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Abstract. We show how properties of the sequence βi,j, which 

represents the product between two Fibonacci's numbers Fi   Fj, 

can be used for the computation of the Merrifield-Simmons index 

on bipolygonal graphs and trees.  
We show that the extreme values of the Merrifield-Simmons index 

on bipolygonal graphs are found in two consecutive columns of the 

table βi,j k=i+j=1,...,n. The minimum value in β3,k-3 and the 

maximum value in β4,k-4.  On the other hand we show that i(Tn ∪ 

{{vp, v}}) is minimum when v is a new leaf node, and its father vp 
was also a leaf node in Tn.  

Our methods does not require the explicit computation of the 

number of independent sets of the involved graphs. Instead, it is 
based on applying the edge and vertex division rules to decompose 

the initial graph.  
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1 Introduction 
 

The recognition of extremal topologies on graphs has been a significant study on the structural pattern recognition area [17]. 

Especially in graph theory, several works deal with the characterization of extremal graphs concerning Hosoya and Merrifield-

Simmons indices containing pentagonal and hexagonal cycles.  

 

 Merrifield and Simmons showed the correlation between the number of independent sets of G, denoted by i(G), and the boiling 

points of the molecular graph represented by G in [13]. This fact is one of the main reasons why the number of independent sets 

of a graph G, in mathematical chemistry, is called the Merrifield-Simmons index (M-S) of G. However, in graph theory, i(G) is 

called the Fibonacci number of G. The Fibonacci numbers and their properties have been useful in analyzing structural 

compounds in mathematical chemistry. 

 

The Merrifield-Simmons index is a significant topological index of the structural chemistry of the molecular graph G [16,17]. A 

topological index is a map from the set of chemical compounds represented by molecular graphs to the set of real numbers. 

Many topological indices are closely correlated with some physicochemical characteristics of the underlying compounds. The 

Merrield-Simmons index is a topological index whose mathematical properties appeared in some detail in [10]. The M-S and 

Hosoya indices are some of the most popular topological indices in chemistry.  

 

Hexagonal array graphs have been widely investigated. They represent a relevant area of interest in mathematical chemistry 

because they have been used to study the intrinsic properties of molecular graphs. Phenylene is any divalent aromatic radical 

obtained from a benzene molecule by removing two hydrogen atoms. Many of the polymers in which the basic building block is 

phenylene are called polyphenylene.  

 

A special class of graphs represented by two polygons joined by an edge is the basic graphs representing Polyphenylenes 

compounds. Unbranched polyphenylenes appear in the context of low-dimensional organic conductors, while their dendrimer-

like counterparts play an important role in synthesizing large graphene molecules [8]. 

 

The recognition of extremal topologies on graphs has been a significant study on the pattern structural recognition area [17]. 

Especially, in graph theory, several works deal with the characterization of extremal graphs with respect to Hosoya and 

Merrifield-Simmons indices for different topology graphs, such as trees, unicyclic graphs, and certain structures containing 
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pentagonal and hexagonal cycles [5,7,16,17,23,24]. For example, Ren et al. [14] determined the minimal Merrifield-Simmons 

index of double hexagonal chains. In [15], Gutman et al. characterized the tree with the maximal Merrifield-Simmons index 

among the trees with a given diameter. In [19], a survey about extremal graphs for Hosoya and Merrifield-Simmons indices 

considered different graph topologies. 

 

In the case of trees, it is known that the topology with a minimum number of independent sets corresponds to the path i(Pn) = 

Fn+2. Meanwhile, the topology with the maximum value for the number of independent sets correspond to the start: i(Sn) = 2n−1 

+1 [25]. In [22], the largest number of maximal independent sets that any tree Tn of order n can have is determined. This work 

also shows a linear time algorithm for the computation of the number of maximal independent sets for any input tree. 

 

Two of the works related to our analysis to determine extremal values for the M-S index on trees are the works of Li et al. [10] 

and Lv et al. [21]. In [10], the maximum value for i(T (n, k)), which corresponds to the tree of n vertices and diameter k, is 

determined. Meanwhile, in [21] Lv et al. shows how to determine the topology for the tree of n vertices with maximum degree k 

and which, at the same time, corresponds to the maximum value for the M-S index. In comparison to their methods of fixing the 

tree parameters, in our analysis we consider any input tree Tn of order n. As a matter of fact, the initial topology of Tn  will 

change, since a new leaf node v will be inserted to Tn. Therefore, a dynamic topology for the input tree should be considered. 

We determine the topology that must have Tn  {{vp, v}}) with vp V(Tn),v  V (Tn) that corresponds with the extremal values 

(maximum and minimum) of the M-S index on any tree Tn  {{vp, v}}). 

 

On the other hand, several works analyze product sequences among Fibonacci numbers. For example, Adegoke [1] derived 

infinite product identities involving Fibonacci and Lucas numbers. In [4], it is shown that the generating function of the 

Fibonacci sequence produces values that constitute all rational numbers; in [9] developed a generalization about two proven 

Fibonacci-Lucas identities. In [18], the main result is the obtention of identity by the m-th power of Fibonacci numbers in which 

the subscripts of the involved Fibonacci numbers are arbitrarily spaced as their dual identities.  

 

In [3], several results proved the convergence of the minimum and maximum higher-order recurrences for maximum and 

minimum Fibonacci values. At the same time, in [2], some properties of the m-sequences system were defined by recurrence 

relation using a matricial product. 

 

In this paper, we show how properties of the product between two Fibonacci's numbers and the application of the edge division 

rule can be used for the computation of extremal values of the Merrifield-Simmons index on a bipolygonal graph and dynamic 

trees. 

 

In the following section, we introduce some needed notations for this paper. In section the Fibonaccis products is proposed, 

while in sections four and five show the analysis for obtaining extremal values for the Merrifield-Simmons index on bipolygonal 

graphs and dynamic trees. The last section presents the conclusions. 

 

2 Preliminary concepts 
 

Let G=(V, E) be an undirected graph with vertices set V and set of edges E. G is assumed to be a simple graph with no loops or 

parallel edges. The neighborhood of x  V is the set N(x) = {y  V : xy  E}, and its closed neighborhood is N(x) {x} which 

is denoted by N[x]. The degree of a vertex x in a graph G, denoted by G(x), is |N(x)|. The degree of the graph G is (G) = 

max{G(x): x  V}.  

 

A path between two vertex v and w, denoted as Pvw or simply as Pn, is a sequence of the edges: v0v1, v1v2, …,vn-1vn such that 

v=v0,  vn=w, and vkvk+1  E for 0 k< n; the length of the path is n. A simple path is a path where v0, v1,…, vn-1, vn are all 

distinct. A cycle is a non-empty path such that the first and last vertices are identical, and a simple cycle is a cycle in which no 

vertex is repeated except that the first and last vertices are identical.  

 

A subset S  V is called independent if, for every u,v  S implies that uv  E. The corresponding counting problem on 

independent sets, denoted by i(G), consists of counting the number of independent sets of a graph G. To compute i(G) is a  #P-

complete problem for graphs G where (G) ≥ 3. Computation of i(G) remains #P-complete even if it is restricted to 3-regular 

graphs [6]. 
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Let G=(V, E) be a molecular graph. Denote by n(G, k) the number of ways in which k mutually independent vertices can be 

selected in G. By definition, n(G, 0) = 1 for all graphs, and n(G, 1) = |V(G)|. Furthermore, i(G) = ∑k≥0 n(G,k) is the Merrifield-

Simmons index of G, that is, exactly the number of independent sets of G. 

 

A polygon (also called a polygonal graph) is a simple cycle graph. Therefore, a cycle graph Cn of length n represents a polygon 

of n sides, and it forms a n-gon. The way that two k-gons are joined, via a common vertex or via a common edge defines 

different classes of polygonal chemical compounds. Two polygons that have an edge in common are called adjacent. 

 

A polygonal chain is a 2-connected simple graph G obtained by identifying a finite number of congruent regular polygons 

(called basic polygons) one by one such that each vertex of G has degree 2 or 3, and each basic polygon, except the first one and 

the last one, is adjacent to exactly two basic polygons. A polygonal array is a graph Pk,t obtained by identifying a finite number 

of t congruent polygons. When each polygon in Pk,t has the same number of k sides, then Pk,t becomes in a chain of t k-gons. 

 

In this work, we analyze the case of Pk,2, this is, a bipolygonal graph, where k will be the total number of vertices involved in 

both polygons. This class of bipolygonal graphs are the polygonal extremes of a chain of phenylenes or bypiridines chemical 

compounds. 

 

An acyclic graph is a graph that does not contain cycles. The connected acyclic graphs are called trees, and a connected graph is 

a graph where for any pair of vertices, there is a path connecting them. It is not difficult to infer that in a tree, there is a unique 

path connecting any two pairs of its vertices. We denote by Pn, Tn, Sn, and Kn to the path, tree, start graph, and complete graph, 

respectively, all containing n vertices. 

 

Some reduction rules have been useful in counting combinatorial objects on graphs. Particularly, the following rules are 

commonly used: 

 

1. Vertex reduction rule: let v  V(G), 

 

i(G) = i(G - v) + i(G - (N[v])) . (1) 

 

2. Edge division rule : let e= {x, y}  E(G), 

 

i(G) = i(G - e) - i(G - (N[x] ∪ N[y])) . (2) 

 

 

3 The product between Fibonacci Numbers with complementary indexes 
 

Let us denote the n-th Fibonacci number as Fn, with F0 = 0 ; F1 = 1 and Fn = Fn-1 + Fn-2. The strong relation between the number 

of independent sets of graph i(G)  and the Fibonacci numbers is widely known. For example, i(Pn) = Fn+2, i(Cn) = Fn+1 + Fn-1, 

where Pn and Cn are the path and the cycle of n vertices, respectively. Let us consider an isolated vertex as a linear path of length 

zero; therefore, i(P1) = F3 = 2. 

 

In [11,12], some properties about the sequence s,k = Fs  Fk-s were shown, for k >0, 1 ≤ s ≤ k-1. For example, the symmetrical 

behavior of the sequence  k,s at the position s > floor(k/2). In fact,  k, floor(k/2)-j =  k, floor(k/2) +j , if k is even, and k, floor(k/2) -j =  k, 

floor(k/2) j+1, if k is odd and for all j such that 1≤ j ≤ floor(k/2) -2. 

 

Also, the sequence k,s is increasing on the even indices of s, and it has a decreasing behavior on the odd indices of s. For 

example, k,2p < k,2(p+1)  for every p{1,2,..., floor(k/4) } , and all k. While, k,2p+1 >  t,2p+3 for every p { 0,1,..., floor(k/4) -1}  

and all k. 

 

In Table 1, we present some of the values of the sequence s,k. Notice that different relations can be inferred when we consider 

the values of the table arranged like Pascal's triangle. 
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Table 1. The product of two Fibonaccis with complementary indices 

n Fn   1,k 

Max 

2,k 

Min 

3,k 4,k 5,k 6,k 7,k 8,k 9,k 10,k 11,k 12,k 13,k 14,k   

1 1 0               

2 1  1 0              

3 2 1 1 0             

4 3 2 1 2 0            

5 5 3 2 2 3 0           

6 8 5 3 4 3 5 0          

7 13 8 5 6 6 5 8 0         

8 21 13 8 10 9 10 8 13 0        

9 34 21 13 16 15 15 16 13 21 0       

10 55 34 21 26 24 25 24 26 21 34 0      

11 89 55 34 42 39 40 40 39 42 34 55 0     

12 144 89 55 68 63 65 64 65 63 68 55 89 0    

13 233 144 89 110 102 105 104 104 105 102 110 89 144 0   

14 377 233 144 178 165 170 168 169 168 170 165 178 144 233 0  

 
 

 

Other relevant results from [12] is that 1,k=F1  Fk-1=Fk-1 is maximum for the series, while 2,k=F2  Fk-2=Fk-2 is minimum for the 

same series at the same row(k). 

 

Notice that the following extremal values in s,k  corresponds to 3,k=F3 Fk-3 = 2  Fk-3 for the maximum and 4,k=F_4  Fk-4 = 3  

Fk-4 for the minimum, maintaining the same row(k). 

 

Notice that the maximum F1 Fk-1 = Fk-1 for the row (k) of the table results to be the minimum F2  Fk-1 = Fk-1 for the row (k+1). 

Also, the difference between the maximum and minimum in row k is Fk-1 - Fk-2 = Fk-3. The fact that the extremal values of k,s 

are in the first two consecutive columns of Table 1, and the following extremal values are also in the following two next 

columns, it will have logical consequences on the topologies that represent the extremal values for the Merrifield-Simmons 

index on bipolygonal graphs.   

 

Those results show new properties for s,k that will be useful in our analysis. For example, in the following section, we show 

how to apply some of the properties of the serie s,k for determining extremal topologies for bipolygonal graphs. 

 

 

4 Bipolygonal Graphs 
 

Let Ci and Cj be two polygons with the respective number of vertices i and j. A special class of graphs is formed for joining Ci 

and Cj via an edge e={x,y}, with x  V(Ci) and y  V(Cj), see Figure 1. We call this class of connected graph via an edge cut a 

bipolygonal graph, and it will be denoted by Hi,j. Especially when the polygons Ci and Cj are hexagons, Hi,j is the primitive 

graph used to form chains of bipolygonal graph that represent the structure of phenylenes and bypiridines.  

 

 
C i C j 

X y 

 
Fig. 1. A Bipolygonal Graph 

 

 

 

Let us consider now the edge division rule: let e= {x, y}  E(G), then i(G) = i(G - e) - i(G - (N[x]  N[y])). We show the 

application of this edge division rule to count the Merrifield-Simmon index on phenylenes. 
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Proposition 1:  i(Hi,j) = Fi+1  Fj+1 + Fi+1  Fj-1 + Fi-1 Fj+1 

 

Proof. According to the edge division rule (see Figure 2):  

i(Hi,j)=i(Ci)  i(Cj)-i(Pi-3  Pj-3)= (Fi+1+Fi-1)  (Fj+1+Fj-1) -Fi-1  Fj-1 

=Fi+1Fj+1 + Fi+1Fj-1 +Fi-1Fj+1 + Fi-1Fj-1 - Fi-1Fj-1 

=Fi+1Fj+1+Fi+1Fj-1+Fi-1Fj+1.  

  

This result can be seen as  Fi+1  (Fj+1+Fj-1)+Fi-1  Fj+1 where (Fj+1+Fj-1)  represents the j-th Lucas Number.  

 

Let k = i +j, fixing k ≥ 6, we consider the different subgraphs formed by the variations: 3 ≤ i,j ≤ (k-3). We consider that Hi,j can 

be decomposed into all possible combinations of polygons Ci and Cj, keeping i+j as a constant.  

 

In Table 2, we show all possible combinations to conform Ci and Cj and fix in a constant the total number of vertices (in this 

case, 12 vertices). In the table, also we show how to compute their respective number of independent sets based on the above 

proposition. The following propositions demonstrate which combination of polygons provides the maximum and minimum 

independent sets for any k. 

 
C j 

C i 

x      y 
x 

C j 

C i 

y 

i = i - i 

 
 

Fig. 2. A Bipolygonal Graph division edge 

 

Theorem 1: The minimum i(Hi,j)=min { i(Hr,s): r+s= k,r,s ≥ 3} = i(H3,k-3) 

 

Proof: Let i+j=k, i=3, j=k-3 ,i(H3,k-3) = F3+1  Fk-3+1 + F3+1  F_k-3-1 + F3-1  Fk-3+1, due to the proposition 1. Therefore, i(H3,k-3) = 

F4 Fk-2 + F4 Fk-4 + F2 Fk-2  = F4  (Fk-2 + Fk-4) + F2  Fk-2. 

 

If we assume i>3, then  i(Hi,k-i)=Fi+1 (Fk-i+1 + Fk-i-1)+Fi-1  Fk-i+1. We have that, F2  Fk-2 < Fi-1  Fk-i+1,  i > 3, since F2  Fk-2 is 

the minimum in the series βs,k.  

 

On the other hand, F4  (Fk-2 + Fk-4) = F4  Lk-3  and Fi+1  (Fk-i+1 + Fk-i-1) = Fi+1  Lk-i, considering that i ≥3. Thus, F4  Lk-3<Fi+1  

Lk-i,  i > 3 because βs,k is increasing on the even indices of s and then F4  (Fk-2 + Fk-4) is the following minima value for any 

pair Fi+1  (Fk-i+1 + Fk-i-1), with i ≥ 3. In this case, the minimum value of F2  (Fk-2 + Fk-4) in the row (k) does not consider because 

it does not represent any bipolygonal decomposition. 

 

Theorem 2: The maximum i(Hi,j)=max { i(Hr,s): r+s= k,r,s ≥ 4 } = i(H4,k-4) 

 

Proof: Let i+j=k, i=4, j=k-4.  Due to the proposition 1, i(H4,k-4) = F4+1  Fk-4+1 + F4+1  Fk-4-1 + F4-1  Fk-4+1 =F5  Fk-3 + F5  Fk-5 

+ F3  Fk-3 =F5  (Fk-3 + Fk-5) + F3  Fk-3. If we assume i>4 then  i(Hi,k-i)=Fi+1 (Fk-i+1 + Fk-i-1)+Fi-1   Fk-i+1, due to the proposition 

1. We have that, F3  Fk-3 > Fi-1  Fk-i+1, since F3  Fk-3 is the following maximum value in the series βs,k without considering F1  

Fk-1, because the last value does not represent any bipolygonal decomposition.  

 

On the other hand, F5  (Fk-3 + Fk-5) = F5  Lk-4  and Fi+1  (Fk-i+1 + Fk-i-1) = Fi+1  Lk-i, considering i ≥ 4. Thus, F5  Lk-4>Fi+1  Lk-i, 

 i > 4, because βs,k is decreasing on the odd indices of s. Therefore,  H4,k-4 = F5  (Fk-3 + Fk-5) + F3  F9  is the following 

maximal value, without considering F3  (Fk-3 + Fk-5)  for any pair Fi+1  (Fk-i+1 + Fk-i-1), with i ≥ 4. 
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Table 2. Combinations of bipolygonal graphs with the same number of total vertices 

Polygonal Topology i j Fi+1Fj+1+Fi+1Fj-1+Fi-1Fj+1 I(G) 

 

 

 

6  

 

 

6 

     

 

     F7F7+F7F5+F5F7 

 

 

169+65+65=299 

 

 

 

5  

 

 

7 

       

      

     F6F8+F6F6+F4F8 

 

 

168+64+63=295 

 

 

 

4 

 

 

8 

       

      

     F5F9+F5F7+F3F9 

 

 

170+65+68=303 

 

 

 

3 

 

 

9 

      

 

     F4F10+F4F8+F2F10 

 

 

165+63+55=283 

 

In Table 2, we consider that the number of vertices k  for the bipolygonal graph is 12. We show that it is not required to do the 

explicit calculation of i(G). Instead, we need to know the values of the sequence βs,k. For the analyzed instance, the extremal 

values are identified when the greatest variation (entropy) between the sizes of the polygons is obtained. In this case, the 

minimum value corresponds to |Cj|-|Ci|= 6, and the maximum value is given when |Cj|-|Ci|= 4. 

 

When k=12, there are other different instances of polygonal chains, for example, a chain of 3 squares or a chain of  4 triangles. 

For those cases, different values for i(G) is obtained. For the chain of 3 squares, we have that i(G) = 287, and for a chain of 4 

triangles, i(G)= 209. However, in our study, we want to keep the structure of bipolygonal graphs.  

 

For bipolygonal graphs, we can build a series of values Hi,j for the Merrifield-Simmon index of the bipolygonal graph, where 

the first polygon has i vertices and the second j vertices. In this case, the serie behaves similarly to the serie βi,j from Table 1. 

In Table 3, we show the values of the serie Hi,j with his values ordered as in table 1, in the form of the triangle on the values of 

Hi,j. 

 

Table 3. The Merrifield-Simon Index for bipolygonal graphs with i+j total vertices 

k Min  Max        

8 H3,5 H4,4 H5,3      

9 H3,6 H4,5 H5,4 H6,3     

10 H3,7 H4,6 H5,5 H6,4 H7,3    

11 H3,8 H4,7 H5,6 H6,5 H7,4 H8,3   

12 H3,9 H4,8 H5,7 H6,6 H7,5 H8,4 H9,3  

13 H3,10 H4,9 H5,8 H6,7 H7,6 H8,5 H9,4 H10,3 

 
 

 

Table 3 has the same properties shown in Table 1. In this case, Hi,j will be an increasing series on the odd indices in i , and a 

decreasing series on the even indices in j. The extreme values in this series are found in the first two columns; the minimum 

value in H3, k-3 and the maximum value in H4, k-4. 
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5 Dynamic Trees 
 

Let T = (V, E) be a rooted tree at a vertex vr  V . We traverse T in postorder. Let Fi = {Ti},i = 1,...,n where Fi is a family of 

induced subgraphs, it is Ti = (Vi, Ei), Vi  V, Ei  E, and each Vi is built as Vi = {v1,... vi} of 

V .  We  associate  to  each  vertex  vi V  a  pair  (αi, βi)  with  αi  =  | I−vi (Ti)| , which means that αi is the number of subsets 

in I(Ti) where vi does not appear. Meanwhile, βi = |Ivi (Ti)| conveys the number of subsets in I(Ti), where vi appears. Therefore, 

i(Ti) = αi + βi. 

 

The first pair (α1, β1) is (1, 1) since the induced subgraph T1 =  {v1}, I(T1) = {,{v1}} given that v1  is a pendant vertex of Tn. 

The new pair (αi+1, βi+1) is built from the previous one by a Fibonacci sequence, (αi+1, βi+1) = (αi + βi, αi). 

  

When a node vi  V (Tn) has more than one child, then the Hadamard product among the (αij , βij ),j = 1,...,k is formed in order 

to obtain (αi, βi). The following algorithm shows how to compute i(T) for a tree T . 

 

Let Tn  T (n) be a tree and let v  V (Tn) be a new vertex. We consider the problem of finding where to connect v to Tn, 

preserving the structure of the tree, and with the aim of obtaining extremal values for the Merrifield-Simmons index on i(Tn  

{{vp, v}}), with vp  V (Tn). 

 

We consider v V (Tn) as a new pendant node linked to Tn using the node vp  V (Tn) as the father node of v, forming the new 

tree T’ = (Tn  {{vp, v}}). Let us denote (Tn {{vp, v}}) as (Tn vp v). We analyze the number of independent sets of (Tn  vp 

v) by using the vertex reduction rule applied on the vertex v from Eq. 1. 

 

From Eq. (1), we see that i(Tn) is an invariant since its value is independent from the place of vp in Tn. Then, the extremal values 

for Eq. (1) are based only on the term i(Tn −{v, vp}) which becomes the first objective function to optimize. 

 

Since the node v to be added to Tn will be a leaf of T’, then the father vp of v is its unique neighbor, this is N(v) = {vp}. Let us 

consider the computation of the minimum value for i(Tn −{v, vp}). Notice that i(Tn, {vp}) = i(Tn −{v, vp}) since v  V (Tn). In 

order to minimize i(Tn, {vp}) we have that (Tn, {vp}) would be kept as an unique connected component, and it is achieved when 

vp is a leaf node of Tn. 

 

Let w  V (Tn) the father node of vp. We apply the vertex reduction rule on w for computing i(Tn − {vp}) = i(Tn − {v, vp}). The 

function i(Tn − N[w]) will get a minimum value when |N[w]| has a maximum value, therefore w must have a maximum degree 

in Tn, and w must have at least one pendant vertex as a child node. 

 

The order for holding the conditions for vp is relevant in order to be part of the minimum of i(Tn vp v). The main criterion is 

that vp must be a leaf node of Tn. Among the possible leave nodes, the father w of vp must have a maximal degree in Tn. Finally, 

if both criteria are hold by different nodes, then vp must have a maximal eccentricity with respect to other similar internal nodes 

of Tn. 

 

When a unique w Tn holds the above conditions (vp is a leaf node whose father w in Tn is the internal node with maximum 

degree in Tn, and vp has a maximal eccentricity in Tn) with respect to any other internal node in Tn, then the node vp where v was 

linked, in order to minimize i(Tn vp v), has been found in linear time.  

 

We deal with the case where Tn has a set of nodes W ={ v1,..., vr } holding similar conditions. Each vi   W  has a maximal 

degree in Tn and it is adjacent to leaf nodes of Tn. The other case is that Tn has only nodes holding to be maximal and without 

leaf nodes in Tn. In those cases, it is necessary to calculate i(Tn vi v) on each vi W . 

 

 

6 Conclusions 
 

We have shown how properties of the sequence βs,k, which represents the product between the Fibonacci numbers: Fi and Fj, can 

be used for the computation of the Merrifield-Simmons index on bipolygonal graphs. Our method does not require the explicit 

computation of the number of independent sets of the involved graphs. Instead, it is based on applying the edge division rule to 

decompose the initial graph. We show that the extreme values for bipolygonal graphs are found in two consecutive columns; the 

minimum extremal value in β3, k-3 and the maximum extremal value in β4, k-4.  
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The recognition of extremal topologies on trees is relevant in the optimization of topological invariants of chemical compounds 

modeled by arborescent molecular graphs [20,21,22]. We have considered here, the case of how to extend a given tree Tn 

through a new node v, keeping the structure of tree, and achieving extremal values for the M-S index for the new tree. 

 

Given a tree Tn of order n, a node v   V (Tn), and vp V(Tn), the M-S index of (T  {{vp, v}}) will be minimum when vp is a 

leaf node in Tn. 

 

On the other hand, the M-S index of  Tn  {{vp, v}}) achieves a maximum value when v is linked to a node vp with maximal 

degree in Tn, and vp has a greater number of neighbors with a minimal degree in Tn. 
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