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Abstract. The problem of counting independent sets of a graph G 
is not only mathematically relevant and interesting, but also has 

many applications in physics, mathematics, and theoretical 

computer science. In this paper, a novel method for counting 
independent sets on grid-like structures is presented. It starts by 

explaining the recurrences used by the method to count 

independent sets on basic topologies of graphs. The method is 
extended to process grid-like structures of quadratic faces. The 

proposal has a lower time complexity than the required on the 

leading and current method based on the transfer matrix for 
counting independent sets on grids. 
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1 Introduction 
 

Counting has become an important area in mathematics, as well as in computer science, even though it has received less 

attention than decision problems. This has caused less knowledge about the complexity of counting problems compared to the 

study of the complexity of decision problems. From the computational point of view, the counting of independent sets of a graph 

is a determining factor to establish the border between efficient counting and intractable counting procedures. Currently, there 

are few graph counting problems that can be solved in polynomial time. 

 

In [1] it is shown that independent sets counting in graphs of degree 4 is a problem of the complexity class #P-Complete. 

Greenhill refined this work by showing that to count independent sets on graphs of degree 3 or regular 3-graphs is in the 

complexity class #P-Complete [2]. An important line of research is to determine the type of graphs where to count independent 

sets can be done in polynomial time. 

 

The Markov chain described in [3] is one of the first approximations independent set counting algorithms. Markov chain 

algorithm application in a Monte Carlo system has achieved a good approximation, in polynomial time, over the number of 

independent sets in a graph G, especially for graphs with a maximum degree of four [4]. Many variants of the Monte Carlo 

algorithm have been developed (see [3, 4, 5, 6,7]) these approximation techniques fail in graphs with degree 6 or greater, but the 

case of the degree-5 graph still remains open [4]. 

 

There is a large amount of literature focused on counting structures on grid graphs, such as: counting spanning trees, 

Hamiltonian cycles, independent sets, or acyclic orientations, as well as coloring counting [8,9,10,11]. Dahllöf [12] designed a 

method for counting models in Boolean formulas (which would serve to count independent sets on monotone formulas), and 

whose algorithm is bounded above in the worst case by O(1.3247n) where n is the number of variables (vertices) of the formula. 

While in [13] a linear-time algorithm for counting independent sets for chordal graphs was developed. In general, the study of 

the number of independent sets on grid structures is closely related to the `'hard-square model" used in statistical physics and, of 

particular interest is the so-called hard-square entropy constant [14].  

 

In [8] the number of independent sets of a grid graph Gm,n (m rows and n columns, see figure 1 that illustrates a 4 x 6 grid) is 

calculated, using the transfer matrix method. While Euler presented the generating functions associated with counting the 

number of independent sets on the grid [9]. Euler also considered the problem of counting maximal independent sets on a grid. 

However, the application of the transfer matrix method to count the number of independent sets in a Gm,n grid has exponential 

time complexity over both dimensions (m and n). 
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In statistical mechanics, counting independent sets is interpreted as counting the number of different ways of putting particles in 

square lattices, such that no two particles can be in the same place or at adjacent points on the squares [15]. The efficient 

encoding schemes in data storage are other type of application of the counting independent sets on grids [16]. 

 

In this article, we present different efficient algorithms to count independent sets on basic graph topologies such as paths, cycles, 

and trees. We combine those algorithms in order to process grid graphs. Our proposal dramatically reduces the time complexity 

required to count independent sets on grids with respect to the classical transfer matrix method. 

 

The document is structured as follows: Section 2 presents the notation used to this research. Section 3 shows basic topologies of 

graphs (paths, cycles and trees) where to count independent sets is carried out efficiently. Section 4 shows how to count 

independent sets on grid-like structures Gm,n. Finally, section 5 contains the conclusion of the work. 

 

 

2 Notation 
 

Let G=(V,E) be an undirected graph with a set of vertices V and a set of edges E. Two vertices v and w are adjacent if there is an 

edge {v,w}  E connecting them. Sometimes, we denote an edge  {v,w}  E in abbreviated form as vw. 

 

The neighborhood of x  V is the set N(x)={y  V:{x, y}  E }, and its closed neighborhood is N(x) {x}, which is denoted by 

N[x]. The cardinality of a set A is denoted |A|. The degree of a vertex x in the graph G, denoted by (x), that is |N(x)|, and the 

degree of the graph G is (G) = max{ (x): x  V}. The neighborhood size of x, δ(N(x)), is δ(N(x))= yN(x) y. 

 

A path between two vertices v and w is a sequence of edges: v0v1,  v1v2, …,vn-1vn such that v=v0 and w=vn, and vkvk+1  E, for 0   

k < n. The length of the path is the number of edges (n) in it. A simple path is a path where v0v1,  v1v2, …,vn-1vn are all distinct. A 

simple cycle is a simple non-empty path, where the first and last vertices are identical. An acyclic graph is a graph that does not 

contain cycles. We denote by Pn-1, Cn, and Tn to the simple path, the simple cycle, and the tree, respectively, all of them 

containing n vertices. 

 

For a graph G=(V,E), SV is an independent set of G, if every v1, v2  S, {v1, v2}  E.  I(G) denotes the set of all independent 

sets of G. An independent set S I(G) is “maximal” if it is not a subset of a larger independent set, and it is “maximum” if it has 

the largest size among all independent sets in I(G). 

 

The corresponding counting problem on independent sets, denoted by i(G), consists of counting the number of independent sets 

of a graph G. The computation of i(G) is a #P-complete problem for graphs G, where  (G)  3 [1,3]. There are several 

polynomial procedures to compute i(G) when Δ(G)≤2 [7,12,17]. All of them are methods of linear complexity with respect to 

the time. An efficient procedure to calculate i(G) is presented below, based on the topology of the graph G. 

 

Counting problems are not only mathematically interesting, but they also arise in many applications. Regarding hard counting 

problems, the computation of the number of independent sets of a graph G has been a key in determining the frontier between 

efficient counting and intractable counting algorithms. 

 

 

3 Basic topologies for efficient counting of independent sets 
 

Let i(G)=  k
j=1 i(Gj) where Gj, j=1, 2, …, k are the connected components of G  [8]. The total complexity of the computation 

time is expressed by T(i(G)), and it is calculated based on the maximum rule: T(i(G))=max{T(i(Gj)): Gj is a connected 

component of G}. 

 

Case A 

We will consider a graph G=(V, E) which consists of a simple sequence of vertices (path), V={1,…, n} and there exist edges 

such that ai={i, i+1}, i= 1,…, n-1 for each pair of sequential vertices. 
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We associate to each vertex viV the pair (i,i), where i expresses the number of sets in I(Gi) where the node vi does not 

appear and βi the number of sets in I(Gi) where the node vi appears, in this way: i(Gi)= i + i. The first pair (i,i) is (1,1) since 

on the induced subgraph G1 ={v1}, I(G1)={,{v1}}. 

 

If we know the value of (i,i) for any i<n, and as the next induced subgraph Gi+1 is built from Gi adding the vertex vi+1 and the 

edge {vi, vi+1}, it is not hard to see that the pair (i+1,i+1) is built from (i,i) by applying the following recurrence equation, 

which we will call Fibonacci recurrence: 

 

i+1 = i + i   ;  i+1 = i  (1) 

The series (i,i), i=1,…,n based on the application of recurrence (1), allows us to calculate i(Gi)= i + i  for i= 1,…, n. Then, 

the computation of i(G) is based on the incremental calculation of i(Gi), i=1, …,n. If a linear search is performed on a sequential 

graph G starting at one end point v1 and moving to its incident vertices while applying recursion (1), in linear time based on the 

number of vertices n, i(Pn)=i(Gn)= n + n  =Fn+2 is obtained, where Fn is the nth-Fibonacci number. 

 

If we want to carry out the process of counting independent sets on any path in a graph G, it is necessary to use computing 

threads or just threads. A computing thread is a sequence of pairs n + n, i=1, …,n used for computing the number of  

independent sets on a path with n edges. 

 

Case B 

In case of having a tree-type graph G, it will be traversed based on a depth search, considering the root node as any vertex  vV, 

and where v will be the initial node of the depth search. The pair associated with the node v (v G) is denoted by (v ,v ). While 

traversing the tree in post-order, i(G) will be computed. The following considerations will be taken to calculate i(G) for a tree 

type graph. 

 

• Traversing G in post-order. 

When visiting a node v G the following conditions are considered 

• (v ,v )=(1,1) if v is a leaf node in G. 

• If v is a parent-node with a list of child-nodes u1,…,uk, Fibonacci recursion will be applied to all these child-nodes (v 

,v ) visited with j=1, …, k and apply  v =  k
j=1 vj and  v =  k

j=1 vj . This consideration includes the case when v 

has only one child. 

• If v is a root node of G then (v +v ). 

 

The above rules allow counting independent sets of G in order O(n+m), which is the necessary time for traversing a tree 

structure in post-order. 

 

 

Case C 

Another particular case is when G = (V, E), n =m = |V| = |E| is a simple cycle. We can consider the cycle as a path G' of m 

vertices plus an additional edge that links the final vertex of the path with the initial vertex, edge cm={vm, v1}. We call to this 

edge cm={vm, v1} a frond edge. 

 

In order to calculate the number of independent sets on a simple cycle, it will be necessary to use two threads or lines of 

computation, one for the calculation of i(G’) and another one to calculate |{S  I(G’): v1  S  vm  S}|. This calculation can be 

performed by fixing in I(G') the independent sets where v1 appears, which is performed with a thread (i’ +i’ ), i=1,...,m with 

initial values (i’ +i’)=(0,1) in order to consider that there is a single independent set of I(G') where v1 appears. 

 

Recurrence (1) is applied to calculate the new series (i’ , i’), i=2,…,m and to consider only the independent sets where vm 

appears, only the value (m’ , m’),  is considered as the final pair (0 , m’). An example can be seen in [18].  

 

This leads us to i(Cm) = i(G)=i(G’) - |{S  I(G’): v1  S  vm  S}|= m + m - m’= Fm+2 -Fm-2 where Fm refers to the m-th 

Fibonacci number, and Cm is a cycle of m vertices . It is important to note that the last operation to perform on a thread when the 

last edge (a frond edge) of the cycle is recognized, is:  
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m + m  -  m ’ (2) 

 

The formulas obtained for cases A and B are equivalent to the formulas obtained by Arocha [19] using Fibonacci polynomials; 

which are defined as F0(x)=1, F1(x)=1 and applying recursion for Fn(x)=Fn-1(x)+xFn-2(x) with n  2. Meanwhile, the formula 

obtained for i(Cm) = Fm+2 -Fm-2 is the m-th Lucas number. Therefore, the basic topologies; paths, simple cycles, and trees are 

graphs where its number of independent sets can be recognized and counted in linear-time. 

 

4 Development 

 

Let G = (V, E) be an undirected connected graph. If we apply a depth-first search on G, it produces TG, where V(TG) = V(G), 

TG is called the tree graph of G. The edges in TG are called tree edges, whereas the edges in E(G) \ E(TG) are called frond 

edges. 

 

Let e be a frond edge in TG. The union of the path in TG between the endpoints of e with the edge e forms a simple cycle, this is 

called a basic (or fundamental) cycle of G with respect to TG. Each frond edge holds the maximum path contained in the basic 

cycle which it is part of. 

 

Let C = {C1, C2,…, Ck} be the set of fundamental cycles found during a depth-first search on G. Given any pair of basic cycles 

Ci and Cj from C, if Ci and Cj share any edges, then they are called intersected cycles, otherwise they are called independent 

cycles. We say that a set of cycles is independent when any two cycles in the set are not intersected. In particular, if two cycles 

share edges, then they are called adjacent. 

 

A grid graph of size mn is a graph G=(V,E) with vertex set V={(i, j): 1 i  m, 1   j   n},  and edge set E ={((j, i),(j+1,i)) | 1 

j < m, 1   i  n} {((j, i),(j,i+1)) | 1 j < m, 1   i < n}. We will denote a grid graph Gm,n where m is the number of rows and n 

is the number of columns. 

 

Figure 1 shows a grid with m=4 and n=6. In the figure you can see a proposed path over the vertices of the grid. The start of the 

path is vertex 11. When it encounters a frond edge, it is denoted by a curved arrow, with the arrowhead indicating the vertex 

where the cycle closes. The arrow with a crossed line indicates the end of the path. 

 

For example, according to the notation, it is inferred that the curved arrow indicates that there will be a cycle closure by the 

arrow that goes from 12 to 11. The cycle closures are carried out once all the edges of the cycle are visited. As can be seen in 

figure 1, the first cycle that is closed is through the edge {32,31}. 

 

The classical method for computing the number of independent sets on grid graphs is based on the transfer matrix method [8,9]. 

The transfer matrix method consists of building an initial matrix of Fm+2 rows and Fm+2 columns that are indexed by (m + 1)-

vectors of zeros and ones.  

 

Let us consider S as an independent set of a grid graph Gm,n with m rows and n columns. Let Cm be the set of all (m + 1)-vectors 

v of 0’s and 1’s without two consecutive 1’s, in which a 1 indicates that the vertex is in S and a 0 indicates that the vertex is not 

in S. The number of these vectors is Fm+2, the (m + 2)-th Fibonacci number. Let Tm be an Fm+2 X Fm+2 symmetric matrix of 0’s 

and 1’s whose rows and columns are indexed by the vectors of Cm.  

 

The condition that vectors u, v in Cm are possible consecutive pair of columns in an independent set of Gm,n is simply that they 

meet the condition of having no 1’s in a common position, i.e., that u • v = 0 in the sense of the usual dot product of vectors 

over the reals. 

The entry of Tm in position (u, v) is 1, if the vectors u, v are orthogonal; otherwise, it is 0. Tm is called the transfer matrix for 

Gm,n. Then, Tm has Fm+2 • Fm+2 inputs. The number of independent sets of a grid graph Gm,n  is obtained by the sum of all entries 

of the n-th power matrix Tn
m, i.e., i(Gm,n) = 1t Tn

m1, where 1 is the (Fm+2)-vector whose entries are all 1’s. 

 

Only the construction of the initial matrix Tm involves the order of O((Fm+2)2 * (m+1)) dot products of m + 1-vectors over the 

reals. Afterwards, the computation of Tn
m implicates an order of O((Fm+2)3n) integer multiplications, or an order of 

O(((1.618)(m+2)*(3n)) if we consider the asymptotic behavior of the Fibonacci numbers and the approximation to the golden ratio 
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of (1.618). This last complexity could be reduced to O((1.618)(m+2)*(2.81n)) integer multiplications, when the Strassen matrix-

multiplication algorithm is applied. In any case, the application of the transfer matrix method for computing i(Gm,n)  has a time-  

complexity of order O((Fm+2)2 * (m+1)+ ((Fm+2)2.81n) integer multiplications that results in an exponential upper bound on both 

dimensions m and n of the grid graph Gm,n.  

 

 

 
Fig. 1. A Grid graph and its path through columns. 

 

On the other hand, our proposal is based on performing a Hamiltonian path on the grid graph. The path begins at node 11 and as 

we can see, it is necessary to open a computing line in addition to the main one because it is necessary to later close the cycle 

that started at vertex 11. Each embedded cycle will open new lines of computation, which will happen during the path when a 

vertex that indicates the beginning of a cycle is visited, except for vertices where the path makes a column-change. When new 

cycles are opened during the path, new computing threads are created, but at the same time, threads that would have been 

opened in previous vertices will be closed. 

 

Table 1 shows the aforementioned process of opening and closing computation threads. Table 1 shows the process up to the 

cycle closure of the edge {23,22}, which is the time when the embedded cycle will reach the maximum number of open 

computation lines. It is important to take the following considerations that are carried out during the tour, such as the application 

of recurrence, the closing of the cycle and how the computation lines will be opened. 

 

 

• At each movement from one vertex to the next, the recurrence (1) is applied. 

• Each time a cycle is opened, as many computation lines are opened as are currently active with a value β≠0 associated 

with the pair (α,β) of the line. 

• For a cycle closure, equation (2) will be applied, where the value of β’s will be subtracted with respect to the active line 

with which it was opened.    

 

Due to the nature of the growth in the number of computing lines, Table 1 is divided into subsections of the process. In each 

subsection, the computing lines that have already been closed will be eliminated, and then the compilation of the lines that are 

still open will be carried out. At the closing of the cycle of the edge {23,22}, the maximum number of computing lines is 

obtained, which can be seen to coincide with the Fibonacci value F7. The results of counting independent sets shown in Table 1 

have been verified using an exponential-time program that counts "Independent Sets" exhaustively. 
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Table 1. The number of independent sets corresponding to Figure 1 
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Table 2.1 Continuation of the number of independent sets corresponding to Figure 1 
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Table 3.2 Continuation of the number of independent sets corresponding to Figure 1 
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Table 4.3 Continuation of the number of independent sets corresponding to Figure 1 

LÍNEAS/VÉ

RTICES      

     36787 
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   X ---------- ---------- 

  X ---------- ---------- ------------ 

  X ---------- ------------- ---------- 

 

 

The time complexity of our proposal is related to the dimensions of Table 1, which we denote by Tk,l, the table with k rows and l 

columns. For a grid Gm,n, the number of columns of the grid coincides with the total number of vertices that are visited during 

the path, which corresponds to the number of vertices in the grid, so l = m*n. 

 

The number of rows k in the table is a dynamic value that changes as computing lines are opened and closed, and rows are 

moved in the table to avoid gaps in the table. To estimate k, we must consider what is the maximum number of lines that can be 

opened at any time during the calculation of i(Gm,n).  The maximum number of open lines corresponds to the number of vertices 

in the first column plus one vertex in the second column, which is when all cycle lines are active, and no cycle has been closed. 

Therefore, this value corresponds to (m +1) opening cycles. 

 

Each time that a new cycle is processed, a Fibonacci growth on the number of computing threads is followed. At the start of the 

path, two computation lines are created, then 3, followed by 5, 8, which corresponds to a Fibonacci growth. So, after the (m +1) 

cycle starts, we will have k=Fm+3 active computing lines, since the Fibonacci sequence started with 2 lines (so the sequence 

starts with F3). Therefore, k=Fm+3. 

 

The maximum number of cells in the Table will be k * l = Fm+3* (m * n), which also corresponds to the order of growth of the 

time complexity of our process. Our algorithm then has a time complexity of order O(Fm+3 * (m * n) ) = O( (1.618) m+3 * (m* n)) 

considering 1.618 as an approximation to the 'golden ratio', which is the constant that allows us to calculate any Fibonacci 

number. 

 

Therefore, the time-complexity of our proposal for computing i(Gm,n) is dramatically inferior to the time-complexity that the 

transfer matrix method requires for computing i(Gm,n).  
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5 Conclusions 
 

Given a grid graph Gm,n, in order to compute i(Gm,n), it is necessary to visit all vertex in Gm,n. The traversing is in the direction of 

the column if m < n; otherwise, we can rotate the grid and obtain that m ≤ n is always satisfied. Afterwards, we apply a 

traversing by column in order to compute i(Gm,n). We propose a Hamiltonian path by columns on the grid graph, where the 

maximum number of computing lines that will be active at any time of the counting process is upper bounded by 

O(Fm+3*(m*n))=O(Fmin{n,m}+3*(m*n)) ≅ O((1.1618)min{n,m}+3*(m*n)). The resulting time-complexity of our proposal for 

computing i(Gm,n) is dramatically inferior to the time-complexity that the transfer matrix method requires for computing the 

same value, since the transfer matrix method has an exponential complexity in both dimensions (m and n) of the grid. 

 

It is important to note that the type of traversing on Gm,n  is vital in order to obtain minimum time-complexity, since using a 

different path may increase the time-complexity of the entire development. A future work is to determine which is the optimal 

path to obtain a minimum time-complexity when i(Gm,n) is being computed in a grid, even for irregular grids (grids with a 

different number of columns per row). 
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