reuse their information to generate

new plans (Kinneer, Coker, Wang, Garlan, & Goues, 2018).

In the Design phase, it was found that 67% of the items correspond to prototype generation. 33% of the articles

refer to the modeling of Software Product Lines (SPL). This activity is achieved by automating the definition

of basic elements and the way to combine them, to be subsequently composed and tested with real users and

thus find the optimized compositions (Salem, 2017). The automatic generation of the generic models used by

this activity is possible by utilizing an initial population of these and calculating the set of valid characteristics

for each one to apply GP to them subsequently (Vescan, Pintea, Linsbauer, & Egyed, 2021).

In the Construction phase, we identified that 32% of the items correspond to the activity of automatic program

repair. This activity aims to generate error repairs without human intervention, without the need for special

instrumentation or annotations in the source code (Sobania & Rothlauf, 2021). This application searches and

generates modifications from an abstract syntax tree that can patch a bug in the underlying program and creates

new program variants by mutation and crossover (Kinneer, Coker, Wang, Garlan, & Goues, 2018). A 32% of

the articles mention the automatic coding of programs; for this activity, it is important to mention that one of

the most relevant applications of genetic programming is the technique called program synthesis, which can

automatize the coding of programs by automatically generating source code in a programming language, that

maintains the constraints of a predefined specification (Sobania & Rothlauf, 2021).

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

68

It was determined that 31% of the articles corresponding to the identification of bugs in the software, which is

achieved through the identification of recurrences (Yuan & Banzhaf, 2020) and sequence-by-sequence learning

(Li, 2022). These properties are helpful in code smell identification (Kessentini & Ouni, 2017) and fault

localization (Sohn, & Yoo, 2021). Finally, 5% of the articles mention that Genetic Programming supports code

restructuring by identifying patterns within the code to optimize its fragments and reuse them to create new

code (Krauss, 2017).

In the testing phase, it was found that 67% of the articles talk about black box testing, in which the application

of GP is helpful in discovering local variables, actions performed on output variables, counting loops, and while

loops due to the ability of GP to discover a functional relationship between data features and to group them into

categories (Drusinsky, 2017). Also, the application of Genetic Programming in black box testing is proper when

identifying worst-case execution and vulnerabilities in programs by identifying patterns in data inputs (Wei,

Chen, Feng, Ferles & Dillig, 2018). 33% of the articles allude to interface evaluation, where genetic

programming allows the automatic generation of rules to evaluate their quality, providing previously defined

quality metrics, context criteria, and a list of possible types of problems, taking advantage of the principle of

Genetic Programming where individuals adapt to their environment through mutation and crossover (Ines,

Makram, Mabrouka, & Mourad, 2017).

4.3 RQ3. What are the advantages of using genetic programming?

Based on the answers to questions RQ1 and RQ2, it was found that there are numerous advantages thanks to

the mutation and crossover operators, the principles of biological evolution on which genetic programming is

based, and its ability to identify patterns in the different phases and activities of software development.

Genetic programming in the Planning phase serves to restructure plans, reducing the costs of operating in

complex environments of change and uncertainty by adapting autonomously to change in the pursuit of its

quality objectives (Kinneer, Coker, Wang, Garlan, & Goues, 2018). In the Design phase, prototyping (Salem,

2017) and modeling of software product lines (Vescan, Pintea, Linsbauer, & Egyed, 2021) can be automated

using genetic programming, significantly improving the performance of these activities (Valencia-Ramírez et

al., 2017). In the Construction phase, the application of this technique helps in the automation of different

activities such as program repair (Sobania, & Rothlauf, 2021), bug identification (Yuan, & Banzhaf, 2020), and

code restructuring (Krauss, 2017). Obtaining the improvement of functional and non-functional properties, such

as code size, execution time, or memory consumption (Sohn, & Yoo, 2021). Furthermore, genetic programming

is a technique that has excellent flexibility since it offers the possibility of handling a large number of

individuals and of reworking the solutions obtained by relaunching a new evolution from one or more

previously obtained solutions so that, with its application, the activity of evaluating graphical interfaces can be

automated and thus optimize the process involved (Sohn, & Yoo, 2021). All this together helps a software

engineer to do his job efficiently since it eliminates the manual part of his work and increases the quality of his

results.

5 Conclusions and Future Work

A systematic Literature Review was carried out where the selection process of primary studies was divided into

four phases where; after applying the previously defined selection criteria, 41 primary studies were obtained as

a result.

Although Genetic Programming is an Artificial Intelligence technique that uses concepts of biological evolution

to create and optimize programs, the studies analyzed showed that it had been used in the different stages of

software development, although the implementation phase predominates. The analysis of the studies also

allowed us to identify the advantages of its application in both functional and non-functional properties, in

addition to the usefulness for a software engineer to use this technique as an automation tool in the different

processes that exist at the time of software development. As a result, the objectives of the research work were

achieved.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

69

It was found that Genetic Programming has a great relationship with well-established areas, for example,

Program synthesis, which substantially impacts new fields such as Genetic Improvement. This field of science

uses Genetic Programming to correct bugs in software and improve functional and non-functional software

requirements (Krauss, 2017). Therefore, in future work, we will seek to identify the applications and advantages

of these areas.

References

"Appendix A: Primary Studies References." (2023). Retrieved November 13, 2023, from

https://drive.google.com/file/d/1XNJYEli1rDjU3SWQeYYBRYJy2aT67XOP/view?usp=drive_link

"Appendix B Data Extraction Template." (2023). Retrieved November 13, 2023, from

https://docs.google.com/document/d/1JQ4x7up_ZlkXBol26z500ff-wK4DlH14IWh274JBJp8/edit?usp=sharing

"Appendix C Quality Assessment Questions." (2023). Retrieved November 13, 2023, from

https://drive.google.com/file/d/1oXzxAj8LgK0tIfyG6kamhQHlWOOHfLUT/view?usp=drive_link

Afzal, W., & Torkar, R. (2011). On the Application of Genetic Programming for Software Engineering Predictive Modeling:

A Systematic Review. Expert Systems with Applications, 38(9), 11984-11997.

Boehm (1976). Software Engineering. IEEE Transactions on Computers, 25(12), 1226-124.

Cao, H., Liu, F., Shi, J., Chu, Y., & Deng, M. (2021). Automated Repair of Java Programs with Random Search via Code

Similarity. In 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C)

(pp. 470 - 477). IEEE.

Chen, H., Zhang, Y., & Zhao, J. (2009). Improved Genetic Programming Model for Software Reliability. In 2009

International Asia Symposium on Intelligent Interaction and Affective Computing (pp. 164–167). IEEE.

Drusinsky, D. (2017). Reverse Engineering Concurrent UML State Machines Using Black Box Testing and Genetic

Programming. Innovations in Systems and Software Engineering, 13, 117-128.

Ernst, N. A., & Gorton, I. (2014). Using AI to Model Quality Attribute Tradeoffs. In 2014 IEEE 1st International Workshop

on Artificial Intelligence for Requirements Engineering (AIRE) (pp. 51–52). IEEE.

Espejo, P. G., Ventura, S., & Herrera, F. (2009). A Survey on the Application of Genetic Programming to Classification.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(2), 121-144.

Huppe, S., Saied, M. A., & Sahraoui, H. (2017). Mining Complex Temporal API Usage Patterns: An Evolutionary

Approach. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) (pp. 274–

276). IEEE.

Ines, G., Makram, S., Mabrouka, C., & Mourad, A. (2017). Evaluation of Mobile Interfaces as an Optimization Problem.

Procedia Computer Science, 112, 235-248.

Kessentini, M., & Ouni, A. (2017). Detecting Android Smells Using Multi-Objective Genetic Programming. In 2017

IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft) (pp. 122–132).

IEEE.

Kim, Y., Mun, S., Yoo, S., & Kim, M. (2019). Precise Learn-to-Rank Fault Localization Using Dynamic and Static Features

of Target Programs. ACM Transactions on Software Engineering and Methodology, 28, 1–34.

Kinneer, C., Coker, Z., Wang, J., Garlan, D., & Goues, C. L. (2018). Managing Uncertainty in Self-Adaptive Systems with

Plan Reuse and Stochastic Search. In Proceedings of the 13th International Conference on Software Engineering for

Adaptive and Self-Managing Systems (pp. 40-50).

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature Reviews in Software Engineering.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection (1st ed.). MIT

Press.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 61-70.

70

Krauss, O. (2017). Genetic Improvement in Code Interpreters and Compilers. In Proceedings Companion of the 2017 ACM

SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity (pp.

7–9). ACM.

Langdon, W. B., Lam, B. Y. H., Modat, M., Petke, J., & Harman, M. (2017). Genetic Improvement of GPU Software.

Genetic Programming and Evolvable Machines, 18, 5-44.

Li, D., Wong, W. E., Jian, M., Geng, Y., & Chau, M. (2022). Improving Search-Based Automatic Program Repair with

Neural Machine Translation. IEEE Access, 10, 51167-51175.

Malhotra, R., Khanna, M., & Raje, R. R. (2017). On the Application of Search-Based Techniques for Software Engineering

Predictive Modeling: A Systematic Review and Future Directions. Swarm and Evolutionary Computation, 32, 85-109.

Mehr, A. D., Nourani, V., Kahya, E., Hrnjica, B., Sattar, A. M., & Yaseen, Z. M. (2018). Genetic Programming in Water

Resources Engineering: A State-of-the-Art Review. Journal of Hydrology, 566, 643-667.

Mei, Y., Chen, Q., Lensen, A., Xue, B., & Zhang, M. (2022). Explainable Artificial Intelligence by Genetic Programming:

A Survey. IEEE Transactions on Evolutionary Computation, 27(3), 621-641, https://doi.org/10.1109/TEVC.2022.3225509

Miller, J. F. (2020). Cartesian Genetic Programming: Its Status and Future. Genetic Programming and Evolvable Machines,

21, 129-168.

Qi, Y., Mao, X., Lei, Y., Dai, Z., & Wang, C. (2013). Does Genetic Programming Work Well on Automated Program

Repair? In 2013 International Conference on Computational and Information Sciences (pp. 1875-1878). IEEE.

Rathore, S. S., & Kumar, S. (2015). Comparative Analysis of Neural Network and Genetic Programming for the Number

of Software Faults Prediction. In 2015 National Conference on Recent Advances in Electronics & Computer Engineering

(RAECE) (pp. 328–332). IEEE.

Robles-Aguilar, A., Ocharan-Hernandez, J. O., Sanchez-Garcia, A. J., & Limon, X. (2021). Software Design and Artificial

Intelligence: A Systematic Mapping Study. In 2021 9th International Conference in Software Engineering Research and

Innovation (CONISOFT) (pp. 132–141). IEEE.

Salem, P. (2017). User Interface Optimization Using Genetic Programming with an Application to Landing Pages.

Proceedings of the ACM on Human-Computer Interaction, 1, 1-17.

Sobania, D., & Rothlauf, F. (2021). A Generalizability Measure for Program Synthesis with Genetic Programming. In

Proceedings of the Genetic and Evolutionary Computation Conference (pp. 822-829).

Sohn, J., & Yoo, S. (2021). Empirical Evaluation of Fault Localisation Using Code and Change Metrics. IEEE Transactions

on Software Engineering, 47, 1605-1625.

Valencia-Ramírez, J. M., Graff, M., Escalante, H. J., & Cerda-Jacobo, J. (2017). An Iterative Genetic Programming

Approach to Prototype Generation. Genetic Programming and Evolvable Machines, 18, 123-147.

Vescan, A., Pintea, A., Linsbauer, L., & Egyed, A. (2021). Genetic Programming for Feature Model Synthesis: A

Replication Study. Empirical Software Engineering, 26, 1-29.

Wangoo, D. P. (2018). Artificial Intelligence Techniques in Software Engineering for Automated Software Reuse and

Design. In 2018 4th International Conference on Computing Communication and Automation (ICCCA) (pp. 1–4). IEEE.

Wei, J., Chen, J., Feng, Y., Ferles, K., & Dillig, I. (2018). Singularity: Pattern Fuzzing for Worst Case Complexity. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (pp. 213 - 223). ACM.

Xie, T. (2013). The Synergy of Human and Artificial Intelligence in Software Engineering. In 2013 2nd International

Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE) (pp. 4–6). IEEE.

Yanyan, Z., & Renzuo, X. (2008). The Basic Research of Human Factor Analysis Based on Knowledge in Software

Engineering. In 2008 International Conference on Computer Science and Software Engineering (pp. 1302–1305). IEEE.

Yuan, Y., & Banzhaf, W. (2020). Toward Better Evolutionary Program Repair. ACM Transactions on Software Engineering

and Methodology, 29, 1-53.

