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Abstract. Organizations often approach portfolio optimization problems. In many practical cases, the decision-maker 

faces uncertainty relating to future uncertain states of nature that cause variability in project benefits, in resources to be 

consumed by the project and resources available to support the portfolio, this often carries uncertainty, due to cognitive 

limitation of human beings, a great quantity of deal of the information of interest. We used an interval approach for 

describing and representing uncertainty associated with problems of real-life decision-making. The aim of this work is 

to provide an approach of handling the uncertainty found in project portfolio selection using grey numbers, which are a 

way of interval numbers. A fundamental step of our proposal was to generalize NSGA-II for the treatment of multi-

objective grey optimization problems. Our proposal provides a better quality of solution concerning the treatment of 

uncertainty. 
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1. Introduction. 

Resource allocation problems are ubiquitous in enterprises and governmental organizations ([22]). Projects require resources 

and the organization faces the problem how to distribute them in order to meet organizational objectives. The problem 

consists of selecting a subset of projects that together contribute, in the best possible way, to the accomplishment of objectives 

of the organization that distributes the resources. This strategic decision problem is known as project portfolio selection. And 

it can be raised in his general form as follows:  

 

Let us suppose that there is a finite set A of N projects, each described by estimates of its impacts and resource consumption. 

A portfolio is a subset of A that can be represented by a binary component vector 1 2, ,..., ,nX x x x  where the value “1” of 

the component ix  indicates that the i-th project is the one that will be financed.  

 

Portfolio consequences are usually described by multiple attributes related to organizational goals and objectives. A vector 

of impacts        1 2, ,..., pz x z x z x z x  is associated with consequences of portfolio X considering P criteria. In a simpler 

case  z x  is obtained through the sum of benefits of the selected projects. Without loss of generality, we can assume that 

higher values of criteria are more preferable than lower values. The best portfolio is obtained by solving Problem 1: 

 

       1 2, ,..., p

F

Maximize z x z x z x

x R

, (1) 

where RF is the space of feasible portfolios, usually determined by the available budget and by other constraints that the 

Decision Maker (DM) wants to impose (e.g.: budget limits on types, geographic areas, or social roles of projects). This 

problem has been approached by many scientific paper (e.g. 5, 6, 23, 35, 43).

                                                 
1 Corresponding author: E-mail address: fausto.balderas@itcm.edu.mx 



Balderas  et al. / Metaheuristic Robust Optimization of Project Portfolios using an Interval-Based Model of  Imprecisions. IJCOPI, Vol. 7, No. 3, Sep-Dec 

2016, pp. 101-118. ISSN: 2007-1558. 
 

102 

 

Portfolio decision analysis (PDA) can be defined as a body of theories, methods and practices which helps decision makers 

to select a subset from a very large set of projects through mathematical modeling taking into account relevant constraints, 

preferences, uncertainty or imprecision ([38]).  

 

The difficulty of PDA-related problems comes from some of the following factors or their combination:  

 

Large size of entry space. It’s a decision-making problem with exponential complexity even when decisions are about 

allocating or not the resources to each of candidate projects. The complexity increases when decisions about partial support 

to projects are admitted.  

 

Multidimensional consequences of projects and portfolios. This problem requires a multi-criteria description in terms of 

usually conflicting attributes. Sometimes, the solution space is bi or three-dimensional. But in more complex problems, the 

amount of dimensions may easily exceed human cognitive capabilities for evaluating different candidate solutions ([17]).  

 

Qualitative, imprecise or uncertain information. Qualitative information is difficult to handle using optimization methods. 

The contribution of projects to portfolio measures is often not accurately known, that is, there exists imprecision due to lack 

of knowledge about future states of nature (probabilistic uncertainty), or due to a simple lack of information (vagueness), 

which strictly speaking is very difficult to model using probability distributions. Information on the time and resources 

required to complete the projects as well as total resources available to DM may also be imprecise. Vague approximations 

and areas of ignorance, which affect modeling and data, limit the scientific approach in Operational Research-Decision 

Aiding ([37]). In the following we refer those imperfections under the umbrella term of “uncertainty”.  

 

It is assumed that the DM’s system of preferences and values reflects appropriately the aspirations of the organization that 

distributes resources. Solving a multi-objective version of Problem 1 means to find a solution portfolio that best satisfies 

DM´s preferences on conflicting criteria. Most of the researches in the literature are dedicated to the mathematical and 

algorithmic complexities of Problem 1 and to the modeling of the DM’s preferences. However, significant elements of 

uncertainty that affect the evaluation of impacts and the very definition of feasible region are often involved in this process. 

Roy in [37] defines a frailty point as a place in the model, or in procedure processing the model, where uncertainty can be 

found. To meet the concern for robustness properly, careful inventory and consideration of all frailty points the formal 

representations are required ([37]). In Problem 1 the most remarkable uncertainty is often found in project multi-dimensional 

impacts, project resource consumptions, and total amount of available resources. Following [37], the term robust is a qualifier 

that refers to an aptitude to withstand uncertainty, to provide protection against deplorable results that are much worse than 

expected. This qualifier applies to solutions, conclusions, recommendations and methods. Robustness is a concern that has 

to be taken into account. However, there are relatively few researches devoted to address robustness in Problem 1.  

 

This contribution is intended to present a new method of handling uncertainty and obtaining more robust solutions in multi-

objective optimization portfolio problems by using “grey” numbers that are expressed as intervals of real numbers to reflect 

the imprecision of a magnitude. Interval analysis is a method originated independently by Sunaga [44] and Moore [32] and 

developed ever since the 1950s by a score of mathematicians as an approach to putting bounds on rounding errors and 

measurement errors in mathematical computations. Grey mathematics is a variant of interval analysis with specific properties.  

Liu et al. in [10] states that interval analysis should be seen righteously as a proper sub-portion of grey mathematics.  

 

Section 2 discusses some approaches on how to reflect uncertainty in the problem of project portfolio selection. Section 3 

presents the conceptual basis that allows grey numbers to be used in the solution of Problem 1, generalizing several concepts 

of optimization to grey environment. Section 4 describes methods we propose for portfolio optimization using grey 

mathematics and an extension of a popular multi-objective evolutionary algorithm to that environment. Section 5 provides 

details on computational experiments made, which show the elegance of our proposal and its advantages with respect to 

traditional heuristic approaches to handling uncertainty. Lastly, our conclusions are given in Section 6. 

2. A general overview of different approaches to modelling uncertainty in the problem of project portfolio 

selection. 

Uncertainty comes from a poor or incomplete knowledge. The term can be employed in different situations; it is commonly 

used in the fields of statistics and economics, where certain circumstances make it impossible to provide an accurate diagnosis 
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of what will happen in the future; that is to say, from this perspective, it has negative implications for projects, as it obviously 

limits investments. Uncertainty is also applied in decision-making; indeed, this sort of circumstance has enormous relevance 

at the time of deciding whether to follow one or another route in a determined project. Let us distinguish two types of 

uncertainty:  

 

First, uncertainty relating to future uncertain states of nature that cause variability in project benefits, in resources to be 

consumed by the project and resources available to support the portfolio. Second, the imprecision associated with vagueness, 

non-stochastic imprecise knowledge. Probability and fuzzy set theories are tools that are generally used to approach these 

issues.  

 

Probabilistic modeling has been chiefly applied to handle the variability of projects’ impacts. Many papers introduce 

additional criteria into the problem of optimization (1) trying to minimize a risk measure. Various researches differ regarding 

the definition of this measure (cf. [3, 14, 23, 32, 34, 40]).  To our knowledge, distributions of probability have not been used 

to model the imprecision in resources required by the projects.  

 

Fuzzy Set Theory has been usually applied for modeling not only the imprecision in impacts, but also the vagueness of 

resources and flexible information of projects ([46]). By using fuzzy set-based modeling, benefits and imprecisions are added 

in a fuzzy manner through operators. The way in which these operators model the attitude in the face of DM’s uncertainty 

and the manner in which he/she counterbalances risks and benefits can be questioned. The results depend on the election of 

aggregation operator, and in the absence of a regulatory structure of the fuzzy logic, there isn’t one sole way to do it.  

 

For instance, Lin and Hsieh [28] and Wei and Chang [47] used linguistic variables to model imprecise information about 

criteria. Damghani et al. in [9], Huang in [19] and Kuchta in [24] employed fuzzy numbers to model requirements of resources 

and imprecise benefits. Bhattacharyya et al. in [4] solved a fuzzy problem of three-objective optimization by maximizing a 

measure of benefit and minimizing costs and risks.  

 

Liesio et al. proposed Robust Portfolio Modeling (RPM) in [25, 26]. Using a weighted sum function model, this approach 

identifies solutions for which no other feasible portfolio yields greater value for all possible realization of the uncertain project 

scores and criterion weights. By requiring greater value for all possible realization of uncertain parameters, RPM is probably 

a very conservative approach. Inspired on RPM, a more flexible approach that allows adjustments to the level of conservatism 

has been recently proposed by Fliedner and Liesiö in [18].  

 

Due to complexity and uncertainty present in decision-making, as well as to cognitive limitation of human beings, a great 

deal of the information of interest, such as project benefits, resources to be consumed by the project and resources available 

to support the portfolio, are obtained through gross estimates or usually inaccurate data collection. A natural and simple way 

to express the imprecision inherent to this information is through intervals of uncertainty, without the need to specify whether 

it is due to variability of states of nature or to vagueness of information.  

 

The grey approach is a novel tool for describing and representing uncertainty associated with problems of real-life decision-

making. Grey numbers have been applied in many real-world problems, such as manufacture (e.g. [21, 39]), hydrology (e.g. 

[1]), decision-making (e.g. [45]), medicine (e.g. [15]), and risk assessment (e.g. [31]). The grey approach was applied by 

Arasteh and Ahliamadi in [2] to portfolio project selection in combinations with Real Option Theory. To the best of our 

knowledge, there have been no researches that applied the grey approach to the treatment of uncertainty related to impacts 

and resources in the frame of Problem 1. The application of grey mathematics allows an easy adjustment of the level of 

conservatism. Thus, the DM can select a final best compromise in accordance with his/her preferences, beliefs and attitude 

toward uncertainty. This contribution intends to provide a deep look on this area. 

3. Theoretical basis. 

3.1. Fundamental concepts of grey arithmetic. 

The grey approach was proposed by Deng in [13]. It is a mathematical theory based on the concept of grey number. In this 

section, we provide elements of this theory and some definitions that allow us to extend it to the context of optimization and 
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the treatment of project portfolio problems. A grey number is an entity that reflects a quantitative property whose exact value 

is unknown, but the range within which the value lies is known.  

 

A grey number is generally denoted by " " and is represented in terms of a range as ,A A A  
 

where A  is the lower 

limit and A  is the upper limit of the grey number ([30]).  

 

A real number a belonging to the interval ,A A 
 

is said to be a realization of the grey number A .  

 

Shi et al. in [41] define certain sorting relation rules over grey numbers. First, the measure of possibility of D E  is 

introduced through Equation 2: 

 

 
  *

*

max 0, max 0,L D E
P D E

L

 
    , (2) 

where    L D D D    is the length of grey number D  and    *L L D L E    . 

 

The sorting relation between D  and E  is determined as follows:  

(i) If D E  and D E , it is said that D  is equal to E , denoted as D E  . Then   0.5.P D E     

(ii) If E D , it is said that E is greater than D , denoted as E D  . Then   1.P D E     

(iii) If E D , it is said that E is smaller than D , denoted as E D  . Then   0.P D E     

(iv) If D E D E    or ,D E E D    when   0.5,P D E     it is said that E  is greater than D , denoted as 

E D   When   0.5,P D E     it is said that E  is smaller than D , denoted as E D  . 

 

When  P D E       0.5   we say that E  is greater   than D , denoted as E D   .   is called the 

support of .D E  Let d and e be two currently undetermined realizations from D  and E , respectively;   can be 

interpreted as a degree of credibility of the statement “once both realizations are determined, e will be greater or equal than 

d”. This helps the DM to ensure the robustness of D E  , that is: to have a strong belief on E  is not less than D  

when they are instanced as real numbers. 

3.2. Mono-objective grey optimization problems. 

We will introduce the following concepts for our work: 

 

Definition 1: We will call grey vector an n-tuple of grey numbers, symbolized by: 

 

1 2, ,..., nx x x x . (3) 

 

Definition 2: A grey function of grey variables is an application of a set of grey vectors  X  in a set of grey numbers

 Y , such that each element x  of  X  matches an element y of Y ; 

 

: ,f x y    (4) 

where the set  X  is the domain of function (DomF) and the set  Y  is the image of function (ImF) . 

 

Variables of the domain of function are called decision variables, that are adjustable within a grey optimization problem; they 

are instantiated as grey numbers and their values are denoted as: 
jx  for 1,2,..., .j n  

 

Definition 3: Maximum of a grey function: It is a grey number of the image of function such that it is greater than or equal to 

all grey numbers belonging to the image of grey function: 

 

 
max max|

Im .F

Maximum f x

y y y

y

  

   

 

 (5) 
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Definition 4: Maximizing a grey function, is the process of finding the grey vector of domain where the function takes a 

maximum value: 

 

 Maximizing f x  . (6) 

Definition 5: We will call grey objective function a grey function that expresses certain quality dimension of a decision-

making problem. 

 

Definition 6: A grey optimization problem is the process of maximizing a grey objective function within a feasible region: 

 
.F

Maximizing f x

x R

 

 
 (7) 

In general, the feasible region is determined by a set of grey constraints denoted as: 

 

  0; 1,2,..., ,ig x i m     

 

where m is the number of constraints. 

3.3. Grey multi-objective optimization problem. 

Below we present the extension of grey mathematics to the context of multi-objective optimization. 

 

Definition 7: Dominance between two grey vectors: Let D  and E  be two grey vectors we say that  D  dominates E   

(denoted by D E  ) if i id e    for all i values and there is at least one i such that i id e   . 

 

Definition 8: The support of the statement “ E  is not dominated by D ” is defined as: 

 

    j, maxND j jE D P e d      (8) 

Definition 9: Non-dominance in a set of grey vectors: Let  , ,...,U D E K      be a set of grey vectors; we will say that 

E  is non-dominated in the set U , if there is no vector that belongs to U  and that dominates E . 

 

Definition 10: The support of the statement E  is non-dominated in the set U  is defined as: 

 

    jmin ,ND NDE E D

D U

    

 
, (9) 

The support of the above statement will be called the Paretian Degree of E  on the set U . 

 

Definition 11: We will call grey multi-objective function a vectorial function that maps a domain of grey vectors (DomF) in 

a set image of grey vectors (ImF). 

 

Definition 12: Let us consider the grey multi-objective optimization problem denoted by: 

 

 
     1 2, ,..., ,

: ,

,

k

n

i

F

Maximize F x

f x f x f x

f

x R

  

      
 

 

 

 (10) 

subject to: 

 

  0; 1,2,..., ,ig x i m     

 

where x  belongs to  1 2 3, , ,...,n

nx x x x     , n is the number of decision variables, k is the number of objective 

functions, m is the number of constraints. 
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Definition 13: We will call Pareto optimal *D  such grey vector in the image of F  that is non-dominated in the image 

of the grey vectorial function. 

 

Definition 14: We will call grey Pareto point a grey vector x  that is a pre-image of a grey Pareto optimal. 

 

Definition 15: We will call grey Pareto frontier the set of all grey Pareto optimals of a multi-objective grey optimization 

problem. 

 

Solving a grey multi-objective optimization problem consists of finding its grey Pareto optimal that is the best compromise 

in agreement with the system of preferences and the attitude toward uncertainty of the DM in charge of the evaluation of 

solutions. Among others, a way to aggregate multi-criteria preferences is the TOPSIS (Technique for Order Performance by 

Similarity to Ideal Solution) method, which will be described in the following sections. Robustness analysis can be performed 

by using the Paretian degree and greater levels of support   in checking the fulfillment of inequality constraints. 

3.4. Grey multi-objective project portfolio problems. 

Let us consider N projects that meet the minimum requirements of acceptability and compete for financing. An important 

element of portfolio problems is the interaction between the projects that may be in terms of benefits or in terms of the 

consumed resources. 

 

Let B  be the total amount of financial resources available. Let P be the total number of project objectives. Information on 

the set of projects will be given in the form of the following matrix: 

 

 

1 1,1 1,

, 1

,1 ,

...

. . . .
,

. . . .

...

p

N P

N N N P

c o o

R

c o o



   
 
  
 
 
    

  (11) 

where the elements of the first column account for the costs of projects   ; 1,2,...,
T

ic i N  and the elements of the other 

columns account for the contributions to project objectives
, ; 1,2,..., .i po p P   

 

In general, the grey portfolio is represented as a vector 
1 2, ,..., ;NX x x x if 1,ix   it means that the project i is supported 

within the portfolio, otherwise 0.ix  Once the projects in the portfolio are known, the associated cost to finance X  is 

denoted as lC , which is obtained through a function H  that integrates the individual costs 1 2, ,.., Nc c c    for all 

projects that are included in the portfolio (Equation 12): 

 

 1 1... , ...l N nC H c c x x     . (12) 

Under the premise of non-interaction of resources, it is calculated by Equation 13 that represents the sum of the costs of all 

proposals favored in the portfolio: 

 

1

1

* ; 1,2,..., .
N

i

i

H c x i N


     (13) 

To be feasible, a portfolio must satisfy at least the constraint: 

 

lC B   , (14) 

which is often accompanied by other constraints that refer to some classes that the DM can define within the set of projects. 

 

The total benefit 
pz  of the objective P in the portfolio X  is calculated through a function 

pV  that relates the objectives 

of each project 
,i po  to the vector X  (Equation 15). Under the premise of non-interaction of resources, it is obtained by 

Equation 16: 

 

 1, , 1... , ... ;

1,2,.., ,

p p p N P Nz V o o x x

p P

    


 (15) 
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, i

1

* ;

1,2,.., .

N

p i p

i

V o x

p P



  




 (16) 

Therefore, the portfolio problem formulated in (1) is generalized to the grey context as shown in Ref. 28: 

 

1 2(x), (x),..., (x)

,

P

F

Maximizing z z z

x R

  


 (17) 

where FR  is the space of feasible portfolios limited by constraints on budgeted resources;      1 2, ,..., Pz x z x z x    are 

the impacts of projects. 

 

In the following, a realization of a portfolio is composed by the corresponding realizations in the objective space and in the 

required budget. 

4. Method for solving a grey multi-objective portfolio problem. 

The solution (the best compromise) of a multi-objective portfolio optimization problem is an element of the Pareto front that 

is selected in accordance with the DM’s preferences and the DM’s attitude toward uncertainty. 

 

There are three basic forms of incorporating DM’s preferences: a priori, interactively and a posteriori. Here, we will use the 

last one. Firstly, a representation of the Pareto frontier will be generated in it. Then, once this representation is known, the 

DM shall select a best compromise solution as a final solution. This selection can be made intuitively or using some multi-

criteria aggregation method that leads to a solution according to the DM’s preferences and beliefs. Our proposal consists of 

four main steps: 

 

(i) To select a value of support   for lC B   . This value has to be in agreement to the DM’s attitude toward 

uncertainty; 

(ii) To employ a population metaheuristic in order to generate an approximation to the grey Pareto frontier; 

(iii) To use a simple method of aggregation of DM’s preferences in order to obtain a multi-criteria ordering of the above 

Pareto frontier; 

(iv) To perform a robustness analysis of the best ranked solutions to obtain a final best compromise. 

 

An advantage of Multi-Objective Evolutionary Algorithms (MOEAs) is that these simultaneously deal with a set of possible 

solutions that allows them to obtain an approximation to the Pareto frontier in one single run ([7]), with no need for multiple 

runs as if conventional mathematical programing were employed. The MOEAs are also robust with respect to the properties 

of mathematical structures that intervene in the problems. There are many applications of MOEAs to the conventional 

problem of project portfolios. 

 

One of the most frequently used algorithms to solve multi-objective problems is NSGA-II (Non-Dominated Sorting Genetic 

Algorithm) that has gained huge popularity since it efficiently solves problems with low computational cost ([10]). However, 

one of the aspects that is often ignored in the literature about MOEAs is the fact that the solution of a problem involves not 

only the search for decisions, but also the process of decision-making (e.g. [12, 16, 17]). 

 

To provide a solution to the problem put forward in Section 3, the grey approach (see Section 2) was combined with NSGA-

II to obtain the grey Pareto frontier with mutually non-dominated solutions. The final decision of selecting which is the best 

compromise depends on a subsequent integration of DM’s preferences and risk attitude. In this study case, we will use the 

TOPSIS Method extended to grey numbers ([29]) to find a multi-criteria preference ordering. 

4.1. NSGA-II generalization to a grey environment 

The NSGA-II ([10]) is considered one of the benchmarks of multi-objective optimization for solving problems preferably of 

two or three objectives. The Grey NSGA-II (Algorithm 1) it is based on the creation of grey-non-dominated fronts (Line 2), 

by making selective pressure on grey-non-dominated solutions with an elitist policy in relation to the best front; it includes a 

diversity indicator called crowding distance (Line 3) and a crowded grey comparison operator (Line 9). 
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The crowded-comparison operator n  guides the selection process at the various stages of the algorithm 1 toward a 

uniformly spread-out Grey-Pareto-optimal front. Assume that every individual i in the population has two attributes: the grey-

non-domination rank  ranki  and the grey crowding distance  tandis cei . Deb et al. in [11] define a partial order n  as: 

 

ni j if  tandis ce ranki j                                                 

 or   rank ranki j                                                                              

 and  tan tandis ce dis cei j . 

 

 

That is, between two solutions with different non-domination ranks, Deb et al. ([11]) prefer the solution with the lower 

(better) rank. Otherwise, if both solutions belong to the same front, then they prefer the solution that is located in a lesser 

crowded region. This partial order is also generalize to the grey context i  (Line 9). 

 

A 

fundamental step of our proposal is to generalize NSGA-II for the treatment of grey multi-objective optimization problems; 

it is therefore proposed that the most important strategies be adapted to grey mathematics (Algorithms 2 and 3): 

 

Algorithm 1. Grey NSGA-II [13] 

1: T T TR P Q        combine parent and children population 

2: F=grey-fast-non-dominated-sort  TR    0 1, ,... ,F F F  all grey-non-dominated fronts of TR  

3:    1TP    or 1i   

4:    while 1T iP F N    do   till the parent population is filled 

5:       grey-crowding-distance-assignment  iF  calculate crowding distance in iF  

6:       1 1T T iP P F       include i-th non-dominated front in the parent pop 

7:       1i i   

8:   end while 

9:    ,i iSORT F      sort in descending order using i  

10:  1 1 11:T T i TP P F N P  
        choose the first N elements of 1TP   

11: 1TQ  make-new-pop  1TP     use selection, crossover and mutation to create 

12: 1t t       a new population 1TQ   
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With the aim of sorting the N-size population according to the level of grey non-dominance, each grey solution must be 

compared with all grey solutions in the population to find out whether it is dominated (Lines 4 through 11). That process is 

described below. For the set of grey solutions of the population P, the comparison per vector of grey objectives corresponding 

to the solution in turn to determine whether p  dominates q is made in line 5; if so, after line 6, this solution is included 

in some structure to identify which solutions were dominated by p . On the contrary, i.e., in case that q  dominates p , 

the value of
pn , variable that indicates the number of solutions that have not been dominated by p  (Lines 7 and 8) increases. 

Once the evaluation of the solution p  in the above process is known and if there are no solutions that dominate it (Lines 9 

to 11), the solution p  will make part of the first front 0F . For the purpose of finding individuals of the following front, grey 

solutions of the first front are temporarily disregarded, and the process takes place again (Lines 13 through 22). The procedure 

is repeated to find the other fronts. 

 

Algorithm 3 shows how to calculate the crowding distance with grey numbers. 

 
Once the population has been divided in fronts, an estimate of density of grey solutions around a particular point of the 

population is obtained. It is calculated using crowding distance shown in Algorithm 3 (Lines 1 through 7) that consists of 

taking an average distance of two points on each of its sides, considering each of the grey objectives. The tandis cei  value serves 

as an estimate of the size of the largest cuboid that contains point i without including any other point of the population ([10]). 

Algorithm 3. Grey-crowding-distance-assignment  iF  

1: l I                                                                             number of solutions in I 

2:for each i, set 
tan

0
dis ce

I i                                             initialize distance 

3:for each objective m 

4:  ,I sort I m       sort using each objective value 

5:    1I I l                                                 so that boundary points are always selected 

6:             for 2i   to  1l                                              for all other points 

7:    
    

max min

1 . 1 .

m m

I i m I i m
I i I i

f f

   
   

 
 

 

Algorithm 2. Grey-fast-non-dominated-sort  P  

1:for each p P   

2:    PS    

3:     0Pn   

4:    for each q P    

5:          if p q                                                  then if p  dominates q  

6:                p pS S q                                      Add q  to the set of solutions dominated by p  

7:          else if p q   then 

8:              1P Pn n                                               Increment the domination counter of p  

9:     if 0Pn   then                                                p  belongs to the first front 

10:          1rankp   

11:           1 1F F p    

12: 1i                                                                     Initialize the front counter 

13:while 0iF   

14:    Q                                                              Used to store the members of the next front 

15:     for each ip F   

16:          for each 
pq S   

17:               1P Pn n   

18:               if 0Pn   then                                      q  belongs to the next front 

19:                   1rankq i   

20:                   Q Q q    

21: 1i i   

22: iF Q  
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Once the grey Pareto frontier is generated, the difficulty to select the best portfolio continues; therefore, we propose the use 

of TOPSIS Method ([20]), generalized to the grey context as in [29]. 

4.2. Application of the TOPSIS-Grey method for portfolio 

TOPSIS helps the DM to organize solution alternatives he/she has to solve so as to make an analysis, comparisons and ranking 

of the alternatives. The DM’s multi-criteria preferences are aggregated in a ranking of the set of alternatives. This technique 

is based on the idea that the optimal solution must have the shortest distance to the ideal alternative and the farthest distance 

from the negative ideal alternative. A solution is determined as ideal if it maximizes the benefit of the criteria. TOPSIS 

simultaneously considers these distances to sort the solutions in preference order by using relative closeness that is obtained 

with the two distances (ideal alternative and negative ideal alternative).  The alternative having the greater value of relative 

closeness is ranked the first and so on. 

 

In this paper the TOPSIS-Grey method is applied for ranking the solutions of the grey Pareto frontier, found by grey NSGA-

II. This TOPSIS-Grey technique is a generalization proposed by [29] to the grey environment of the known TOPSIS multi-

criteria decision-making method (e.g. [20, 25, 42]). 

4.2.1. TOPSIS-Grey method. 

Lin et al. in Ref. 41 define the following procedure to integrate the TOPSIS method with grey philosophy. For the project 

portfolio problem, the alternatives represent portfolios generated by the grey version of NSGA-II found in the zero front and 

the criteria represent the objectives. Besides, the DM reflects in a weight the importance he/she assigns to each criterion. 

Afterwards, the TOPSIS-Grey method is applied sorting the solutions found in the zero front. 

 

With all the above elements, the following section presents the experimentation necessary to validate the effectiveness of our 

proposal. 

5. Computational experiments. 

The conditions under which these experiments were carried out are described below: 

 

(i) Testing environment for NSGA-II algorithm was implemented in Java programming language and executed in a 

computer with following characteristics: Intel Core i7 3.5 GHz CPU, 16 GB of RAM, and Mac OS X Yosemite 10.10.4 

operative system. 

(ii) The solutions were obtained from 30 independent runs of NSGA-II with the application of grey mathematics. 

(iii) As to the NSGA-II algorithm configuration with grey mathematics application described in Section 4, we experimented 

with the proposal of Cruz-Reyes et al., in [8]: population size = 100, number of generations = 500, probability of mutation 

= .05, probability of crossover = 1. 

5.1. Study case: social portfolio problem. 

Let us consider a decision-making situation in which the DM is in charge of selecting a group of social projects (portfolio) 

that her/his institution will implement. The aim of this decision problem is to choose the ‘best’ portfolio satisfying some 

budget constraints. The best portfolio should be selected by the DM among the non-dominated solutions of Problem 1. Each 

portfolio is subject to an available budget that the organization is willing to invest, which is denoted as B; each project has 

an associated cost ic . Portfolios are subject to the budget constraint, given by Equation 14. 

 

In this paper we will only consider independent projects, that is, we will assume that there is no interaction between the 

projects (synergy of benefits nor of resources). Let us consider a set of N projects, where the information about the set of 

projects is given by Equation 11. Each objective denotes the benefit target 
, ;i po that is, people belonging to a social category 

(e.g. Extreme Poverty, Poverty, Middle), who receive a benefit level (e.g. High Impact, Middle Impact, Low Impact) from 

the i-th project. 

 

The i-th project corresponds to a kind or class of project (e.g. health, education) denoted by ai. Each class has budgetary 

limits defined by the DM or any other competent authority. Let us consider for each class k, a lower  kL  and an upper limit

 kU . Based on this, the constraint for each class k is: 
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where  ig k  is defined as: 

 

 
1 ,

0 .

i

i

if a k
g k

otherwise


 


 (19) 

Besides, each project corresponds to a geographical region (e.g. north, south) denoted by bi, which it will benefit. Just like 

classes, each region has lower and upper limits as another constraint that must be fulfilled by a feasible portfolio. 

 

The quality of a portfolio X  is determined by the union of the benefits of each of the projects that compose it. This can be 

expressed as: 

 

       1 2, ,..., ,PZ x z x z x z x  (20) 

where  pz x is calculated as: 

,1
* ;

1,2,..., .

N

p i p ii
z o x

p P






 . (21) 

If we denote by FR  the region of feasible portfolios, the problem of the project portfolio is to identify one or more portfolios 

that solve: 

 

  max .
Fx R Z x

 (22) 

In this problem, the only accepted solutions are those portfolios that satisfy the following constraints: the total budget 

constraint (Equation 14), class constraints (Equation 18), and region constraints (similar to Equation 18). 

 

Taking into consideration that costs ic  and benefits 
,i po  are uncertain numbers, these values are expressed in terms of grey 

mathematics as ,ic
,i po ; Equations 14, 18, 20, 21 and 22 are defined again in the grey context as follows (Equations 23 

to 27): 

 

1

*
N

l i i

i

C c x B


     , (23) 

 
1

* * ,
N

k i i i ki
L c x g k U


      (24) 

       1 2, ,..., ,PZ x z x z x z x      (25) 

,1
* ;

1,2,...,P,

N

p i p ii
z o x

p


  



  (26) 

  max .
Fx R Z x   (27) 

5.2. Description of the grey instance. 

Each project is characterized by its contribution to objectives
,i po , costs ,ic  geographic region bi and class ai to which it 

belongs. In the experiment we will consider projects whose consequences are described by two objectives and belong to one 

of the three classes and to one of the two geographic regions.  

 

The available budget (B) is estimated as 250 million dollars; due to imprecision, the budget is expressed as the grey number 

[240,260] million dollars B . The DM is in charge for establishing the distribution of resources under uncertainty. Beside 

of the available budget, we here consider as constraints for the minimum and maximum budget per class of project the 

amounts of 20%  kL  and 60%  kU of B ; and for each region, a minimum of 30%  mL  and a maximum of 70%

 mU  of B . These percentages are used to guarantee equitable conditions in all classes and regions of the organization 

(e.g. [36]). 
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5.3. Results. 

Suppose that *x  is a non-dominated point of the problem described by Eqs. 23-27. Regarding uncertainty, the DM has two 

important concerns: 

 

(i) Taking into account the uncertainty in resource consumption and in budget availability, to what extent realizations of  
*x  are actually feasibles? 

(ii) Considering the uncertainty in project contributions to objectives, to what extent realizations of 𝑥∗ in the objective space 

are actually non-dominated solutions of Problem 1? 

 

The first one is the most important concern because it is related to feasibility. Different level of robustness (related to different 

degrees of conservatism) can be obtained replacing   in Eq. 23 by   and using several values of the support .  
 

The problem is transformed into: 

  max .
Fx R Z x   (28) 

Subject to: 

1
*

N

l i ii
C c x B

      
(29) 

 
1

* * .
N

k i i i ki
L c x g k U


      

(30) 

Table 1 shows a few non-dominated solutions of Problem (28) for different   - values. More conservative (uncertainty 

averse) decision makers prefer a greater support. 

The portfolios with Id = 1, 2, 3, 4 correspond to 0.5,0.66,0.75   and 0.9 respectively. Taking into account that the 

available budget is estimated in the interval 240, 260, the first solution is very risky and the fourth solution seems to be 

very conservative. Let us suppose that the DM prefers solutions with 0.66   and 0.75.   
 

Table 1.  Some Pareto grey portfolios with different   values in Equation 40. 

Id lC  ,1io  
,2io  Cardinality  lP C B    

1 [244.555 , 255.355] [1 380 185 , 1 389 585] [320 420 , 330 020] 39 .50146103 

2 [239.725 , 250.125] [1 371 310 , 1 380 310] [311 720 , 321 320] 38 .66694078 
3 [237.045 , 247.345] [1 357 660 , 1 366 760] [309 290 , 318 690] 38 .75759075 

4 [232.445 , 242.645] [1 336 430 , 1 345 330] [305 205 , 314 405] 37 .91241721 
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Table 2 shows the first front of the grey NSGA-II with 0.66   in Equation 40.  The DM-decision analyst couple should 

choose the best compromise as a trade-off between the TOPSIS-Grey distance rank and the Paretian degree. This compromise 

should be in accordance with the DM’s attitude toward uncertainty. The solutions with Id=1 and Id=3 are good compromises.  

Table 3 shows results with a more level of conservatism ( 0.75  in Equation 40).  The solution with Id=11 seems to be a 

good compromise.  

Table 2.  Results by TOPSIS-Grey method with 0.66  (The budget is shown in million dollars). 

Id lC  ,1io  
,2io  Cardinality 

iC
 

Paretian 
Degree 

1 [239.725 , 250.125] [1 371 310 , 1 380 310] [311 720 , 321 320] 38 0.658965954 0.626546392 

2 [239.925 , 250.225] [1 364 360 , 1 373 060] [313 075 , 322 775] 38 0.655754583 0.5625 
3 [239.595 , 249.995] [1 378 780 , 1 387 880] [309 165 , 318 965] 38 0.6536832 0.652538071 

4 [239.565 , 249.865] [1 356 545 , 1 365 645] [314 805 , 324 505] 38 0.65251977 0.566935484 

5 [239.945 , 250.245] [1 366 685 , 1 375 785] [311 750 , 321 650] 38 0.65146181 0.509230769 
6 [239.935 , 250.135] [1 345 465 , 1 354 065] [317 810 , 327 710] 38 0.648507668 0.63075 

7 [239.675 , 250.375] [1 358 000 , 1 367 100] [313 960 , 322 860] 38 0.646675357 0.526075269 

8 [239.730 , 250.030] [1 351 950 , 1 360 650] [315 095 , 325 195] 38 0.645046819 0.524747475 
9 [239.775 , 250.375] [1 350 125 , 1 359 325] [315 270 , 325 070] 38 0.641624363 0.501256281 

10 [239.775 , 250.075] [1 384 535 , 1 393 735] [306 110 , 316 010] 38 0.64116887 0.692602041 

11 [239.745 , 250.345] [1 335 925 , 1 345 025] [319 800 , 329 300] 38 0.637192753 0.541752577 
12 [239.305 , 249.905] [1 337 050 , 1 345 650] [318 790 , 328 690] 39 0.633714058 0.549435028 

13 [239.760 , 250.260] [1 333 805 , 1 342 505] [320 080 , 329 780] 38 0.633490678 0.519791667 

14 [239.910 , 249.710] [1 404 885 , 1 413 185] [300 020 , 309 520] 37 0.625939263 0.654166667 
15 [240.150 , 249.950] [1 401 940 , 1 410 340] [300 370 , 310 170] 37 0.625621792 0.525906736 

16 [239.725 , 249.425] [1 394 890 , 1 403 690] [301 715 , 311 215] 37 0.62473715 0.533597884 

17 [239.990 , 249.790] [1 392 425 , 1 401 425] [302 095 , 311 495] 37 0.623750877 0.517460317 
18 [239.520 , 249.320] [1 396 740 , 1 405 640] [301 130 , 310 530] 37 0.623179256 0.529166667 

19 [239.930 , 249.930] [1 388 800 , 1 397 400] [302 435 , 312 135] 37 0.621584166 0.52565445 

20 [239.995 , 249.495] [1 409 020 , 1 417 420] [296 960 , 306 660] 37 0.61316836 0.750598802 
21 [238.905 , 249.805] [1 321 630 , 1 330 730] [321 715 , 331 415] 39 0.61111311 0.514102564 

22 [239.740 , 250.240] [1 322 055 , 1 330 755] [321 390 , 331 190] 39 0.609929071 0.512640449 

23 [239.125 , 249.825] [1 315 680 , 1 324 580] [324 140 , 333 740] 39 0.608965323 0.623056995 
24 [239.070 , 249.470] [1 323 515 , 1 332 115] [320 425 , 329 825] 38 0.606307758 0.510209424 

25 [238.825 , 249.525] [1 305 890 , 1 315 090] [324 135 , 334 135] 39 0.582296004 0.50994898 

26 [238.745 , 249.145] [1 299 145 , 1 308 045] [324 725 , 334 525] 39 0.56557194 0.524747475 
27 [239.445 , 249.945] [1 284 225 , 1 292 725] [326 915 , 336 415] 39 0.535314127 0.605699482 

28 [239.880 , 250.180] [1 280 735 , 1 289 735] [327 775 , 337 675] 39 0.532605288 0.554639175 

29 [239.435 , 249.935] [1 269 120 , 1 277 820] [328 450 , 337 950] 39 0.504362993 0.524484536 
30 [239.420 , 249.520] [1 260 670 , 1 269 670] [330 040 , 339 840] 39 0.493669301 0.59015544 

31 [239.525 , 250.325] [1 251 635 , 1 260 335] [330 425 , 339 925] 39 0.473286274 0.512176166 

32 [239.810 , 250.110] [1 238 525 , 1 247 525] [331 810 , 341 710] 39 0.454277312 0.581701031 
33 [238.940 , 249.340] [1 181 725 , 1 190 725] [335 900 , 345 300] 39 0.387947601 0.563709677 

34 [238.700 , 248.900] [1 186 150 , 1 195 050] [334 815 , 344 015] 39 0.385972557 0.605882353 

35 [239.585 , 250.285] [1 195 415 , 1 204 315] [332 685 , 342 185] 39 0.385482542 0.534793814 
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The solution coming from Table 3 is a little more robust, but the compromise solutions from Table 2 have a bit better objective 

values. The DM-analyst couple has obtained the information necessary for making a final decision. 

5.4. Comparison of results against a heuristic of the worst-case. 

In this Section the term worst-case is introduced to refer a very conservative attitude of the DM, with the aim to perform a 

comparison between a worst-case experimentation and the results obtained in Section 5.2 in Tables 2 and 3. The worst-case 

attitude is reflected in resources and dominance, as described below: 

(i) Resources: All the projects included in the portfolio consume the maximum cost ic , and the available budget is 

considered in its minimum level  B . Therefore, the constraint is defined as
1

*
N

l i ii
C c x B


  . 

(ii) Dominance of worst-case between two grey vectors: Let D  and E  be two grey vectors; we say that D  dominate 

E  in the worst-case; if i id e  for all i values and there is at least one i  such that i id e . 

Table 3.  Results by TOPSIS-Grey method with 0.75   (The budget is shown in million dollars). 

Id lC  ,1io  
,2io  Cardinality 

iC
 

Paretian 

Degree 

1 [237.045 , 247.345] [1 357 660 , 1 366 760] [309 290 , 318 690] 38 0.658701146 0.572192513 

2 [236.955 , 247.455] [1 352 180 , 1 360 880] [310 695 , 320 195] 38 0.658098645 0.547340426 

3 [237.330 , 247.530] [1 362 735 , 1 371 835] [308 005 , 317 205] 38 0.65791889 0.583862434 
4 [237.245 , 247.545] [1 355 035 , 1 363 735] [309 725 , 319 325] 38 0.656989866 0.528157895 

5 [237.070 , 247.370] [1 360 780 , 1 369 980] [307 990 , 317 290] 38 0.654499119 0.501891892 

6 [236.920 , 247.220] [1 346 315 , 1 355 015] [312 005 , 321 105] 38 0.653735619 0.559677419 
7 [237.030 , 247.330] [1 353 255 , 1 362 055] [309 905 , 319 205] 38 0.653694737 0.501587302 

8 [237.210 , 247.310] [1 339 030 , 1 347 930] [313 875 , 323 275] 38 0.651816232 0.537894737 

9 [237.015 , 247.415] [1 341 090 , 1 349 990] [313 055 , 322 655] 38 0.651353664 0.569518717 
10 [237.485 , 247.485] [1 369 670 , 1 378 670] [305 385 , 314 685] 38 0.650459499 0.571111111 

11 [237.490 , 247.490] [1 372 110 , 1 381 010] [304 845 , 314 145] 37 0.650387482 0.627173913 

12 [237.265 , 247.165] [1 371 885 , 1 380 885] [304 715 , 314 315] 37 0.650143732 0.623055556 
13 [237.030 , 247.530] [1 331 000 , 1 339 900] [316 080 , 325 780] 38 0.648572176 0.623298429 

14 [236.980 , 247.580] [1 368 390 , 1 377 390] [305 145 , 315 045] 38 0.648492617 0.503125 

15 [237.550 , 247.350] [1 376 960 , 1 385 960] [303 430 , 312 830] 37 0.647934092 0.552702703 

16 [236.855 , 246.955] [1 364 965 , 1 373 865] [306 030 , 315 330] 37 0.646970804 0.53046875 

17 [237.415 , 247.515] [1 373 705 , 1 382 505] [303 925 , 313 325] 37 0.646323116 0.579459459 

18 [237.085 , 247.185] [1 363 255 , 1 372 055] [306 170 , 315 870] 38 0.646191879 0.520670391 
19 [237.265 , 247.265] [1 378 590 , 1 387 590] [302 605 , 311 705] 37 0.643296997 0.619189189 

20 [236.725 , 247.025] [1 333 720 , 1 342 420] [314 135 , 323 835] 38 0.641322382 0.521465969 

21 [237.200 , 247.200] [1 379 355 , 1 388 555] [301 925 , 311 225] 37 0.640292114 0.547527473 
22 [237.475 , 247.375] [1 385 795 , 1 394 395] [300 250 , 309 650] 37 0.637403269 0.561021505 

23 [237.465 , 247.265] [1 381 215 , 1 389 615] [300 645 , 310 345] 37 0.6345776 0.588888889 

24 [236.985 , 246.985] [1 324 115 , 1 332 615] [316 640 , 326 240] 38 0.63367956 0.52642487 
25 [237.065 , 247.465] [1 323 185 , 1 331 885] [316 875 , 326 475] 38 0.633087374 0.538601036 

26 [237.465 , 247.465] [1 387 040 , 1 396 440] [299 215 , 308 415] 37 0.631744035 0.591388889 

27 [237.545 , 247.145] [1 390 045 , 1 398 645] [298 555 , 307 955] 37 0.631290879 0.58315508 
28 [237.225 , 247.425] [1 319 690 , 1 328 290] [317 725 , 327 525] 38 0.629976275 0.548969072 

29 [237.520 , 247.320] [1 390 865 , 1 399 565] [297 475 , 306 975] 37 0.625447495 0.527925532 

30 [237.470 , 247.270] [1 394 050 , 1 402 850] [296 750 , 306 350] 37 0.624996416 0.563684211 
31 [236.950 , 246.850] [1 392 605 , 1 401 605] [297 050 , 306 350] 37 0.624390855 0.507936508 

32 [237.380 , 246.980] [1 395 230 , 1 403 730] [295 640 , 305 040] 37 0.618480673 0.559537572 

33 [237.150 , 247.350] [1 307 710 , 1 316 310] [320 880 , 330 080] 38 0.615962738 0.594329897 
34 [236.815 , 247.515] [1 311 595 , 1 320 795] [318 550 , 328 750] 39 0.615546218 0.599747475 

35 [237.205 , 247.005] [1 395 870 , 1 404 570] [293 745 , 303 645] 37 0.608993638 0.543023256 

36 [236.965 , 246.565] [1 400 295 , 1 408 895] [292 660 , 302 360] 37 0.606984989 0.752890173 
37 [237.055 , 247.455] [1 300 185 , 1 309 585] [321 915 , 331 315] 39 0.603386786 0.557407407 

38 [236.580 , 246.880] [1 302 585 , 1 311 385] [320 780 , 330 280] 38 0.602563552 0.502673797 
39 [237.135 , 247.435] [1 293 165 , 1 301 665] [322 190 , 331 790] 38 0.585557782 0.519736842 

40 [237.360 , 247.460] [1 290 225 , 1 298 725] [323 365 , 332 865] 38 0.584250672 0.542783505 

41 [237.710 , 247.110] [1 405 175 , 1 414 075] [287 550 , 296 850] 37 0.583087781 0.787428571 
42 [237.015 , 247.515] [1 290 820 , 1 300 220] [322 335 , 332 235] 39 0.582175393 0.515128205 

43 [236.910 , 247.510] [1 276 205 , 1 285 305] [323 890 , 333 890] 39 0.553255766 0.53974359 

44 [235.810 , 246.410] [1 273 795 , 1 282 795] [324 275 , 333 875] 39 0.548213039 0.55026178 
45 [235.825 , 246.525] [1 269 455 , 1 278 555] [325 265 , 334 765] 39 0.542916648 0.6 

46 [237.045 , 247.545] [1 259 000 , 1 267 900] [325 980 , 335 580] 39 0.52224161 0.639528796 

47 [236.670 , 247.470] [1 235 155 , 1 243 855] [327 655 , 337 355] 39 0.481069072 0.605202312 
48 [237.120 , 247.520] [1 233 385 , 1 241 985] [327 950 , 337 850] 39 0.479746856 0.520153061 

49 [237.015 , 247.515] [1 224 910 , 1 233 410] [329 480 , 339 180] 39 0.471814715 0.572959184 

50 [236.525 , 246.825] [1 204 730 , 1 213 330] [330 605 , 340 205] 39 0.445132123 0.555699482 
51 [236.705 , 247.005] [1 194 010 , 1 203 110] [330 855 , 340 755] 39 0.43286858 0.520512821 

52 [236.525 , 246.925] [1 179 225 , 1 188 225] [331 205 , 340 805] 39 0.416222937 0.51025641 
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Experiments to find the worst-case in resources and dominance were carried out using the Algorithm 1, described in Section 

4.1 but replacing the method of line 2 (which is responsible for generating the non-dominated fronts) with the Algorithm 4, 

which is shown.  

 

With this replacement Algorithm 4 looks for solutions that are feasible and non-dominated in the worst case. 

 

The experimental conditions are the same as described in Section 5. The solutions were obtained from 30 independent runs, 

generating two solutions whose values of budget, objectives, and cardinality are shown in Table 4.  

 

 

To validate the solutions from our proposal, we gather the 35 solutions of Table 2 obtained with  0.66     to 2 solutions 

obtained from the analysis of the worst-case  B . In the same way, we combine the solutions presented in Table 3 obtained 

with  0.75 C  , with the set B.  

 

Table 4.  Solutions of the worst-case attitude reflected in resources and dominance. 

Id lC  ,1io  
,2io  Cardinality 

 [230.055 , 239.855] [1 265 610 , 1 273 810] [313 045 , 322 545] 37 

2 [229.290 , 239.290] [1 260 380 , 1 268 980] [313 130 , 322 330] 38 

 

Algorithm 4. Worst-case-sort  P  

1:for each p P   

2:     0pdc   

3:    for each q P    

4:    if  q p       then if q  dominates p in the worst-case 

5:              1p pdc dc                                               Increment the domination counter of p  

6:min=find-minimum  pdc        Minimum of the worst-case dominance count in P 

7:cont=0 

8:for each p P   

9:     if minpdc   then                                                 p  belongs to the first front 

10:           0 0F F p    

11: cont=cont+1 

12: i=1                                                                      Initialize the front counter 

13:while cont P  

14:    Q                                                                   Used to store the members of the next front 

15:     for each p P   

16: min=min+1 

17:               if minpdc   then                                    p  belongs to the next front 

18:                   Q Q p    

19:        cont=cont+1 

20: i=i+1 

21: iF Q  
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By carrying out a dominance analysis in the set A B  we obtained that all solutions in A  continue being non-dominated, 

while the solutions of the worst-case B  are dominated by many solutions of the set A . Something similar happens when the 

dominance analysis is performed in the set  C B ; the solutions in C   remain non-dominated in  C B , while the 

solutions in B  are dominated by many solutions in C . This is a consequence of the conservative handling of resource 

constraints under a worst-case attitude. Table 5 shows again the solutions of the set B , but now providing their dominance 

count when B  is combined with A  and C . 

6. Conclusions. 

This paper has presented a novel tool for describing and representing uncertainty associated with real-life decision-making 

problems. The problem of project portfolio selection was studied using mathematical modelling with the grey approach and 

considering relevant constraints, preferences, uncertainty and imprecision in the attributes such as project costs and scores as 

well as the total resources available.  

 

The main contributions of this research are: 

 

(i) Generalization of some basic concepts of multi-objective optimization to grey environment. 

(ii) Generalization of NSGA-II adapted to grey numbers. 

(iii) Treatment of uncertainty in the project portfolio problem through grey mathematics. In particular, the ability to adjust 

the level of conservatism through the use of the support   and the Paretian degree. 

 

The final solution is a compromise that involves DM preferences and beliefs combined with a robustness analysis. According 

to his/her particular beliefs and attitude toward uncertainty, firstly the DM should adjust the level of support related to the 

fulfillment of the total budget constraints. Once the approximation to the grey Pareto frontier has been obtained, the DM-

decision analyst couple should select the best compromise considering the TOPSIS-Grey distance to the ideal solution and 

the Paretian degree.  

 

In computer experiments our proposal gives evidence of good compromise solutions obtained as a function of our measures 

of quality and robustness. 
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