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Abstract. A 3D colour histogram is an image processing 

technique used to visualize the distribution of colours (Red-

Blue-Green) in a picture. Because colour distribution does 

not significantly change if a pictured object is translated or 

rotated, a 3D colour histogram can be used as a descriptor 

for automatic object recognition. However, this task requires 

cubes with high dimensionality. Within this context, the 

present work contributes with an approach to reduce the high 

dimensionality of the 3D colour histogram and improve it as 

a descriptor for object recognition. Tests performed with 

three databases (COIL-100, an own database, and CO3D) 

and three recognition systems corroborated its suitability for 

efficient object recognition, achieving overall recognition 

rates of 97.0% for objects with complex geometry and 

reflectance features. These results are more competitive 

when compared with other colour descriptors as C-SIFT, 

RGB-SIFT, Colour moments and RGB histograms. 
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1 Introduction 
 

In computer vision, object recognition is a challenging task as real objects exhibit different visual features such as colour, 

texture and shape. Also, these features may be influenced by external factors such as background, perspective, pose, and 

lighting conditions. In this context, computer vision researchers have developed approaches to extract and characterize 

the main features of objects and improve their classification. Table 1 presents a review of the features considered by 

object recognition works. 

 

As reviewed, colour is frequently used as the main feature for object or image recognition. This is understandable as the 

human perception of objects is influenced by their colours, and all objects have distinctive colour patterns [1], [2]. This 

is independent of the nature of the object, and colour has been a suitable descriptor to recognize fruits and vegetables 

[3]–[5], human emotions and faces [6], [7], people [8] and buildings [9]. Also, research has corroborated the influence 

of colour data in the accuracy and speed of object recognition systems [10], [11]. 

 

Note that, for object recognition purposes, colour data must be described through appropriate extraction and processing 

techniques. In this context, 3D colour histograms have been proposed as suitable descriptors as they are invariant to 

translation and rotation about the viewing axis, and get minimally affected to scale variation and occlusion [12]–[14]. 
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However, depending of the object and required recognition rate, 3D colour histograms can be prone to high 

dimensionality [12]. 

Within this context, the present work contributes with a novel approach to reduce the high dimensionality of 3D colour 

histograms and improve them as descriptors for object recognition tasks. This reduction was achieved by modeling the 

3D colour histogram’s bins as spheres. With this approach, which led to 90.0% reduction in dimensionality when 

compared to standard 3D colour histograms, recognition rates of 97.0% were consistently obtained throughout different 

object databases, including an own database. Thus, robust descriptors can be obtained for object recognition. These 

results also were more competitive when compared to other colour descriptors such as C-SIFT, RGB-SIFT, Colour 

moments and RGB histograms. 

 

The present work is structured as follows: in Section 2 the details on the databases used for training and testing are 

presented, including the characteristics of the new database created by us. Then, in Section 3 the details of the reduction 

approach for improvement of the 3D colour histogram descriptor are presented. The details of three pattern recognition 

systems considered for assessment of the descriptor are presented in Section 4. The results are presented and analyzed 

in Section 5. Finally, in Section 6 our conclusions and future work are presented. 

 
Table1. Review of Features for Object Recognition. 

Work Year Feature Descriptor 
[15] 2019 Colour and Texture 

[16] 2019 Colour 
[17] 2019 Colour and Depth Data: 

  RGB-D (Red, Green, Blue and Depth) 
[18] 2018 Colour, Depth Data and DWT: 

  RGB-D (Red, Green, Blue and Depth) 
  and Discrete Wavelet Transform 

[19] 2018 Colour 
[20] 2018 Colour 
[21] 2017 Colour and Depth Data: 

  RGB-D (Red, Green, Blue and Depth) 
[22] 2016 Colour and Depth Data: 

  RGB-D (Red, Green, Blue and Depth) 
[23] 2013 Colour 
[24] 2012 Colour and Zernike Moments 
[25] 2012 Colour and Depth Data: 

  RGB-D (Red, Green, Blue and Depth) 
[26] 2011 Luminance Contours 
[27] 2011 Colour and Depth Data: 

  RGB-D (Red, Green, Blue and Depth) 
[28] 2010 Colour 
[29] 2009 Colour and Gray-Values 
[30] 2006 Colour and SIFT 

  (Scale Invariant Feature Transformation) 

 

 

2 Object Databases 

 

Databases are important resources to train, test and validate pattern recognition approaches. In this work we considered 

two well-known databases within the field of image processing. We also developed a new database with more natural 

environmental features for robustness assessment. These databases are described in the following sections. 

 

2.1 COIL-100 
 

The Columbia Object Image Library (COIL-100) [31] is a widely used database for testing object recognition algorithms. 

This database consists of 100 objects. Each object was placed in a motorized turntable which varied its pose through 360 

degrees with respect to a fixed colour camera. Colour images of each object were taken at pose intervals of 5 degrees, 

leading to 72 images for each object, and 7200 images for all objects in the database. This enables the learning processes 
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the object from a set of views and evaluates the recognition system using the remaining images. Figure 1 presents 

examples of the objects included in the COIL-100 database. 

 

 

Fig. 1. Objects selected from the COIL-100 database. 

 

2.2 CO3D 
 

The Common Objects in 3D (CO3D) [32] is a recently created database to test different algorithms for 3D object 

reconstruction. The CO3D is composed by 46 object categories, and each category has several subsets of the same class. 

Figure 2 presents examples of the objects included in the CO3D database. 

 

 

Fig. 2. Objects selected from the CO3D database. 
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This database is meaningful for the present work due to the following features: (a) it is composed of everyday or usual 

objects in a natural human environment, (b) the images were not taken in particular scenarios, cameras, or structured 

lights, (c) there are objects of different sizes within the same category, and (d) some images have different noise elements 

such as blurring, shining, shadows, transparency, and occlusions (see Figure 3). The noise elements represent challenges 

for training and testing of the recognition system as they affect perception of colour and object segmentation. 

 

 

Fig. 3. Objects selected from the CO3D database with noise elements: (a) blurring, (b) shining, (c) shadows, (d) 

translucent, and (e) occlusion (note: gray-scale conversion was performed to enhance the presence of these elements). 

 

2.3 OLib 
 

An Own Library (OLib) is a database created by us with the purpose of validating our approach. This database consists 

of 20 common objects. Figure 4 presents examples of the objects included in this database. In contrast to the COIL-100 

database, the OLib database has the following features: (a) no uniform pattern was considered while taking the images 

(e.g., the images were taken from different positions of the object without a particular sequence), (b) the images were 

taken without using any kind of structured light (just daylight was considered), (c) the background is white, thus more 

shadows are generated, and (d) all objects are placed at different distances from the camera, leading to all objects having 

different scales within the fixed image frame. As presented in Figure 5 these features also led to the presence of noise 

elements such as in the CO3D database. 

 

 

Fig. 4. Objects within the OLib database. 

 

 

 

Fig. 5. Objects selected from the OLib database with noise elements: (a) scale change, (b) shining, and (c) translucent 

(note: gray-scale conversion was performed to enhance the presence of these elements). 
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3 Approach to 3D Colour Histogram Enhancement 
 

3.1 Background Removal 
 

Background removal is important to reduce or eliminate the interference that the background can introduce to the 

generation of the 3D colour histogram. For this purpose, the snake algorithm reported in [33] was considered. This 

algorithm detects the contour of the object, enabling its segmentation and consequent elimination of the background. 

This particular version of the snake algorithm uses local information to generate a segmentation, thus contours can be 

detected in objects with different feature profiles. Figure 6 presents four stages of the segmentation process for an object 

within the COIL-100 database. While it is possible that a little bit of background still remains, its influence in the 

generation of the 3D colour histogram can be considered as not significant. 

 

 

Fig. 6. Stages of the segmentation process for background removal. 

 

3.2 Reduction of the 3D Colour Histogram Descriptor 
 

In the digital world, colours are usually defined by three primary components: red, green, and blue (r, g, b). Based on 

this, a three-dimensional space can be created by considering the r, g, and b components as the ordinary Cartesian 

coordinates of a Euclidean system. In this three-dimensional model, non-negative values within the range [0, 255] are 

associated with each (r, g, b) triplet, which leads to a specific colour. This approach allows computations of the colour 

similarity of two objects by merely calculating the distance between their (r, g, b) patterns: the shorter the distance, the 

higher the similarity. Out-of-range computations can also be performed in this way. 

 

Although this representation cannot be used directly as a descriptor, if each colour in the image is mapped into the RGB 

cube and its frequency is computed, it is possible to create a colour description from it. This leads to the 3D colour 

histogram, which is a RGB cube of n×n×n dimension, where n is the number of layers of the histogram, and each bin 

(or cell within the cube) represents the frequency distribution of binned (r, g, b) triplets within an interval. 

 

Note that, while the colour distribution within the RGB space of the 3D histogram can be obtained using different tools 

(i.e., ImageJ [34]), the high dimensionality may restrict their use for object recognition. The present work addresses this 

aspect through the use of a spherical model for the colour bins of the 3D colour histogram which is built as follows: 

(a) Define the parameter n as the size of one dimension of the cube, where n > 1 and n3 is the total dimension of the 

cube. Figure 7 presents examples of 3D colour histograms with different values for n. 

(b) Estimate the maximum radius of the spherical bins (rs) of the 3D histogram as rs = 256/n. This defines the maximum 

length of the sphere’s radius, the radius of the spherical bins for (r, g, b) triplets will be proportional to their colour 

frequencies. Note that all of these elements is directly dependent of the n parameter. 

(c) Fill the spherical bins of the 3D colour histogram as determined by the colour frequencies. 

 

 

Fig. 7. 3D colour histograms with dimension (a) n=1, (b) n=2, (c) n=4, (d) n=5, and (e) n = 12. 

 

Figure 8 presents some examples of 3D colour histograms with frequency-sized spherical bins for different images of 

the COIL- 100 database. As observed, the colour distribution patterns show significant differences between objects. Note 
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that n = 6 (as considered for Figure 8) is not an arbitrary value. It is consequence of different tests done for different 

values of n which led to a maximum number of bins (dimension) of 63 = 216. 

 

Fig. 8. 3D colour histograms (n=6) from selected objects of the COIL-100 database: (a) Object 1, (b) Object 31, (c) 

Object 62, and (d) Object 88. 

 

4 Recognition Systems 
 

Once the object descriptor is finished, the next step consists on defining the structure of the recognition system. Figure 

9 presents the general structure of the system which includes the modules of data modeling (learning), testing 

(recognition), pre-processing and data descriptor (segmentation, 3D colour histogram), and histogram reference data 

(histogram database).  

 

 

Fig. 9. Modules of the recognition system for assessment of the colour descriptor. 
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As presented, the input consists of the images of the objects which are processed to be described as 3D colour histograms. 

This process includes segmentation and background removal as described in Section 3. After the 3D colour histogram 

are created, there are two possible stages to follow: 

• Training of the recognition system, where the system “learns” the information provided by the descriptors (i.e., the 

3D colour histograms of the considered objects). The learning stage is repeated until all the considered objects are 

learned, and it leads to a reference database of 3D histograms. 

• Testing of the recognition system, where the trained system executes recognition of input data (i.e., the 3D colour 

histograms of the considered objects). This data must be different from the data considered to train the recognition 

system. This stage is executed only one time. 

 

The learning / recognition module can be implemented through different techniques. In this work, three techniques were 

considered and these are described in the following sections. 

 

4.1 Normalized Euclidean Distance (NED) 
 

The Euclidean distance is a positive number that indicates the separation between two points in a space where the axioms 

and theorems of Euclid’s geometry are fulfilled. Mathematically, the one-dimensional Euclidean distance d(A, B) 

between points A and B is defined as the square root of the square of the differences in their X coordinates. This can be 

extended to high-order dimensions, such as a third-order dimension. 

 

An inconvenient of the Euclidean distance is its sensitivity to the measurement units of the variables: the differences 

between the values of variables measured with high values will contribute much more than the differences between the 

importance of the variables with low weights. Consequently, changes in scale will also determine changes in the distance 

between points. A possible way of solving this problem is the previous typification of the variables or the normalized 

Euclidean distance. 

 

Therefore, the Normalized Euclidean Distance gives the squared distance between two vectors whose lengths have been 

scaled to have a unit norm. This is helpful with the changing of scale in the objects. Thus, the Normalized Euclidean 

Distance (NED) would be considered the error (e) between the two analyzed vectors. In our case, the NED or error e 

between two histograms is computed as: 

 

 

4.2 Self-Organizing Map (SOM) 
 

The Self-Organizing Map (SOM) [35] technique belongs to the category of neural networks of unsupervised learning. 

The main idea of this algorithm is that, given a set A of input vectors, the Kohonen network should generate a partition 

of the set A into m disjoint regions a1, a2, …, am. Then, the objective is that the Kohonen network covers the set A so that 

one and only one neuron is activated for each input vector. If set A is divided into m regions, then the Kohonen network 

must have at least m neurons, and each neuron will specialize in one and only one region. 

 

For implementing the recognition system, the architecture of the self-associative map neural network was composed as 

follows: a relation of 60 neurons in an array of 6×10; it is to say, 60 cells in the map. The maximum iteration epochs 

used to train the neural network was 9000, the α was set to 0.2, and the Manhattan distance was considered. 

 

4.3 Growing Cell Structure (GCS) 
 

Growing Cell Structure (GCS) [36] is a derivation of the Kohonen’s self-organizing neural network. Usually, the network 

starts with a certain number of neurons and depending of an error which is estimated from the input patterns, it adapts 

and inserts new neurons or eliminates those that are no longer useful in order to reduce this error. This allows the 

recognition module to discriminate the objects learned from the characteristics extracted by a descriptor during the 

learning stage. 
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The parameters used for learning in GCS are neurons and epoch or adaptation step values. These epochs are selected 

according to the maximal number of the images remaining in the databases used. For example, in our database, the epoch 

parameter was chosen in a range between 250-300. If it is assumed that a neuron is needed for every class, then at least 

45 neurons are necessary. Therefore, in a similar way that the SOM algorithm, the maximal neurons were set to 90. Other 

required parameters for the GCS algorithm are the constants of adaptation for the winner neuron εb = 0.05, and for the 

neighborhood of the winner neuron εn = 0.005. 

 

5 Results 
 

For the learning and recognition processes of the Euclidean Distance, SOM and GCS systems, the following database 

sets of objects were considered: 

• COIL-100: 25 objects (shown in Figure 1); 

• CO3D: 45 objects; 

• OLib: 20 objects. 

 

Learning was performed with only four views of each object. Thus, 100 different images from COIL-100, 180 from 

CO3D, and 80 from our database OLib were used for training of the recognition systems. 

 

The four images of each object were processed as described in Section 3 to obtain their 3D colour histogram descriptors. 

To optimize searching time during the recognition stage, the four descriptors corresponding to these images were unified 

into a single 3D colour histogram. This was performed by considering the strategy described in [37]. Then, the unified 

descriptor is stored within the system’s database (NED, SOM, and GCS) for future use in the recognition stage. 

 

Recognition was performed with the remaining images of each database and object (images not considered for 

training/learning). 

 

5.1 Recognition Performance on the COIL-100 Database 
 

Table 2 presents the results of the recognition systems with data from the COIL-100 database. Note that average 

recognition rates are higher than 97.00% for all systems and these results are consistent through all objects as the standard 

deviation is minimal as measured by the coefficient of variability which is less than 5.0%. These results are significant 

as test data consists of ((72- 4)/72) = 94.0% of the whole database and training was performed with only (4/72) = 6.0% 

of the database. Also, test data is likely to have images with view angles / poses which may be highly different from 

those used for training. 

 

Table 2. Recognition rates (%) of the NED, SOM and GCS systems with the test data of the COIL-100 database. 

 

Object NED SOM GCS Object NED SOM GCS 

1 98.00 100.00 100.00 55 99.00 98.15 100.00 

7 99.00 98.15 96.67 59 100.00 94.44 100.00 

12 99.00 100.00 96.67 62 100.00 98.15 100.00 

18 80.00 92.59 83.33 68 99.00 96.30 100.00 

24 98.00 96.30 90.00 75 100.00 100.00 93.00 

25 98.00 96.30 100.00 78 99.00 98.15 96.67 

30 98.00 100.00 100.00 82 100.00 98.15 100.00 

31 100.00 100.00 96.67 83 100.00 96.30 96.67 

36 99.00 92.59 96.67 86 100.00 92.59 94.52 

39 98.00 98.33 100.00 88 99.00 100.00 100.00 

43 100.00 100.00 100.00 96 100.00 94.44 100.00 

46 100.00 100.00 100.00  97.76 97.10 97.23 

50 82.00 86.66 93.33  5.01 3.28 3.94 

52 99.00 100.00 96.67 cv 0.05 0.03 0.04 
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5.2 Recognition Performance on the CO3D Database 
 

Table 3 presents the results of the recognition systems with data from the CO3D database. In general, the NED system 

achieves the lowest recognition rate with an average of 94.57%, reporting rates of 85.00% - 89.00% for 20.00% of the 

objects within the database (banana, bicycle, cellphone, chair, couch, handbag, hotdog, microwave, skateboard, and 

wineglass). 

 

Nevertheless, it is important to highlight that the CO3D database consists of objects with noise elements such as shadows 

and blurring, and the images were taken in non-controlled environments. Also, testing is performed with ((50-4)/50) = 

92.00% of each object’s set of images, while training was performed with only (4/50) = 8.00% of the object’s set. 

 

Regarding the SOM and GCS systems, both achieve the highest recognition rates with an average of approximately 

96.50%. As in the case of the COIL-100 database, these results are consistent through all objects as standard deviation 

is minimal as measured by the coefficient of variability which is less than 5.0%. 

 

Particularly, SOM had some difficulties recognizing four objects: couch, hotdog, microwave, and wineglass. On the 

other hand, GCS had some difficulties recognizing five objects: couch, hotdog, microwave, skateboard, and wineglass. 

 

Table 3. Recognition rates (%) of the NED, SOM and GCS systems with the test data of the CO3D database. 

 

Object NED SOM GCS Object NED SOM GCS 

Apple 99.50 100.00 100.00 Hydra 98.50 100.00 100.00 

BackP 95.00 95.00 96.60 Keyb 98.80 100.00 100.00 

Ball 94.00 97.50 98.30 Kite 97.60 98.80 98.80 

Banana 89.00 98.30 98.50 Laptop 95.00 95.40 95.40 

Bglove 94.00 98.00 98.80 Mwave 85.60 88.90 88.60 

Bbat 94.65 98.70 98.30 Mcycle 97.60 98.00 98.10 

Bench 95.50 99.10 99.20 Mouse 98.50 100.00 100.00 

Bicy 88.30 90.80 90.00 Pmeter 97.20 97.40 97.40 

Book 91.10 93.60 93.70 Pizza 98.75 100.00 100.00 

Bowl 98.50 100.00 100.00 Plant 93.70 95.75 96.00 

Bottle 95.40 97.50 97.20 Remot 97.70 99.00 99.00 

Broc 96.90 95.70 96.40 Sandw 91.90 94.40 94.60 

Cake 98.00 100.00 100.00 Skateb 88.00 90.60 89.75 

Car 93.00 96.70 96.30 Stops 98.15 99.00 99.20 

Carrot 91.30 92.20 92.00 Suitcas 96.10 98.00 98.00 

Phone 88.00 90.00 90.50 Tplane 96.10 97.80 97.70 

Chair 86.75 90.00 89.75 Ttrain 98.10 100.00 99.75 

Couch 87.60 88.00 87.90 Ttruck 98.75 100.00 100.00 

Cup 98.40 100.00 100.00 Umbrel 96.00 97.75 97.70 

Donut 99.00 100.00 100.00 Vase 99.40 100.00 100.00 

Frisb 100.00 100.00 100.00 Wglass 85.10 88.50 87.90 

Hdryer 98.30 99.00 99.10  94.57 96.48 96.51 

Hbag 88.80 92.60 92.90  4.41 3.85 3.96 

Hotdog 88.00 89.80 89.50 cv 0.04 0.04 0.04 

 

 

5.3 Recognition Performance on the OLib Database 
 

Table 4 presents the results of the recognition systems with data from the CO3D database. Testing is performed with 

((20- 4)/20) = 80.00% of each object’s set of images, while training was performed with only (4/20) = 20.00% of the 

object’s set. 

 

While the NED recognizer reports some issues with six objects (9, 10, 15, 16, 18, and 20), a general average recognition 

rate of 96.50% corroborates its high accuracy. This is important as the objects in our database include noise elements 
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such as shadows, scale variation, shining, and translucency, which makes the task difficult. Regarding the SOM system, 

there are specific difficulties with objects 18 and 19. This led to an average recognition rate of 95.96% which is lower 

than the performance of the NED system. Finally, the highest recognition rate of 96.88% is obtained with the GCS 

system. In contrast to the experiments with the COIL-100 and CO3D databases, performance reports a minimal increase 

in variability of 1.0%. 

 

Table 4. Recognition rates (%) of the NED, SOM and GCS systems with the test data of the OLib database. 

 

Object NED SOM GCS Object NED SOM GCS 

1 100.00 100.00 100.00 13 100.00 95.00 100.00 

2 98.66 97.00 100.00 14 100.00 95.00 92.00 

3 97.00 98.30 100.00 15 90.00 100.00 95.00 

4 100.00 100.00 100.00 16 85.00 94.40 96.67 

5 97.00 100.00 100.00 17 95.00 100.00 100.00 

6 99.33 100.00 98.32 18 90.00 80.00 89.66 

7 100.00 100.00 100.00 19 100.00 85.00 93.00 

8 100.00 100.00 100.00 20 95.00 97.00 95.00 

9 90.00 90.00 90.45  96.50 95.96 96.88 

10 93.00 93.30 95.00  4.58 5.44 3.70 

11 100.00 97.50 100.00 cv 0.04 0.05 0.04 

12 100.00 96.67 92.55     

 

 

5.4 Recognition Performance vs. Alternative Colour Descriptors 
 

To conclude the assessment for the improved 3D colour histogram descriptor, a comparison with other colour descriptors 

reported in the literature was performed. The considered descriptors were: 

• C-SIFT [30]: a coloured SIFT which integrates the information of colour variations as well as geometrical data. 

• RGB-SIFT [38]: a SIFT descriptor is computed for each colour channel. 

• Colour moments [39]: it is based on the assumption that the distribution of colours can be modeled as a probability 

distribution. Therefore, an image can be represented by the central moments (mean, variance and skewness) of the 

distribution of the RGB colours. Thus, moments are computed for these colour channels and consequently the image 

is described by nine moments (three for each colour). 

• RGB histogram: this is a 1-D histogram which combines the information of the RGB channels. 

 

Table 5 presents the results of the three recognition systems on the test data of the COIL-100 database. These results 

compare the performance of the improved 3D colour histogram with the previously reviewed colour descriptors. With 

the COIL-100 database, it is clear the advantage of the proposed 3D colour histogram descriptor independently of the 

recognition system. 

 

Table 6 and Table 7 present the results of the three recognition system on the test data of the CO3D and OLib databases 

respectively. Although for these databases the RGB-SIFT descriptor increases the performance of the SOM system only, 

the proposed 3D colour histogram descriptor achieves very similar performance, outperforming the C-SIFT, Colour 

moments, and RGB histogram descriptors. In all other databases and recognition systems, the proposed 3D colour 

histogram achieves the highest recognition rates. 

 

Table 5. Comparison of recognition rates (%) obtained with alternative colour descriptors: COIL-100 database 

 
Descriptor NED SOM GCS 

3D Colour Histogram 97.80 97.10 97.20 
C-SIFT 95.30 90.10 91.50 

RGB-SIFT 95.00 94.25 94.00 
Colour moments 92.35 91.60 92.20 
RGB histogram 89.50 90.00 90.50 
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Table 6. Comparison of recognition rates (%) obtained with alternative colour descriptors: CO3D database 

 
Descriptor NED SOM GCS 

3D Colour Histogram 94.57 96.48 96.51 
C-SIFT 92.93 95.09 96.31 

RGB-SIFT 93.10 97.00 96.05 
Colour moments 93.66 94.25 95.35 
RGB histogram 92.83 93.80 94.00 

 

Table 7. Comparison of recognition rates (%) obtained with alternative colour descriptors: OLib database 

 
Descriptor NED SOM GCS 

3D Colour Histogram 96.50 96.00 96.80 
C-SIFT 94.40 93.50 93.30 

RGB-SIFT 95.30 96.45 96.00 
Colour moments 93.10 93.45 94.00 
RGB histogram 93.00 92.80 92.60 

 

 

6 Conclusions 
 

In this work a colour-based object descriptor was defined. Such descriptor is a 216-bin 3D colour histogram. To evaluate 

its performance, three different recognition systems were implemented using NED, SOM, and GCS, to discriminate 

objects from three databases: COIL-100, CO3D, and OLib (own database). Recognition tests corroborated that the 

proposed descriptor is able to discriminate objects based in colour, reaching a recognition rate of around 97.0% despite 

the reduced number of samples used for training. When compared to other colour descriptors, the proposed 3D colour 

histogram descriptor generally outperformed C-SIFT, RGB-SIFT, Colour moments, and RGB histogram throughout all 

databases. 

In summary, from the results obtained from the different evaluations carried out with the 3D colour histogram descriptor, 

we can conclude the following: 

a) The descriptor is easy to implement. 

b) The performance obtained is even better than other object colour-based descriptors. 

c) It could be used as an object recognition system on a mobile or industrial robot. 

 

Nevertheless, the proposed descriptor, as any colour-based descriptor, is prone to further improvements. As mentioned 

in [40] colour histograms can potentially be identical for two images with different object content. Also, similar objects 

of different colours may be indistinguishable based solely on colour histogram comparisons. Thus, integration with other 

descriptors is important to enhance feature extraction and reduce the likelihood of these potential risks. 
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