

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 14(1), Jan-April 2023, 11-18. ISSN: 2007-1558.

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

A Novel Method for Counting Independent Sets in a Grid Graph
Guillermo De Ita Luna, Mireya Tovar Vidal, Beatríz Bernabé Loranca
1 Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Computación

deitaluna63@gmail.com, mireya.tovar@correo.buap.mx, beatriz.bernabe@gmail.com

Abstract. The problem of counting independent sets of a graph G
is not only mathematically relevant and interesting, but also has

many applications in physics, mathematics, and theoretical

computer science. In this paper, a novel method for counting
independent sets on grid-like structures is presented. It starts by

explaining the recurrences used by the method to count

independent sets on basic topologies of graphs. The method is
extended to process grid-like structures of quadratic faces. The

proposal has a lower time complexity than the required on the

leading and current method based on the transfer matrix for
counting independent sets on grids.

Keywords: Counting independent sets, Grid graph, Transfer

matrix, Fibonacci recurrence.

Article Info
Received Sep 26, 2022

Accepted Jan 11, 2023

1 Introduction

Counting has become an important area in mathematics, as well as in computer science, even though it has received less

attention than decision problems. This has caused less knowledge about the complexity of counting problems compared to the

study of the complexity of decision problems. From the computational point of view, the counting of independent sets of a graph

is a determining factor to establish the border between efficient counting and intractable counting procedures. Currently, there

are few graph counting problems that can be solved in polynomial time.

In [1] it is shown that independent sets counting in graphs of degree 4 is a problem of the complexity class #P-Complete.

Greenhill refined this work by showing that to count independent sets on graphs of degree 3 or regular 3-graphs is in the

complexity class #P-Complete [2]. An important line of research is to determine the type of graphs where to count independent

sets can be done in polynomial time.

The Markov chain described in [3] is one of the first approximations independent set counting algorithms. Markov chain

algorithm application in a Monte Carlo system has achieved a good approximation, in polynomial time, over the number of

independent sets in a graph G, especially for graphs with a maximum degree of four [4]. Many variants of the Monte Carlo

algorithm have been developed (see [3, 4, 5, 6,7]) these approximation techniques fail in graphs with degree 6 or greater, but the

case of the degree-5 graph still remains open [4].

There is a large amount of literature focused on counting structures on grid graphs, such as: counting spanning trees,

Hamiltonian cycles, independent sets, or acyclic orientations, as well as coloring counting [8,9,10,11]. Dahllöf [12] designed a

method for counting models in Boolean formulas (which would serve to count independent sets on monotone formulas), and

whose algorithm is bounded above in the worst case by O(1.3247n) where n is the number of variables (vertices) of the formula.

While in [13] a linear-time algorithm for counting independent sets for chordal graphs was developed. In general, the study of

the number of independent sets on grid structures is closely related to the `'hard-square model" used in statistical physics and, of

particular interest is the so-called hard-square entropy constant [14].

In [8] the number of independent sets of a grid graph Gm,n (m rows and n columns, see figure 1 that illustrates a 4 x 6 grid) is

calculated, using the transfer matrix method. While Euler presented the generating functions associated with counting the

number of independent sets on the grid [9]. Euler also considered the problem of counting maximal independent sets on a grid.

However, the application of the transfer matrix method to count the number of independent sets in a Gm,n grid has exponential

time complexity over both dimensions (m and n).

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

12

In statistical mechanics, counting independent sets is interpreted as counting the number of different ways of putting particles in

square lattices, such that no two particles can be in the same place or at adjacent points on the squares [15]. The efficient

encoding schemes in data storage are other type of application of the counting independent sets on grids [16].

In this article, we present different efficient algorithms to count independent sets on basic graph topologies such as paths, cycles,

and trees. We combine those algorithms in order to process grid graphs. Our proposal dramatically reduces the time complexity

required to count independent sets on grids with respect to the classical transfer matrix method.

The document is structured as follows: Section 2 presents the notation used to this research. Section 3 shows basic topologies of

graphs (paths, cycles and trees) where to count independent sets is carried out efficiently. Section 4 shows how to count

independent sets on grid-like structures Gm,n. Finally, section 5 contains the conclusion of the work.

2 Notation

Let G=(V,E) be an undirected graph with a set of vertices V and a set of edges E. Two vertices v and w are adjacent if there is an

edge {v,w}  E connecting them. Sometimes, we denote an edge {v,w}  E in abbreviated form as vw.

The neighborhood of x  V is the set N(x)={y  V:{x, y}  E }, and its closed neighborhood is N(x) {x}, which is denoted by

N[x]. The cardinality of a set A is denoted |A|. The degree of a vertex x in the graph G, denoted by (x), that is |N(x)|, and the

degree of the graph G is (G) = max{ (x): x  V}. The neighborhood size of x, δ(N(x)), is δ(N(x))= yN(x) y.

A path between two vertices v and w is a sequence of edges: v0v1, v1v2, …,vn-1vn such that v=v0 and w=vn, and vkvk+1  E, for 0 

k < n. The length of the path is the number of edges (n) in it. A simple path is a path where v0v1, v1v2, …,vn-1vn are all distinct. A

simple cycle is a simple non-empty path, where the first and last vertices are identical. An acyclic graph is a graph that does not

contain cycles. We denote by Pn-1, Cn, and Tn to the simple path, the simple cycle, and the tree, respectively, all of them

containing n vertices.

For a graph G=(V,E), SV is an independent set of G, if every v1, v2  S, {v1, v2}  E. I(G) denotes the set of all independent

sets of G. An independent set S I(G) is “maximal” if it is not a subset of a larger independent set, and it is “maximum” if it has

the largest size among all independent sets in I(G).

The corresponding counting problem on independent sets, denoted by i(G), consists of counting the number of independent sets

of a graph G. The computation of i(G) is a #P-complete problem for graphs G, where (G)  3 [1,3]. There are several

polynomial procedures to compute i(G) when Δ(G)≤2 [7,12,17]. All of them are methods of linear complexity with respect to

the time. An efficient procedure to calculate i(G) is presented below, based on the topology of the graph G.

Counting problems are not only mathematically interesting, but they also arise in many applications. Regarding hard counting

problems, the computation of the number of independent sets of a graph G has been a key in determining the frontier between

efficient counting and intractable counting algorithms.

3 Basic topologies for efficient counting of independent sets

Let i(G)=  k
j=1 i(Gj) where Gj, j=1, 2, …, k are the connected components of G [8]. The total complexity of the computation

time is expressed by T(i(G)), and it is calculated based on the maximum rule: T(i(G))=max{T(i(Gj)): Gj is a connected

component of G}.

Case A

We will consider a graph G=(V, E) which consists of a simple sequence of vertices (path), V={1,…, n} and there exist edges

such that ai={i, i+1}, i= 1,…, n-1 for each pair of sequential vertices.

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

13

We associate to each vertex viV the pair (i,i), where i expresses the number of sets in I(Gi) where the node vi does not

appear and βi the number of sets in I(Gi) where the node vi appears, in this way: i(Gi)= i + i. The first pair (i,i) is (1,1) since

on the induced subgraph G1 ={v1}, I(G1)={,{v1}}.

If we know the value of (i,i) for any i<n, and as the next induced subgraph Gi+1 is built from Gi adding the vertex vi+1 and the

edge {vi, vi+1}, it is not hard to see that the pair (i+1,i+1) is built from (i,i) by applying the following recurrence equation,

which we will call Fibonacci recurrence:

i+1 = i + i ; i+1 = i (1)

The series (i,i), i=1,…,n based on the application of recurrence (1), allows us to calculate i(Gi)= i + i for i= 1,…, n. Then,

the computation of i(G) is based on the incremental calculation of i(Gi), i=1, …,n. If a linear search is performed on a sequential

graph G starting at one end point v1 and moving to its incident vertices while applying recursion (1), in linear time based on the

number of vertices n, i(Pn)=i(Gn)= n + n =Fn+2 is obtained, where Fn is the nth-Fibonacci number.

If we want to carry out the process of counting independent sets on any path in a graph G, it is necessary to use computing

threads or just threads. A computing thread is a sequence of pairs n + n, i=1, …,n used for computing the number of

independent sets on a path with n edges.

Case B

In case of having a tree-type graph G, it will be traversed based on a depth search, considering the root node as any vertex vV,

and where v will be the initial node of the depth search. The pair associated with the node v (v G) is denoted by (v ,v). While

traversing the tree in post-order, i(G) will be computed. The following considerations will be taken to calculate i(G) for a tree

type graph.

• Traversing G in post-order.

When visiting a node v G the following conditions are considered

• (v ,v)=(1,1) if v is a leaf node in G.

• If v is a parent-node with a list of child-nodes u1,…,uk, Fibonacci recursion will be applied to all these child-nodes (v

,v) visited with j=1, …, k and apply v =  k
j=1 vj and v =  k

j=1 vj . This consideration includes the case when v

has only one child.

• If v is a root node of G then (v +v).

The above rules allow counting independent sets of G in order O(n+m), which is the necessary time for traversing a tree

structure in post-order.

Case C

Another particular case is when G = (V, E), n =m = |V| = |E| is a simple cycle. We can consider the cycle as a path G' of m

vertices plus an additional edge that links the final vertex of the path with the initial vertex, edge cm={vm, v1}. We call to this

edge cm={vm, v1} a frond edge.

In order to calculate the number of independent sets on a simple cycle, it will be necessary to use two threads or lines of

computation, one for the calculation of i(G’) and another one to calculate |{S  I(G’): v1  S  vm  S}|. This calculation can be

performed by fixing in I(G') the independent sets where v1 appears, which is performed with a thread (i’ +i’), i=1,...,m with

initial values (i’ +i’)=(0,1) in order to consider that there is a single independent set of I(G') where v1 appears.

Recurrence (1) is applied to calculate the new series (i’ , i’), i=2,…,m and to consider only the independent sets where vm

appears, only the value (m’ , m’), is considered as the final pair (0 , m’). An example can be seen in [18].

This leads us to i(Cm) = i(G)=i(G’) - |{S  I(G’): v1  S  vm  S}|= m + m - m’= Fm+2 -Fm-2 where Fm refers to the m-th

Fibonacci number, and Cm is a cycle of m vertices . It is important to note that the last operation to perform on a thread when the

last edge (a frond edge) of the cycle is recognized, is:

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

14

m + m - m ’ (2)

The formulas obtained for cases A and B are equivalent to the formulas obtained by Arocha [19] using Fibonacci polynomials;

which are defined as F0(x)=1, F1(x)=1 and applying recursion for Fn(x)=Fn-1(x)+xFn-2(x) with n  2. Meanwhile, the formula

obtained for i(Cm) = Fm+2 -Fm-2 is the m-th Lucas number. Therefore, the basic topologies; paths, simple cycles, and trees are

graphs where its number of independent sets can be recognized and counted in linear-time.

4 Development

Let G = (V, E) be an undirected connected graph. If we apply a depth-first search on G, it produces TG, where V(TG) = V(G),

TG is called the tree graph of G. The edges in TG are called tree edges, whereas the edges in E(G) \ E(TG) are called frond

edges.

Let e be a frond edge in TG. The union of the path in TG between the endpoints of e with the edge e forms a simple cycle, this is

called a basic (or fundamental) cycle of G with respect to TG. Each frond edge holds the maximum path contained in the basic

cycle which it is part of.

Let C = {C1, C2,…, Ck} be the set of fundamental cycles found during a depth-first search on G. Given any pair of basic cycles

Ci and Cj from C, if Ci and Cj share any edges, then they are called intersected cycles, otherwise they are called independent

cycles. We say that a set of cycles is independent when any two cycles in the set are not intersected. In particular, if two cycles

share edges, then they are called adjacent.

A grid graph of size mn is a graph G=(V,E) with vertex set V={(i, j): 1 i  m, 1  j  n}, and edge set E ={((j, i),(j+1,i)) | 1

j < m, 1  i  n} {((j, i),(j,i+1)) | 1 j < m, 1  i < n}. We will denote a grid graph Gm,n where m is the number of rows and n

is the number of columns.

Figure 1 shows a grid with m=4 and n=6. In the figure you can see a proposed path over the vertices of the grid. The start of the

path is vertex 11. When it encounters a frond edge, it is denoted by a curved arrow, with the arrowhead indicating the vertex

where the cycle closes. The arrow with a crossed line indicates the end of the path.

For example, according to the notation, it is inferred that the curved arrow indicates that there will be a cycle closure by the

arrow that goes from 12 to 11. The cycle closures are carried out once all the edges of the cycle are visited. As can be seen in

figure 1, the first cycle that is closed is through the edge {32,31}.

The classical method for computing the number of independent sets on grid graphs is based on the transfer matrix method [8,9].

The transfer matrix method consists of building an initial matrix of Fm+2 rows and Fm+2 columns that are indexed by (m + 1)-

vectors of zeros and ones.

Let us consider S as an independent set of a grid graph Gm,n with m rows and n columns. Let Cm be the set of all (m + 1)-vectors

v of 0’s and 1’s without two consecutive 1’s, in which a 1 indicates that the vertex is in S and a 0 indicates that the vertex is not

in S. The number of these vectors is Fm+2, the (m + 2)-th Fibonacci number. Let Tm be an Fm+2 X Fm+2 symmetric matrix of 0’s

and 1’s whose rows and columns are indexed by the vectors of Cm.

The condition that vectors u, v in Cm are possible consecutive pair of columns in an independent set of Gm,n is simply that they

meet the condition of having no 1’s in a common position, i.e., that u • v = 0 in the sense of the usual dot product of vectors

over the reals.

The entry of Tm in position (u, v) is 1, if the vectors u, v are orthogonal; otherwise, it is 0. Tm is called the transfer matrix for

Gm,n. Then, Tm has Fm+2 • Fm+2 inputs. The number of independent sets of a grid graph Gm,n is obtained by the sum of all entries

of the n-th power matrix Tn
m, i.e., i(Gm,n) = 1t Tn

m1, where 1 is the (Fm+2)-vector whose entries are all 1’s.

Only the construction of the initial matrix Tm involves the order of O((Fm+2)2 * (m+1)) dot products of m + 1-vectors over the

reals. Afterwards, the computation of Tn
m implicates an order of O((Fm+2)3n) integer multiplications, or an order of

O(((1.618)(m+2)*(3n)) if we consider the asymptotic behavior of the Fibonacci numbers and the approximation to the golden ratio

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

15

of (1.618). This last complexity could be reduced to O((1.618)(m+2)*(2.81n)) integer multiplications, when the Strassen matrix-

multiplication algorithm is applied. In any case, the application of the transfer matrix method for computing i(Gm,n) has a time-

complexity of order O((Fm+2)2 * (m+1)+ ((Fm+2)2.81n) integer multiplications that results in an exponential upper bound on both

dimensions m and n of the grid graph Gm,n.

Fig. 1. A Grid graph and its path through columns.

On the other hand, our proposal is based on performing a Hamiltonian path on the grid graph. The path begins at node 11 and as

we can see, it is necessary to open a computing line in addition to the main one because it is necessary to later close the cycle

that started at vertex 11. Each embedded cycle will open new lines of computation, which will happen during the path when a

vertex that indicates the beginning of a cycle is visited, except for vertices where the path makes a column-change. When new

cycles are opened during the path, new computing threads are created, but at the same time, threads that would have been

opened in previous vertices will be closed.

Table 1 shows the aforementioned process of opening and closing computation threads. Table 1 shows the process up to the

cycle closure of the edge {23,22}, which is the time when the embedded cycle will reach the maximum number of open

computation lines. It is important to take the following considerations that are carried out during the tour, such as the application

of recurrence, the closing of the cycle and how the computation lines will be opened.

• At each movement from one vertex to the next, the recurrence (1) is applied.

• Each time a cycle is opened, as many computation lines are opened as are currently active with a value β≠0 associated

with the pair (α,β) of the line.

• For a cycle closure, equation (2) will be applied, where the value of β’s will be subtracted with respect to the active line

with which it was opened.

Due to the nature of the growth in the number of computing lines, Table 1 is divided into subsections of the process. In each

subsection, the computing lines that have already been closed will be eliminated, and then the compilation of the lines that are

still open will be carried out. At the closing of the cycle of the edge {23,22}, the maximum number of computing lines is

obtained, which can be seen to coincide with the Fibonacci value F7. The results of counting independent sets shown in Table 1

have been verified using an exponential-time program that counts "Independent Sets" exhaustively.

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

16

Table 1. The number of independent sets corresponding to Figure 1

THREADS

/ NODES 21

 X

-
 X ----------

-

---------- X ---------- ----------

 ------ ---------- X ---------- ----------

 ----- ---------- -------- ----------

-

---------- ---------- ---------- X

-

---------- ---------- ---------- X ----------

-

---------- ---------- ---------- X ---------- ----------

-

---------- ---------- ---------- X ---------- ----------

-

---------- ---------- ---------- ----------

-

---------- ---------- ---------- ---------- X

-

---------- ---------- ---------- ---------- X ----------

-

---------- ---------- ---------- ---------- ----------

-

---------- ---------- ---------- ---------- ---------- X

-

---------- ---------- ---------- ---------- ----------

-

---------- ---------- ---------- ---------- ---------- X

Table 2.1 Continuation of the number of independent sets corresponding to Figure 1

THREADS/

NODES
 44

 X ---------- ----------

 X ---------- ---------- ----------

 X ---------- --------- --------- ----------

 X ---------- ------------- ---------- ----------

 X ---------- ----------

 X ------------- --------- -----------

 X ---------- -------------- --------- ----------

 X -------- ------------- ---------- ----------

 ---------- X ---------- -------

 ---------- X ------------- ---------- ----------

 X

 X ---------- ----------

 X

 X ------ ----------

 X

 X

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

17

Table 3.2 Continuation of the number of independent sets corresponding to Figure 1

THREADS/

NODES

(555,382)

 X ---------- --------- ---------- ----------

 X --------- ---------- ---------- ---------- ----------

 X

 X ---------- ------------- ---------- ----------

 X ---------- ---------- ---------- ---------- ---------

 X ----------

 X ---------- ------------- --------- -----------

 X ---------- ---------- -------------- --------- ----------

 X ---------- ----------

 X ---------- --------- ---------- ----------

 X ---------- -------

 X ------------- ------------- ---------- ----------

 ---------- X

 ------------ X ----------

 ---------- X ------ ----------

 ------------ X ----------- ----------

 ---------- X

 ----------- X ---------

 X

 X

Table 4.3 Continuation of the number of independent sets corresponding to Figure 1

LÍNEAS/VÉ

RTICES

 36787

 X ----------

 X ---------- ----------

 X ---------- ---------- ------------

 X ---------- ------------- ----------

The time complexity of our proposal is related to the dimensions of Table 1, which we denote by Tk,l, the table with k rows and l

columns. For a grid Gm,n, the number of columns of the grid coincides with the total number of vertices that are visited during

the path, which corresponds to the number of vertices in the grid, so l = m*n.

The number of rows k in the table is a dynamic value that changes as computing lines are opened and closed, and rows are

moved in the table to avoid gaps in the table. To estimate k, we must consider what is the maximum number of lines that can be

opened at any time during the calculation of i(Gm,n). The maximum number of open lines corresponds to the number of vertices

in the first column plus one vertex in the second column, which is when all cycle lines are active, and no cycle has been closed.

Therefore, this value corresponds to (m +1) opening cycles.

Each time that a new cycle is processed, a Fibonacci growth on the number of computing threads is followed. At the start of the

path, two computation lines are created, then 3, followed by 5, 8, which corresponds to a Fibonacci growth. So, after the (m +1)

cycle starts, we will have k=Fm+3 active computing lines, since the Fibonacci sequence started with 2 lines (so the sequence

starts with F3). Therefore, k=Fm+3.

The maximum number of cells in the Table will be k * l = Fm+3* (m * n), which also corresponds to the order of growth of the

time complexity of our process. Our algorithm then has a time complexity of order O(Fm+3 * (m * n)) = O((1.618) m+3 * (m* n))

considering 1.618 as an approximation to the 'golden ratio', which is the constant that allows us to calculate any Fibonacci

number.

Therefore, the time-complexity of our proposal for computing i(Gm,n) is dramatically inferior to the time-complexity that the

transfer matrix method requires for computing i(Gm,n).

De Ita Luna et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(1) 2023, 11-18.

18

5 Conclusions

Given a grid graph Gm,n, in order to compute i(Gm,n), it is necessary to visit all vertex in Gm,n. The traversing is in the direction of

the column if m < n; otherwise, we can rotate the grid and obtain that m ≤ n is always satisfied. Afterwards, we apply a

traversing by column in order to compute i(Gm,n). We propose a Hamiltonian path by columns on the grid graph, where the

maximum number of computing lines that will be active at any time of the counting process is upper bounded by

O(Fm+3*(m*n))=O(Fmin{n,m}+3*(m*n)) ≅ O((1.1618)min{n,m}+3*(m*n)). The resulting time-complexity of our proposal for

computing i(Gm,n) is dramatically inferior to the time-complexity that the transfer matrix method requires for computing the

same value, since the transfer matrix method has an exponential complexity in both dimensions (m and n) of the grid.

It is important to note that the type of traversing on Gm,n is vital in order to obtain minimum time-complexity, since using a

different path may increase the time-complexity of the entire development. A future work is to determine which is the optimal

path to obtain a minimum time-complexity when i(Gm,n) is being computed in a grid, even for irregular grids (grids with a

different number of columns per row).

References

1. Vadhan Salil P.: The complexity of counting in sparse, regular, and planar graphs. SIAM Journal on Computing, 31, no.2, 398--427

(2001)

2. Greenhill C.: The complexity of counting colouring and independent sets in sparse graphs and hypergraphs. Computational Complexity,

52--72 (2000)

3. Luby M., Vigoda E.: Approximately counting up to four, Twenty-ninth annual Symp. On theory of computing. ACM NEW York (1997)

682--687

4. Dyer M., Greenhill C.: Some #P-completeness proofs for colouring and independent sets. Research report series, university of Leeds.

(1997)

5. Dyer M., Frieze A., Jerrum M.: On counting independent sets in sparse graphs. SIAM J. Comput. 31, no. 5, 1527—1541 (2002)

6. Dyer M., Greenhill C., Corrigendum: The complexity of counting graph homomorphism. RSA: Random Strutures and Algorithms. 346—

352 (2004)

7. Russ B.: Randomized Algorithms: Approximation, generation, and counting, distinguished dissertations. Springer (2001)

8. Calkin N., Wilf H.: The number of independent sets in a grid graph. SIAM Journal on Discrete Mathematics, 11, 02 (1998)

9. Reinhardt E.: The Fibonacci number of a grid graph and a new class of integer sequences. Journal of Integer Sequences, 8, 05 (2005)

10. Mordecai G., Yiu Cho L., Yajun W., and Xuerong Y.: Counting structures in grid graphs, cylinders and tori using transfer matrices:

Survey and new result. In ALENEX/ANALCO, pp. 250–258, 01 (2005)

11. Guillen C., López A., and De Ita G.: Computing #2-sat of grids, grid-cylinders and grid-tori Boolean formulas. In Proc. of the 15th

RCRA workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion, vol. 451. CEUR-

WS.org (2008)

12. Dahllöf V., Jonsson P.: An algorithm for counting maximum weighted independent sets and its applications. Proc. Of SODA (2002)

thirteenth annual

13. OkamotoY., Uno T., Uehara R.: Counting the number of independent sets in chordal graphs. Proc. of the 31st Int. WS on Graph-

Theoretic concepts in computer science. WG 2005, pp. 433--444, LNCS, vol. 3787 (2005)

14. Baxter R.J.: Planar lattice gases with nearest-neighbor exclusion, Annals of Combinatorics, Springer Science and Business Media 3,

(1999) 191--203

15. Zhang Z.: Merrifield-Simmons index and its entropy of the 4-8-8 lattice. J Statical Physics 154, (2014) 1113-1123

16. Roth R.M., Siegel P.H., and Wolf J.K. Efficient coding schemes for the hard-square model, IEEE Trans. Inform. Theory, 47:1166-1176,

(2001)

17. Roth D.: On the hardness of approximate reasoning. Artificial intelligence 82, 273--302 (1996)

18. Zacarias F., Moyao Y., Contreras M., De Ita G., Bello P.: Combinational algorithms and learning. Montiel & Soriano, pp 33-44 (2017)

19. Arocha J.L.: Propiedades del polinomio independiente de un grafo. Revista Ciencias Matemáticas, vol. V, 103—110 (1984)

