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Abstract. The world has changed drastically in logistical 

and economic spheres as a result of the COVID-19 

pandemic. This pandemic has caused a global crisis in 

supply-chain structures, creating regional, national and 

international impacts of unprecedented magnitude. 

Accordingly, this research develops a methodology to 

favour the logistics-resilience framework based on regional 

externalities and technical-efficiency analysis of the 51 US 

states, applying a Spatial Data Panel model and a 

Stochastic Frontier model in conjunction with graph theory 

(Ford–Fulkerson algorithm). The findings indicate that 

New York, West Virginia and North Dakota are vital 

external regions to support California’s logistics resilience. 

We demonstrate that a region with high technical efficiency 

does not necessarily constitute a key logistics spillover for 

a target region. This study represents one of the first 

attempts to optimise and redirect externalities from one 

region to another using spatial and logistical mechanisms. 
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1 Introduction 
 

Since September 2021, one of the most severe bottlenecks in supply-chain history has occurred, with 

significant global impacts centred on California’s principal ports (Jarosz, 2021; Korber, 2021). Over 80 

cargo ships remained anchored offshore, each waiting more than a month to unload thousands of tonnes 

of goods bound for the Americas. Owing to the gravity of the situation, California’s federal 

representatives urged the US President to declare a state of emergency and requested direct support from 

the White House (Gallagher, 2021). This bottleneck has caused severe disruption: extensive delivery 

delays; high storage and customer costs; multimillion-dollar losses in global trade; and public-welfare 

grievances owing to shortages of medical supplies for treating COVID-19. Consequently, various urgent 

public policies have been introduced in California (Shilong et al., 2021; Silverthorn, 2021; Wan, 2021), 

and consumer prices have risen by 6.2 %, marking the highest inflation rate since 1990 (Lepore, 2021). 

 

The problem facing ports in Latin America and the United States is so complex because it is a problem 

that encompasses not only one cause but multiple causes, such as shortages of transport workers (Vann, 

2021) and low port logistics infrastructure (McCarthy, 2021), among others. Therefore, providing an 

integrative solution to such a logistical scenario represents an invaluable tool that would bring multiple 
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benefits to the well-being of the regions and the entire global community. Therefore, this research aims to 

develop a proposal for economic-logistics resilience based on the logic of spillover to strengthen the 

logistics infrastructure of the United States and prevent and deal with supply chain crises. The research 

question that this research seeks to answer is: How to redirect the best logistical effects of each of the 

American states to strengthen its logistics infrastructure. 

 

The focus of the present research is quantitative-deductive since it is predominantly applied mathematical 

deduction and inferences based on previously established theories within the economic and logistic field. 

The methodology in this research consists of a proposal based on optimizing the distribution of 

externalities by applying previous models proposed in the Spatial Data Panel, Stochastic Frontier Model, 

and use of logistic algorithms (Ford-Fulkerson algorithm). The results of this research dictate that the 

logistics public policy in California should integrate Wyoming and New Mexico as critical logistics 

pivots in its region; and New York, West Virginia, and North Dakota as external region support states. As 

an additional proposal, it should take action on the American states with low efficient usage of production 

resources (west region: California, Nevada; Midwest region: Minnesota, Michigan; South region: 

Delaware, Virginia; Northeast region: Vermont, Pennsylvania) and implant new public policy strategies 

to take advantages of the efficient states of every region (West region: Wyoming, New Mexico; Midwest 

region: Nebraska, Ohio; South region: Tennessee; West Virginia; Northeast region: New York, New 

Hampshire). 

 

 

2 Literature review 

 

As Pettit et al. (Pettit et al., 2010) point out, supply chain resilience (SCR) tries to make the given 

logistics system learn from the disruption suffered and achieve its improved reconfiguration. Pettit et al. 

make a taxonomic proposal of postulates under a qualitative approach to a strategic guide of factors to 

guide logistical resilience. Under this same qualitative-taxonomic line are the following researchers: 

Fiksel (2003); Tukamuhabwa et al. (2015); Kamalahmadi & Parast (2016); Ivanov (2018). Hosseini et al. 

(2019) conducted exhaustive research on the different quantitative techniques for evaluating and 

developing the SCR, which is evaluated below: Christopher & Rutherford (2004) exemplify and apply the 

Six Sigma technique to be able to develop the SCR as well as carry out. Hosseini & Barker (2016) use 

Bayesian networks to model the probability of geographically dispersed suppliers and thus develop 

resilience by applying supply dispersion strategies. Another type of approach is the optimization of 

multiple strategic supplies when risk and demand arise, and under this logic are the proposals of Namdar 

et al. (2017), Lucker & Seifert (2017), Yildiz et al. (2016), Yoon et al. (2016), Bicer (2015), Torabi et al. 

(2015), Peng et al. (2011); Sawik (2018), Meena & Sarmah (2013), Sadghiani et al. (2015); Zhang et al. 

(2015). Another type of approach to logistics resilience is based on inventory forecasting, as it can be 

anticipated in advance of disruption, the planned inventory can absorb the adverse effects. Under this 

approach in the research of Tomlin (2006), Turnquist & Vugrin (2013), Khalili et al. (2016), Spiegler et 

al. (2012). 

 

 

Another resilience approach in the SCR is through the construction of multiple distribution channels, in 

which the proposals of Khalili et al. (2016), Kamalahamadi & Parast (2016) are presented. Another focus 

is the strategic construction of backup providers Torabi et al. (2015), Ho et al. (2010), Chakraborty et al. 

(2016), Saghafian & Van Oyen (2016), Jabarzadeh et al. (2018), Turnquist & Vugrin (2013), 

Kamalahmadi & Parast (2016). Another approach strategy is by reinforcing routing (Liu& Lee Lam, 
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2013; Khaled et al., 2015; Hosseini & Khaled, 2016); another strategy is through the strengthening of 

communication and cooperation based on commercial interactivity between the agents of the supply 

chain, whose research for this approach is Scholten & Schilder (2015); Mandal et al. (2016); Wieland & 

Wallenburg (2013). Finally, there is also the resilience strategy through the ability to implement substitute 

products while the resilience period occurs (Mancheri et al., 2018), as well as the approach of 

implementing the capacity of restoration by suppliers so that they can be reinforced in the financial and 

technical aspect and in this current way agilely in the face of an adverse scenario (Hosseini & Barker, 

2016; Sahebjamnia et al., 2018), (Turnquist & Vugrin, 2013). As can be seen, our research proposal is 

predominantly related to the resilience approach based on communication & cooperation. In this regard, 

there needs to be more research on this type of proposal where characteristics of spatial dependence and 

externalities are considered. The present research provides a proposal for this gap. 

 

 

3 Methods & procedures 

 

The proposal presented in this research is based on the Spillover Theory (Krugman, 1996; Maier & 

Sedlacek, 2005; Mancheri et al., 2018). The importance of spillover is that it represents the conduct to 

transmit the information and externalities (unplanned effects from a planned activity) despite the failures 

or asymmetries in the communication medium. To detect the spillover effect, we apply the techniques of 

the Spatial Data Panel to measure the Spatial Dependence of each of the American and world regions and 

thus understand the degree of externalities between the geographical spaces of the same concerning their 

aggregate production. Our methodological proposal uses spatial dependence and technical efficiency 

(applying both Stochastic Frontier Model and Spatial Error/Durbin Model) and each American state’s 

market flow to detect which are the key States to influence logistics efficiency in California. To optimize 

this optimal distribution of information (spillover), we applied the Ford-Fulkerson algorithm (Kyi et al., 

2019; MIT, 2012), (see Algorithm 1), applying our index proposal to verify the maximum flow of 

transmissibility to a target region, thus managing to detect those critical regions to support of the logistics 

resilience. 

  

   Algorithm 1  Ford-Fulkerson ( ). Taken from Cormen et al., 2009 

 
1 for each edge ( ) ∈  

2  ( ).  = 0 

3 while there exists a path  from  to  in the residual network  

4   ( ) = min {  ( ) : ( ) is in } 

5  for each edge ( ) in  

6    if ( )  ∈  

7         ( ). = ( ).  +  ( ) 

8   else ( ) = ( ).  ( ) 

 

 

Just as Cormen et al. (2009) explain about the Ford-Fulkerson algorithm, “in each iteration of the Ford-

Fulkerson method, we find some augmenting path p and increase the flow f on each edge of  by the 

residual capacity  ( ). The following implementation of the method computes the maximum flow in a 

graph  by updating the flow ( ).  between each pair (u, v) of vertices connected by an 

edge. If u and v are not connected by an edge in either direction, we assume implicitly that ( ).  = 0. 
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The capacities  are assumed to be given along with the graph, and  = 0 if (u, v)  E. The 

expression  ( ) in the code is just a temporary variable that stores the residual capacity of the path .” 

 

As a first step, we constructed a modified model of the Cobb-Douglas function (Ioan & Ioan, 2015) that 

represents the current aggregate economic reality of the study regions (1): 

 

 

𝑌= 𝐾𝛼1𝐿𝛼2𝐻𝛼3𝑉𝛼4𝑃𝛼5𝑆𝛼6𝑅𝛼7𝐷1
𝛼8𝐷2

𝛼9𝑒𝜆 
 

where Y is aggregate production;  is the capital stock, composed of fixed capital formation undertaken 

in previous periods (OECD, 2021);  is the workforce;  is human capital;  is the average container 

vessel dwell time (ACVDT), which means “Within port terminal boundaries limited to terminals 

servicing container vessels” (Bicer, 2015);  is the percentage of transport workers about the 

economically active population; S is the amount of CO2 emissions (carbon dioxide) from the given 

region, expressed in millions of metric tons;  is the percentage of acceptability of the road infrastructure 

of the given region;  is the dichotomous variable that represents the two most notable economic 

contractions of recent years (corresponding to the year 2009 and the year 2020);  is the dichotomous 

variable that represents the most critical year of the current COVID-19 pandemic (the year 2020);  is 

technological change and are the respective regressors of each of our variables. For the present 

research, note that we do not apply any restriction concerning the sum of the exponents of each variable 

of the equation (1) to obtain in the results the best significant representation and that it is these who 

decide if the economic scenario represents an approach of increasing economic returns, constant or 

decreasing. Additionally, a second model was designed below that aims to represent the force of spatial 

transmissibility from one entity to another (2): 

 

𝐼𝑖𝑗=𝜓𝑟𝐹𝑖𝑗𝑇𝑖 

 

where I is the redirected force of spatial resilience between a supplying State ( ) to another receiving State 

( ), which in our case  represents the target region of California;  is the Spatial Dependency of positive 

externalities of a  given region by applying the Spatial Error/Durbin Model (Sarrias, 2020), using inverse 

matrix of spectral type (STATA, 2021) (the median centroid technique was applied to obtain the 

geographical coordinates of each entity applying ArcMap 10.3);  is the existing trade flow between 

given regional entities;  is the technical efficiency of the American states concerning the use of its 

resources used in its aggregate production. To apply this second model, we applied the Ford-Fulkerson 

algorithm proposed in 1955 ( Kyi et al., 2019). With this strategy, we optimize the capacity of externality 

transmission of resilience information added to a given state (California), thus detecting the key American 

entities to be considered in the logistics resilience of the State of California (see Fig. 1). 

. 

(1) 

(2) 
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Fig. 1. Flow Diagram of research´s logic 

 

The data sources used for our variables, along with their respective processing techniques and 

characteristics, are as follows: GDP ( ): State GDP (BEA, 2021); Capital stock ( ) (Gupta et al., 2011): 

Durable capital goods, stock (FRED, 2021); Human Capital ( ): Subnational Human Development Index 

(GlobalDataLab, 2021); Labor ( ): Civilian Labor Force by State, Persons (FRED, 2021); State 

geographic coordinates: Geographic files in SHP format (Census, 2021); Interstate trade flow ( ): Freight 

flows by State. Inbound & Outbound types, all commodities, Value (millions) (U.S. Department of 

Transportation, 2020), (BTS, 2021); The American States by region: Census regions and divisions of the 

United States (Census, 2021); average container vessel dwell time ( ), (BTS, 2021); % of Transport 

Workers ( ) (BTS, 2021); CO2 pollution level ( ) (BTS, 2021); Level of state acceptability of roads ( ) 

(BTS, 2021); liner shipping connectivity index (World Bank, 2022). 

 

We apply the logarithmic transformation to all our time series to be able to handle the regressors 

practically, thus leaving our model as follows (3): 

 

𝑙𝑛𝑌 = 𝑐 + 𝛼1𝑙𝑛𝐾 + 𝛼2𝑙𝑛𝐿 + 𝛼3𝑙𝑛𝐻 + 𝛼4𝑙𝑛𝑉 + 𝛼5𝑙𝑛𝑃 + 𝛼6𝑙𝑛𝑆 + 𝛼7𝑙𝑛𝑅 + 𝛼8𝐷1 + 𝛼9𝐷2 + 𝜀 

 

Moreover, we apply a battery of unit roots for data panels such as the Levin-Lin-Chu test and Hadri LM 

Stationary test (Levin et al., 2002; Hadri, 2000), to our logarithmic series to ensure that our results are not 

spurious concluded by most tests that our variables are stationary (See Appendix 1). Additionally, to 

verify that our data panels are valid in their results in long-term projections, we perform a battery of 

Cointegration tests such as Kao test, Pedroni test, Westerlund test (Kao, 1999; Pedroni, 1999; Westerlund, 

2013; Doornik & Hansen, 2008), whose results indicate their predominant acceptability of the value of 

less than 0.05 P-value to reject the null hypothesis that the variables do not cointegrate over time (see 

Appendix 1). Therefore, we can confirm that the Stochastic Frontier Model technique to represent the 

American regions’ economic reality is wisely applied since it is designed to work with variables that have 

truncated normal distribution. 

 

(3) 
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4 Results & discussion 

 

Applying the STATA 15.0 software, using both the Stochastic Frontier Model, the results of our 

regressors are as follows (Table 1): 

 

Table 1. Obtained results using Stochastic Frontier Model data panel, regions of United States. Standard errors are in 

parentheses. ***: p<.01, **: p<.05; *: p<.1. ---: discarded. 

 

Variable West Region Midwest Region South Region Northeast Region 

lnK .046497*** 0.0421802*** .0296157*** .0384048*** 

 (0.013495) (0.013531) (0.010217) (0.010259) 

lnH 9.2494*** 9.761799*** 7.025086*** 10.29487*** 

 (1.225882) (1.151157) (0.868602) (0.974122) 

lnL 1.145245*** 1.107944*** 1.08667*** 1.148758*** 

 (0.060498) (0.025918) (0.018052) (0.066449) 

lnV -0.13381 0.104109 -0.08794 -.2683055** 

 (0.099155) (0.081116) (0.061825) (0.116681) 

lnP .5610719*** .477419*** .4052202*** .5371065*** 

 (0.050775) (0.040892) (0.029785) (0.0765) 

lnS .1110817* -0.06057 -.1525545*** -.200898*** 

 (0.057916) (0.049235) (0.030262) (0.063033) 

lnR -.2198263*** -0.02442 0.02393 .1224705*** 

 (0.074625) (0.062596) (0.026004) (0.044392) 

 

-.0432268*** -.0460405*** -.037036*** -.052498*** 

 (0.013902) (0.013056) (0.00976) (0.017594) 

 

0.031114 0.017659 -0.00705 0.040307 

 (0.019363) (0.019049) (0.014751) (0.025246) 

c -1.810594*** -1.72435*** --- -0.33205 

 (0.730096) (0.269246)  (0.924344) 

 

The results of our regressors are as follows (Table 1): In this table, we can see a low capitalization in the 

South regions (0.0296) which means these regions have trouble adding formation of capital stock and, 

therefore, low investment in the infrastructure. The regions with the higher capital stock (West and 

Midwest regions) show low values on this variable, considering that traditional ones range from 10 to 20 

%. Additionally, we can see that the Northeast region has the best human capital regressor (10.2948). 

This region has a solid performance on education and health systems for its inhabitants; nevertheless, the 

lowest value on this one is presented in the South region (7.025). On the other part, the lnL variable (labor 

force) has an outstanding performance in the West and Northeast regions (1.1452 and 1.1487, 

respectively) which means that these regions have high productivity from their workers; meanwhile, the 

Northeast region´s average container vessel dwell time is undermining its aggregated production (-.2683) 

so it´s recommended to improve conditions for agile the dwell time on its ports. We can see that 

Transport workers (P) are scarce in the South Region (0.4052). 

 

The variable of CO2 contamination (S) has its highest regressor in the West region, which means that 

there are regions that have an economic production that is directly proportional to pollution; conversely, 

the other regions show the lowest values on their regressors, which means these regions are successfully 

applying sustainable mechanism for this issue. We can see that the variable R is significant only in the 

West and Northeast regions; the West region is taking poor productivity on it because there are backward 
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road conditions for every step forward in its production. This issue is an opportunity to consider public 

policy for the supply chain in the West Region. The dicotomical variable  (economic contraction) 

shows that the Northeast region is the most sensitive one to the economic contraction effect (years 2009 

and 2020); the dicotomical variable  (year of the pandemic COVID-19) shows South Region was the 

most affected region for this phenomenon. Finally, West Region has weaker regional resilience (-

2.30629). 

 

According to the Hausman test, all our spatial panels were random except type, indicating that most of the 

positive externalities of each region do not tend to clusters but are generated by random regional shocks. 

This issue makes our additional proposal to locate the entities closest to the weakest interstate trade flows 

highly necessary since they would serve as resilient supports to strengthen the Californian logistics 

development. The logic of the Maximum Flow of the Ford-Fulkerson algorithm (see figure 1) applied in 

our proposal of externalities lies in the fact that each region has a limited capacity for unique absorption 

of externalities if its commercial influence channels (serve as means of communication or cooperation) 

are smaller to receive such influence they would be saturated even when the influence comes from a high 

and technically efficient entity. This is based on the Economic Bifurcation Theory (Krugman, 2001) and 

the Spillover Theory (Keller, 2004). Therefore, obtaining the maximum flow of externalities which 

strengthen the logistics of California would indicate ideal states/regions which should take into account 

public policy for the supply chain in California. 

 

As additional observations resulting from Table 1: the negative effect of the ACVDT is most substantial 

in the Northeast region; the effect of transport workers into aggregated production is most notable in the 

West; the west region hurt its economic performance because of the conditions of their road structure (-

.2198); in all regions of our study, the economic contractions of 2008 and 2020 adversely affected, which 

corroborates the empirical effectiveness of our proposed model. Additionally, we can observe that 

COVID-19 was not significant enough to undermine the American regions during the start year of the 

pandemic. The next step is to obtain every American state´s Technical efficiency (T), from our stochastic 

frontier model results. By way of summary, we show in Fig.2, the two higher T´s of American states from 

every American region and the two lower ones: 

 
Fig. 2. Higher (green) and lower (red) Technical efficiencies 
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In Fig. 2, we can observe that California is one of the lower T in the West region. This issue shows that 

California is vulnerable to a logistics bottleneck because its resource usage is inefficient. That represents 

the necessity of applying our proposed model to redirect the logistics spillover from other American 

states. This issue represents an alert point: the most important maritime ports of the United States rely on 

a state (California). Unfortunately, it has less efficient usage of its resources, representing an undermining 

point of logistics bottleneck recovery. The next step of our methodology is to obtain the spillover effects 

from every American region. Therefore, we applied a battery of spatial models, with finally the spatial 

error/Durbin model being the most significative one (see Table 2):  

 
Table 2. Direct and Spillover effect results. ***: p<.01, **: p<.05; *: p<.1. 

 

 

 

Variable Direct Effect Spillover Effect Net influence Significative Spatial model 

Significance 

components 

spatial 

model 

West 

Region 

lnK .0450534*** --- .0450534*** 

Spatial Error Durbin Model 

Error Y= 

0.018; 

Lagged X´s = 

H: 0.024,  

P: 0.000,  

S: 0.000 

lnH 14.01838*** -2.927099** 11.09128*** 

lnL .8777859*** --- .8777859*** 

lnV -0.05376 --- -0.0537586 

lnP .2757404*** .6366899*** .9124303*** 

lnS .1533346*** .443118*** .5964525*** 

lnR -.3047475*** --- -.3047475*** 

 

-0.01505 --- -0.0150458 

 

-0.01234 --- -0.0123389 

Midwest 

Region 

lnK .0174405** .0261234** .0435639** 

Spatial Durbin Model 

Y = 0.000;  

Lagged X´s = 

H:.000, 

L: .000, 

V: .006, 

D1: .006 

lnH 8.490053*** 2.810077* 11.30013*** 

lnL .9241126*** .1651277* 1.08924*** 

lnV .1802833** -.3422084** -0.1619251 

lnP .434305*** .6505266*** 1.084832*** 

lnS -0.01632 -0.02445 -0.0407697 

lnR -0.03243 -0.04858 -0.0810086 

 

-.0540702*** .0424019* -0.0116682 

 

-.0235555** -.0352827** -.0588381** 

South 

Region 

lnK -0.00954 .0460242*** .0364806*** 

Y= .021;  

Lagged  X´s 

= 

K: .001, 

H: .000, 

M: .091, 

P: .000, 

: .018 

lnH 9.746734*** -3.586804*** 6.15993*** 

lnL .9178633*** 0.029398 .9472617*** 

lnV -0.02079 -0.00405 -0.0248435 

lnP .2419373*** .366882*** .6088194*** 

lnS -.05090611* -0.00991 -.060817* 

lnR -.0501292** -0.00976 -.0598894** 

 

-.0503392*** .0319877** -.0183515* 

 

-.0317558** -.0061829* -.0379387** 

Northeast 

Region 

lnK .0392592*** .0246749* .0639341*** 

Spatial Error Durbin Model 

Error Y: 

0.000;  

Y: .008;  

Lagged  X´s 

= 

K:.022, 

L: .000, 

P: .000, 

S: .023, 

R: .020 

lnH 7.411273*** -2.318809*** 5.092463*** 

lnL 1.211708*** .0820954* 1.293803*** 

lnV -0.08566 0.026802 -0.0588603 

lnP .1782686** .6018219*** .7800904*** 

lnS -.1562755*** -0.09884 -.255111*** 

lnR .1180347*** .1947189* .3127536*** 

 

-.0606765** .0189842* -.0416923** 

 

.0638007* -0.01996 .043839* 
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In Table 2, we show the Direct Effect (generated externalities that affect inner American states in a 

region), the Spillover effect (generated externalities that affect external American states to a different 

region), and Net influence (the net difference between the Direct and Spillover effect). As we can 

observe, our results are significative: finally, we can be applied our second model (2) using and, by way 

of summary, the obtained results for the implementation of California resilience based on our 

methodology are presented below (Table 3): 
 

Table 3. Results of our proposal index of resilience logistics 

 

Midwest region To California South Region To California Northeast Region To California 

Kansas 116.9603  Texas 130.5295  Massachusetts 194.5519 

Illinois 109.9145  South Carolina 126.8895  New Hampshire 192.5755 

Missouri 108.755  Oklahoma 110.9701  Rhode Island 178.0586 

Michigan 105.5942  North Carolina 105.5092  Vermont 159.8075 

South Dakota 104.8108  Virginia 105.1406  Connecticut 0 

Indiana 101.8785  Georgia 103.4147    
Iowa 100.305  Louisiana 97.5415    
Minnesota 94.7293  Kentucky 95.3674    

   Mississippi 94.1701    

   Alabama 93.2622    

   Arkansas 93.1568    

   Delaware 82.9803    

   District of Columbia 78.1471    

 

 

In Table 3, we can observe North Dakota (West Region), West Virginia (South Region), and New York 

(Northeast Region). These have the higher  values, representing the key American states with the 

maximum flow of logistics spillover with high benefits to California. Therefore, these American states 

have aggregated production and infrastructure, contributing to California’s resilience in logistics and 

economic matters. So, it should be taken into account to improve public policy for California's growing 

logistics and economy. In Figure 3, by way of summary, we represent these key American states which 

function as a logistics influencers States to California:  

 
Fig. 3. Logistics influencers States to California 
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With the results obtained, it is indispensable to strengthen the resilience of the logistics infrastructure in 

all American regions. By doing so, the key states detected for the resilience of California will contribute 

to the logistical strengthening of that region in the face of bottlenecks in supply chains. Current public 

policies must consider the strengths and weaknesses detected in the spatial economic plane, such as those 

detected in this research, to face integrally the crisis of supply chains such as those currently facing 

California. 

 

 

5 Conclusions & future research 

 

This research provides a methodological contribution for optimising the directed transmission spillover 

from one region to a specified target region through the application of two Cobb–Douglas models, which 

represent economic and spatial dependence alongside regional technical efficiency and interstate 

commercial flow behaviours. We employ a Spatial Data Panel model (spatial error/Durbin), a Stochastic 

Frontier model, and graph theory via the Ford–Fulkerson algorithm. The results indicate that California’s 

logistics public policy should integrate Wyoming and New Mexico as critical regional pivots, with New 

York, West Virginia and North Dakota serving as external support states. Additionally, it recommends 

intervention in American states with low technical resource efficiency—California and Nevada in the 

West; Minnesota and Michigan in the Midwest; Delaware and Virginia in the South; and Vermont and 

Pennsylvania in the Northeast—and the implementation of new policy strategies to leverage the most 

efficient states in each region: Wyoming and New Mexico in the West; Nebraska and Ohio in the 

Midwest; Tennessee and West Virginia in the South; and New York and New Hampshire in the 

Northeast. Moreover, we find that states with high technical efficiency are not always those with the 

strongest economic performance: California, for instance, leads economically in its region while ranking 

among the least efficient in resource use. We also observe that the proportion of transport workers is most 

pronounced in the Midwest, while the West and South suffer economically due to their road 

infrastructure. Regarding indirect spillover effects, the Midwest exerts the most significant negative 

influence on ACVDT, yet also the greatest positive influence in terms of transport-worker percentage. 

Regional road conditions exhibit no significant indirect effects between regions. 

 

This research’s approach combines spatial analysis and graph-theory techniques to develop a 

comprehensive methodology for enhancing logistics resilience and addressing California’s supply-chain 

bottleneck. Future research lines include conducting sensitivity analyses by commodity type within the 

United States to assess spatial influences and technical efficiency in the proposed framework and provide 

strategic spatial solutions per commodity category, as well as applying the methodology at municipal and 

county levels. 
 

 

References 

 
BEA. (2021). BEA data. Bureau of Economic Analysis, U.S. Department of Commerce. 

https://www.bea.gov/ 

Bicer, I. (2015). Dual sourcing under heavy-tailed demand: An extreme value theory approach. 

International Journal of Production Research, 53(16), 4979–4992. 

BTS. (2020). Port performance freight statistics annual report to Congress 2020. Bureau of Transportation 

Statistics, U.S. Department of Transportation. 

BTS. (2021). Freight flow by state. State Transportation Statistics. https://www.bts.gov/ 

Census. (2021). United States Census Bureau. https://www.census.gov/ 

https://www.bea.gov/
https://www.bts.gov/
https://www.census.gov/


Moreno-Baca et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 92-105. 

102 

 

Chakraborty, T., Chauhan, S. S., & Ouhimmou, M. (2016). Mitigating supply disruption with backup 

supplier under uncertain demand: Competition and cooperation. International Journal of Production Research. 

Christopher, M., & Rutherford, C. (2004). Creating a supply chain resilience through agile Six Sigma. 

Critical Eye Publications. 

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). The 

MIT Press. 

Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford 

Bulletin of Economics and Statistics, 70, 927–939. 

Fiksel, J. (2003). Designing resilient, sustainable systems. Environmental Science & Technology, 37(23), 

5330–5339. 

FRED. (2021). Economic Research. Federal Reserve Bank of St. Louis. https://fred.stlouisfed.org/ 

Gallagher, J. (2021). California lawmakers seek supply chain ‘state of emergency’. American Shipper. 

https://www.freightwaves.com/news/california-lawmakers-seek-supply-chain-state-of-emergency 

GlobalDataLab. (2021). Human development indices (5.0). https://globaldatalab.org/shdi/ 

Gupta, S., Kangur, A., Papageorgiou, C., & Wane, A. (2011). Efficiency-adjusted public capital and 

growth. International Monetary Fund. 

Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. Econometrics Journal, 3, 148–161. 

Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision-making approaches for supplier evaluation 

and selection: A literature review. European Journal of Operational Research, 202, 16–24. 

Hosseini, S., & Barker, K. (2016). A Bayesian network model for resilience-based supplier selection. 

International Journal of Production Economics, 180, 68–87. 

Hosseini, S., & Khaled, A. (2016). A hybrid ensemble AHP approach for resilient supplier selection. 

Journal of Intelligent Manufacturing, 1–22. 

Hosseini, S., Morshedlou, N., Ivanov, D., Sarder, M. D., Barker, K., & Al Khaled, A. (2019). Resilient 

supplier selection and optimal order allocation under disruption risks. International Journal of Production 

Economics, 213, 124–137. 

Ioan, C. A., & Ioan, G. (2015). The complete theory of Cobb–Douglas production function. Acta 

Universitatis Danubius, 11(1). 

Ivanov, D. (2018). Structural dynamics and resilience in supply chain risk management. Springer. 

https://doi.org/10.1007/978-3-319-69304-0 

Jabarzadeh, A., Fahimnia, B., & Sabouhi, F. (2018). Resilient and sustainable supply chain design: 

Sustainability analysis under disruption risks. International Journal of Production Research. 

Jarosz, B. (2021, October). Supply chain crisis at California ports could sink holiday gifts. KTVU Fox. 

https://www.ktvu.com/news/a-tale-of-two-cities-supply-chain-crisis-at-california-ports-could-sink-holiday-gifts 

Kamalahmadi, M., & Parast, M. M. (2016). An assessment of supply chain disruption mitigation strategies. 

International Journal of Production Economics, 184, 210–230. 

Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of 

Econometrics, 90, 1–44. 

Keller, W. (2004). International technology diffusion. Journal of Economic Literature, 42, 752–782. 

Khaled, A. A., Jin, M., Clarke, D. B., & Hoque, M. A. (2015). Train design and routing optimization for 

evaluating criticality of freight railroad infrastructures. Transportation Research Part B, 71, 71–84. 

Khalili, S. M., Jolai, F., & Torabi, S. A. (2016). Integrated production-disruption planning in two-echelon 

systems: A resilience view. International Journal of Production Research, 55(4), 2017. 

Korber Supply Chain Blog. (2021). California port gridlock significantly impacts U.S. supply chain. 

https://www.koerber-supplychain.com/supply-chain-news/california-portgridlock-significantly-impacts-us-supply-

chain/ 

Krugman, P. (1996). How the economy organizes itself in space: A survey of the new economic geography. 

Stanford University Press. 

Krugman, P., Fujita, M., & Venables, A. J. (2001). The spatial economy: Cities, regions and international 

trade. The MIT Press. 

https://fred.stlouisfed.org/
https://globaldatalab.org/shdi/
https://www.koerber-supplychain.com/supply-chain-news/california-portgridlock-significantly-impacts-us-supply-chain/
https://www.koerber-supplychain.com/supply-chain-news/california-portgridlock-significantly-impacts-us-supply-chain/


Moreno-Baca et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 92-105. 

103 

 

Kyi, M. T., Maw, S. S., & Naing, L. L. (2019). Mathematical estimation for maximum flow in electricity 

distribution network by Ford–Fulkerson iteration algorithm. International Journal of Scientific and Research 

Publications, 9(8). https://doi.org/10.29322/IJSRP.9.08.2019.p9229 

Lepore, S. M. (2021, Month Day). Ships at California ports are now waiting record 17 days to unload: 

Supply crisis gets worse after Biden vowed to fix it. Daily Mail. https://www.dailymail.co.uk/news/article-

10199137/Backup-container-ships-outside-California-nearly-17-days.html 

Levin, A., Lin, C.-F., & Chu, C.-S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample 

properties. Journal of Econometrics, 108, 1–24. 

Liu, T., & Lee Lam. (2013). Impact of port disruption on transportation network. Semantic Scholar. 

Lucker, F., & Seifert, R. W. (2017). Building up resilience in a pharmaceutical supply chain through 

inventory, dual sourcing and agility capacity. Omega, 73, 114–124. 

Maier, G., & Sedlacek, S. (2005). Spillovers and innovations. Springer. 

Mancheri, N. A., Sprecher, B., Deetman, S., Young, S. B., Bleischwitz, R., Dong, L., Kleijn, R., & Tukker, 

A. (2018). Resilience in the tantalum supply chain. Resources, Conservation & Recycling, 129, 56–69. 

Mandal, S., Sarathy, R., Rao Korasiga, V., Bhattacharya, S., & Ghosh Dastidar, S. (2016). International 

Journal of Disaster Resilience in the Built Environment, 7(5), 544–562. 

McCarthy, B. (2021, October 17). Here’s why the supply chain is a mess—and will be for a while. Tampa 

Bay Times. https://www.tampabay.com/news/business/2021/10/17/heres-why-the-supply-chain-is-a-mess-and-will-

be-for-a-while/ 

Meena, P., & Sarmah, S. (2013). Multiple sourcing under supplier failure risk and quantity discount: A 

genetic algorithm approach. Transportation Research Part E: Logistics and Transportation Review, 50, 84–97. 

MIT OpenCourseWare. (2012). Design and analysis of algorithms [Course materials]. https://ocw.mit.edu 

Namdar, J., Xueping, L., Sawhney, R., & Pradhan, N. (2017). Supply chain resilience for single and 

multiple sourcing in the presence of disruption risks. International Journal of Production Research, 56, 1–22. 

Ngo, M. (2021, October 28). Program to lend billions to aid California’s supply-chain infrastructure. The 

New York Times. https://www.nytimes.com/2021/10/28/us/politics/california-ports-supplychain.html 

OECD. (2021). Glossary of statistical terms: Perpetual inventory method. 

https://stats.oecd.org/glossary/detail.asp?ID=2054 

Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. 

Oxford Bulletin of Economics and Statistics, 61, 653–670. 

Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). Ensuring supply chain resilience: Development of a 

conceptual framework. Journal of Business Logistics, 31(1), 1–21. 

Sadghiani, N. S., Torabi, S., & Sahebjamnia, N. (2015). Retail supply chain network design under 

operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95–

114. 

Saghafian, S., & Van Oyen, M. P. (2016). Compensating for dynamic supply disruptions: Backup 

flexibility design. Operations Research, 64(2), 390–405. 

Sahebjamnia, N., Torabi, A., & Mansouri, A. (2018). Building organizational resilience in the face of 

multiple disruptions. International Journal of Production Economics, 197, 63–83. 

Sarrias, M. (2020). Notes on spatial econometrics. Universidad de Talca. 

Sawik, T. (2018). Two-period vs. multi-period model for supply chain disruption management. 

International Journal of Production Research. 

Scholten, K., & Schilder, S. (2015). The role of collaboration in supply chain resilience. Supply Chain 

Management: An International Journal, 20(4), 471–484. 

Shilong, Y., Rusling, M., & Yuan, X. (2021). Supply chain crisis reveals U.S. failing infrastructure. 

XinhuaNet. http://www.news.cn/english/2021-10/29/c_1310278206.htm 

Silverthorn, L. (2021, November 3). CalChamber offers practical steps to address supply chain crisis. 

CalChamber Advocacy. https://advocacy.calchamber.com/2021/11/03/calchamber-offers-practical-steps-toaddress-

supply-chain-crisis/ 

Spiegler, V. L. M., Niam, M. M., & Wikner, J. (2012). A control engineering approach to the assessment of 

supply chain resilience. International Journal of Production Research, 50(21), 6162–6187. 

https://www.tampabay.com/news/business/2021/10/17/heres-why-the-supply-chain-is-a-mess-and-will-be-for-a-while/
https://www.tampabay.com/news/business/2021/10/17/heres-why-the-supply-chain-is-a-mess-and-will-be-for-a-while/
https://ocw.mit.edu/
https://www.nytimes.com/2021/10/28/us/politics/california-ports-supplychain.html
https://stats.oecd.org/glossary/detail.asp?ID=2054
http://www.news.cn/english/2021-10/29/c_1310278206.htm
https://advocacy.calchamber.com/2021/11/03/calchamber-offers-practical-steps-toaddress-supply-chain-crisis/
https://advocacy.calchamber.com/2021/11/03/calchamber-offers-practical-steps-toaddress-supply-chain-crisis/


Moreno-Baca et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 92-105. 

104 

 

StataCorp. (2021). Stata spatial autoregressive models reference manual (Release 17). StataCorp LLC. 

Tomlin, B. T. (2006). On the value of mitigation and contingency strategies for managing supply chain 

disruption risks. Management Science, 52(5), 639–657. 

Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation 

under operational and disruption risks. Transportation Research Part E: Logistics and Transportation Review, 79, 

22–48. 

Tukamuhabwa, B., Stevenson, M., Busby, J., & Zorzini, M. (2015). Supply chain resilience: Definition, 

review and theoretical foundations for further study. International Journal of Production Research. 

Turnquist, M., & Vugrin, E. (2013). Design for resilience in infrastructure distribution networks. 

Environment Systems & Decisions, 33(1), 104–120. 

U.S. Department of Transportation, Bureau of Transportation Statistics. (2020). State Transportation 

Statistics. https://www.bts.gov/ 

Vann, M. (2021). What’s causing America’s massive supply-chain disruptions? ABC News. 

https://abcnews.go.com/Politics/whats-causingamericas-massive-supply-chain-disruptions/story?id=80587129 

Wan, D. (2021). Here’s how California can help fix America’s broken supply chain. CalMatters. 

https://calmatters.org/commentary/2021/11/heres-how-california-can-help-fix-americas-broken-supply-chain/ 

Westerlund, J. (2005). New simple tests for panel cointegration. Econometric Reviews, 24, 297–316. 

Wieland, A., & Wallenburg, C. M. (2013). The influence of relational competencies on supply chain 

resilience: A relational view. International Journal of Physical Distribution & Logistics Management, 43(4), 300–

320. 

World Bank. (2022). Liner shipping connectivity index (maximum value in 2004 = 100). 

https://data.worldbank.org/indicator/IS.SHP.GCNW.XQ 

Yildiz, H., Yoon, J., Talluri, S., & Ho, W. (2016). Reliable supply chain network design. Decision 

Sciences, 47(4), 661–678. 

Yoon, J., Yildiz, H., & Talluri, S. (2016). Risk management strategies in transportation capacity decisions: 

An analytical approach. Journal of Business Logistics, 37(4), 364–381. 

Zhang, Y., Qi, M., Lin, W.-H., & Miao, L. (2015). A metaheuristic approach to the reliable location routing 

problem under disruption. Transportation Research Part E: Logistics and Transportation Review, 83, 90–110. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.bts.gov/
https://abcnews.go.com/Politics/whats-causingamericas-massive-supply-chain-disruptions/story?id=80587129
https://calmatters.org/commentary/2021/11/heres-how-california-can-help-fix-americas-broken-supply-chain/
https://data.worldbank.org/indicator/IS.SHP.GCNW.XQ


Moreno-Baca et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 92-105. 

105 

 

Appendix 1 

 

      Unit roots test for time series 

Panel Variables 
Levin-Lin-

Chu 
P-value 

West Region 

lnY -5.0428 0 

lnK -10.4849 0 

lnH -6.5323 0 

lnM -2.9508 0.0016 

lnV -5.2817 ** 0 

lnP -6.8429 ** 0 

lnS -6.8471 0 

lnR -5.6402 0 

Midwest Region 

lnY -3.9999 0 

lnK -12.8783 0 

lnH -7.9331 0 

lnM -2.7175 0.0033 

lnV -2.7175 0.0033 

lnP -3.3326 0.0004 

South Region 

lnY -7.0759 0 

lnK -13.9787 0 

lnH -10.4449 0 

lnM -5.7874 0 

lnV -6.0399** 0 

lnP -4.4155 0 

lnS -7.3731 0 

Northeast Region 

lnY -3.2993 0.0005 

lnK -4.3799 0 

lnH -4.8067 0 

lnM -4.5974 0 

lnV -4.3946** 0 

lnP -3.1989 0.0007 

lnS -4.4808 0 

lnR -4.4062 0 

*** p<0.01, ** p<0.05, * p<0.1. 

 

Results of Cointegration Test for Data Panel 

Kao test* Unadjusted Modified Dickey-Fuller t Unadjusted Dickey-Fuller t 

Panels Statistic P-value Statistic P-value 

West Region -3.8787 0.0001 -3.5048 0.0002 

Midwest Region -2.8692 0.0021 -2.117 0.0171 

South Region -1.9487 0.0257 -0.9915 0.1607 

Northeast Region 1.0444 0.1481 0.3169 0.3756 

 

Pedroni 
Modified Phillips-

Perron t 
Phillips-Perron t 

Augmented Dickey-

Fuller t 

Panels Statistic P-value Statistic P-value Statistic P-value 

West Region 3.7427 0.0001 -2.4553 0.007 -3.9076 0 

Midwest Region 4.0414 0 3.8731 0.0001 4.0102 0 

South Region 4.748 0 -1.0132 0.1555 -1.4605 0.0721 

Northeast Region 3.254 0.0001 2.7453 0.0006 1.4085 0.0795 

  
Westerlund Statistic P-value 

West Region 1.809 0.0352 

Midwest Region 2.9585 0.0015 

South Region 3.3421 0.0004 

Northeast Region 0.4432 0.3288 

 


