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A la memoria de Jesús Vicente Flores Morfín  

Abstract. Path-metaheuristics have been used successfully in combinatorial optimization. However, in 

continuous optimization problems, the lack of neighborhood definitions makes them difficult to design 

and implement. This paper proposes a neighborhood operator based on first order linear approximation of 

the gradient. In order to adapt the linear approximation to multi-objective optimization, we use the multi-

objective decomposition approach so the operator can be used for single and multi-objective continuous 

optimization problems. The proposed approach is validated using a Threshold Accepting algorithm based 

on decomposition and a set of benchmark problems for multi-objective optimization. Results show a 

significant improvement over Pareto lineal sets.      

 

1. Introduction 
 

Multi-objective optimization (MOO) based on decomposition [1] is an approach that researchers use to avoid the problems of 

Pareto dominance, some of the advantages are less complex algorithms and no need of dominance verification of the solutions 

found. In MOO all solutions that are non-dominated are equally good. MOO based on decomposition guides the search using 

aggregative objective functions as fitness function; the main idea of MOO based on decomposition is transforming the Multi-

objective problem into many single objective problems to achieve different Pareto optimal solutions. This is done using 

weighted aggregative objective functions. The current research on decomposition methods has been focused on population 

searches as evolutionary algorithms (MOEA/D [2], MOEA/D-DE [3]), memetic algorithms (MOGLS [4], MOEA/D-SQA [5]) 

and swarm intelligence (MOEA/D-ACO [6], dMOPSO [7], D2MOPSO [8]) among others. Early attempts to study path-search 

based on decomposition were presented in [9, 10]. In [9] Alhindi et al. presents a Tabu Search for multi-objective permutation 

flow shop scheduling problems while in [10] Li et al. uses the multi-objective versions of knapsack and traveling salesman. In 

combinatorial optimization, there are well-known operators [11]; i.e., the swap and insertion operators are very effective for 

permutation based problems like the linear ordering problem [12, 13] while the boundary or sequential changes are effective for 

combinatorial problems [14]. The main issue with continuous optimization problems is the concept of movement among 

neighbor solutions, which is not clear. In this paper we will use the Threshold Accepting (TA) algorithm which is a variant of 

the Simulated Annealing algorithm, and we will name it Threshold Accepting based on Decomposition algorithm (TAD). We 

selected this algorithm in order to use a simple path-search metaheuristic and prove the efficiency of the proposed 

neighborhood. The main contribution of our work is a new neighborhood operator based on linear approximations of the 

gradient. The remaining of this paper is organized as follows. Section 2 shows the definitions of multi-objective optimization 

and aggregative objective functions. Section 3 describes the three different linear approximations of the gradient. Section 4 

describes the proposed approach and an algorithm to prove the neighborhood performance. The experimentation setup is shown 

in Section 5. A description of the experimental results can be found on Section 6. Section 7 contains the conclusions and future 

work.
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2. Background concepts 
 

This section presents basic concepts of multi-objective optimization and aggregative objective functions from [1, 22]. 

 

Definition 1. A Multi-objective optimization problem (MOP).  

Given a vector function 𝑓(𝑥⃗) = [𝑓1(𝑥⃗), 𝑓2(𝑥⃗), … … … , 𝑓𝑘(𝑥⃗)] and its feasible solution space 𝛺, the MOP consists in finding a 

vector 𝑥⃗ ∈ 𝛺 that optimizes the vector function 𝑓(𝑥⃗). Without loss of generality we will assume only minimization functions. 

 

Definition 2. Pareto dominance. 

A vector 𝑥⃗ dominates 𝑥⃗′ (denoted by 𝑥⃗ ≺ 𝑥⃗′) if 𝑓𝑖(𝑥⃗) ≤ 𝑓𝑖(𝑥⃗′) for all 𝑖 functions in 𝑓 and there is at least one i such that 𝑓𝑖(𝑥⃗) <
𝑓𝑖(𝑥⃗′). 

 

Definition 3. Pareto optimal. 

A vector 𝑥⃗∗ is Pareto optimal if not exist  𝑥⃗′ ∈ 𝛺  such that   𝑥⃗′ ≺ 𝑥⃗∗. 

 

Definition 4. Pareto optimal set. 

Given a MOP, the Pareto optimal set is defined as 𝑃∗ = {𝑥⃗∗ ∈ 𝛺}. 

 

Definition 5. Pareto front. 

Given a MOP and its Pareto optimal set 𝑃∗, the Pareto front is defined as 𝑃𝐹∗ = {𝑓(𝑥⃗) | 𝑥⃗ ∈ 𝑃∗}. 

 

Definition 6. Aggregative objective function (AOF). 

Given a vector function 𝑓(𝑥⃗), an AOF is a function that maps 𝑓(𝑥⃗) → ℝ. 

 

Definition 7. Weighted AOF. 

Given a vector of weights 𝑤⃗⃗⃗ = (𝑤1, 𝑤2, 𝑤3, … … … , 𝑤𝑘) and a vector function 𝑓(𝑥⃗), a weigthed AOF  is a function that 

(𝑓(̅𝑥⃗), 𝑤⃗⃗⃗) → ℝ. 

 

3. Neighborhood operator based on linear approximations of the gradient 
 

The gradient vector 𝛻𝑓 of a scalar valued function 𝑓 (as the weighted AOFs) on point 𝑥⃗, indicates the direction where the scalar 

field 𝑓 changes most quickly. There exist three different ways of compute the linear approximations of the gradient: forward 

(Equation 1 and 3), backward (Equation 2 and 4) and center (Equation 1, 2 and 5). To compute the approximations a 

perturbation value ∆ is necessary. In [15] Hughes proposed the use of forward approximation in order to guide the search. The 

problem using only forward gradient is that the decision variables can only be updated by positive increments as in Equation 1, 

leading the search to stagnation. Also the selection of ∆ is not trivial, lower values of ∆ will produce lesser exploration of the 

search space, while higher values will create unfeasible solutions. 

 

𝑥𝑖
′ ←  𝑥𝑖 + ∆    (1) 

𝑥𝑖
′′ ←  𝑥𝑖  −   ∆   (2) 

𝛻𝑓𝑖(𝑥⃗) ≈
𝑓(𝑥⃗)−𝑓(𝑥⃗′)

∆
   (3) 

𝛻𝑓𝑖(𝑥⃗) ≈
𝑓(𝑥⃗′′)−𝑓(𝑥⃗)

∆
   (4) 

𝛻𝑓𝑖(𝑥⃗) ≈
𝑓(𝑥⃗′)−𝑓(𝑥⃗′′)

2∆
   (5) 

 
The computation of the approximation of the gradient 𝛻𝑓 increases with the number of decision variables plus the computational 

cost of founding a feasible value of ∆ for 𝑛 variables both operations are of O(𝑛) complexity. In order to explore the search 

space and reduce the computational times only one decision variable from the original vector is modified as suggested in [15].  

Algorithm 1 shows the entire neighborhood application procedure given a solution 𝑥⃗ and their variables bounds, the procedure 
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return a neighbor solution 𝑥⃗′, the central calculation use the temporal solutions 𝑧 and 𝑦⃗.  The repair method is very simple, if the 

decision variable is greater than the upper bound it is set to the upper bound, if the decision variable is smaller than the lower 

bound is set to the lower bound. 

 

 

Algorithm 1. Function LinearApproximationGradient() 

 

4. Threshold accepting based on decomposition (TAD)  
 

The Multi-objective TAD is a hybrid between the decomposition and Threshold Accepting framework. A set of vector weights 

W is required by the AOF to guide the search [1]. TAD also benefits from the mutated solutions x⃗⃗′ used to compute the neighbor 

x⃗⃗′′ to update the current problem cluster ci or the entire population as in MOEA/D-DE [3]. The clusters ci can be overlapped, as 

the Euclidean distance is used and every cluster is formed with the T closest w⃗⃗⃗⃗j to w⃗⃗⃗⃗i [3]. The weighted AOF used in this work 

is the weighted Tchebycheff, the same weighted AOF that MOEA/D-DE implements. The following algorithm describes TAD 

based on decomposition with a neighborhood operator based on linear approximations of the gradient. 
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Algorithm 2. Threshold accepting algorithm based on decomposition (TAD) 

As shown in Algorithm 2 the main while loop (lines 9-23) controls the stop criteria, reached when the threshold 𝑄 is equal or 

less than the minimum threshold value 𝑄𝑚𝑖𝑛. Every vector weight  𝑤⃗⃗⃗𝑖 ∈ 𝑊 has associated a best current solution 𝑥⃗𝑖, which is 

visited in the inner loop (lines 10-21) and is mutated maxsteps times in two steps (lines 11-20), the first step performs 

polynomial mutation [16] to add diversity and avoid the exclusive use of linear movements in a temporal solution 𝑥⃗′ , the second 

step computes their neighbor 𝑥⃗′′using the proposed operator. If 𝑥⃗′′ objective value is better than the threshold 𝑄 + (𝑓(̅𝑥⃗𝑖), 𝑤⃗⃗⃗𝑖) 

then 𝑥⃗𝑖 is replaced with 𝑥⃗′′ (lines 14-15). It is important to notice that when the gradient is computed backward or forward the 

temporal solution 𝑥′ is only one, on the other hand when central gradient is computed two temporal solutions are used (forward 

and backward) as in Equation 5, every temporal solutions is used later in the 𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 method, as the update step in 

MOEA/D-DE [3].  

 

5. Experimentation 

 
For the experimentation, three algorithms from the state of the art were selected NSGA-II, GDE3, and MOEA/D-DE. The 

quality indicators computed are Generational Distance [17], Generalized Spread [18] and Spacing [19]. The TAD parameters 

are: the threshold start value 𝑄 = 1, threshold end value 𝑄𝑚𝑖𝑛= 1E-10, the reduction factor r=0.95, the decomposition 

mating/update range σ=0.9, the number of neighbor solutions to visit maxsteps=10, which is equivalent to 449 generations in 

classical evolutionary algorithms. The experimentation was performed with the original configuration parameters proposed by 

their authors. One hundred independent runs were performed over each treated problem. The experimentation benchmarks are 

ZDT [20], LZ09 [3] and DTLZ [21]. The algorithm and problems implementations were taken from the framework jMetal 4.5 

[23] and the experimentation was carried out on an IBM x3100 M4 computer with Xeon Quad Core 3.0 Ghz with 2 GB of RAM 

running FreeBSD 10 as operative system. 

 

6. Results 
 

The averages of the quality indicators computed are shown in Tables 1 to 3. Although the best performance is not always 

achieved by a decomposition method, this work analyzes the difference between the TAD which includes the proposed 

neighborhood operator and MOEA/D-DE. The problems of the DTLZ family were configured with the optimal parameters 

suggested in [21] with three objectives. The problems with Pareto linear shapes in DTLZ family are DTLZ1 and DTLZ2, for 
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both problems our proposed TAD gets the best uniformity (spacing indicator) among the solutions found. For the second family 

of problems ZDT, the same behavior occurs. Almost all the problems have linear Pareto shapes because the first objective 𝑓1 is 

equal to the first variable 𝑥1, except for ZDT5 which is a binary problem and ZDT6, were MOEA/D-DE outperforms our 

proposed TAD. The LZ09 family of problems is a set of hard optimization problems because of its complicated Pareto shapes. 

Our proposed TAD has a lower performance than MOEA/D-DE over these set or problems, LZ09_F8 presents a special interest 

to us because our proposed TAD outperforms MOEAD/-DE. The main reason of the hardness of the LZ09 problems when 

solved with TAD is the threshold value and reduction factor, LZ09 problems have very small objective values which needs a 

smoother reduction factor and a smaller final threshold value, in order to be sensitive to the changes in the objective functions 

values. Finally, the non-parametric statistical test of Kruskal-Wallis produces significant differences, above 95% of confidence 

for all the benchmark problems. The Wilcoxon rank sum test also shows a significant difference between MOEA/D-DE and 

TAD, above 95% for all the benchmark problems except for the GD of DTLZ6 where both algorithms were reported as 

equivalent. The tables in this section show in light gray the best decomposition method. The abbreviations are: Generational 

Distance GD, Generalized Spread GS and Spacing SPA. 

 

Table 1. DTLZ results 

 

  GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD 

Problem DTLZ1 DTLZ2 DTLZ3 

GD 0.00021 0.78845 4.95647 0.85970 0.00049 0.00355 0.00065 0.00340 1.88681 2.84279 23.71066 3.09526 

GS 0.41590 0.44565 0.02977 0.36167 0.37782 0.41316 0.37726 0.41626 0.03114 0.38985 0.00563 0.32703 

SPA 0.00905 16.31855 8.36979 14.65828 0.02212 0.09713 0.02440 0.08509 1.71453 75.18061 24.43615 79.32565 

Problem DTLZ4 DTLZ5 DTLZ6 

GD 0.00190 0.00440 0.00204 0.00578 0.00010 0.00252 0.00012 0.00227 0.00022 0.01694 0.24529 0.01690 

GS 0.46959 0.74281 0.45169 0.66884 0.53090 0.76705 0.41455 0.77189 0.54077 0.78889 0.01380 0.75920 

SPA 0.02220 0.04189 0.02442 0.05808 0.00086 0.07222 0.00209 0.06175 0.00085 0.48096 0.20036 0.46698 

Problem DTLZ7                 

GD 0.00119 0.03701 0.00878 0.02180                 

GS 0.51713 0.66791 0.48206 0.66518                 

SPA 0.02717 0.21473 0.03303 0.27982                 

 

 

Table 2. ZDT results 

  GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD 

Problem ZDT1 ZDT2 ZDT3 

GD 0.00008 0.01456 0.00057 0.00870 0.00003 0.01481 0.00112 0.00765 0.00019 0.01458 0.00112 0.00765 

GS 0.51786 0.59042 0.13623 0.62051 0.52063 0.53661 0.12460 0.60206 0.54016 0.82648 0.56377 0.73640 

SPA 0.00094 0.25546 0.00240 0.15402 0.00093 0.25640 0.00407 0.13245 0.00103 0.25727 0.00250 0.17088 

Problem ZDT4 ZDT6         

GD 0.43038 0.61116 0.07702 0.26028 0.00025 0.00616 0.03728 0.01690         

GS 0.09561 0.57426 0.26941 0.18483 0.72209 0.75978 0.19898 0.91813         

SPA 0.18495 10.58875 0.05712 4.51059 0.00095 0.10550 0.02040 0.29277         
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Table 3. LZ09 results 

 

  GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD GDE3 MOEAD/DE NSGAII TAD 

Problem LZ09_F1 LZ09_F3 LZ09_F4 

GD 0.00074 0.00356 0.00207 0.01236 0.00159 0.00040 0.00331 0.00419 0.00156 0.00343 0.00229 0.00372 

GS 0.25596 0.54724 0.63339 0.36029 0.64526 0.91408 0.51263 1.04331 0.71059 1.07755 0.60250 1.18876 

SPA 0.00381 0.06261 0.00662 0.21433 0.00880 0.00612 0.00817 0.06860 0.00872 0.02448 0.00608 0.06573 

Problem LZ09_F5 LZ09_F6 LZ09_F7 

GD 0.00112 0.00109 0.00219 0.00442 0.17813 0.03286 0.09175 0.01986 0.16661 0.03111 0.08978 0.02332 

GS 0.69486 1.13480 0.53689 1.02732 0.25007 1.03308 0.42151 0.59000 0.16406 0.52020 0.26105 0.50653 

SPA 0.00668 0.00648 0.00555 0.07285 0.21476 0.54351 0.15077 0.29373 0.20300 0.48539 0.10816 0.30646 

Problem LZ09_F8                 

GD 0.01521 0.01576 0.02666 0.01483                 

GS 0.39725 0.42393 0.36577 0.35093                 

SPA 0.00271 0.00991 0.01731 0.09001                 

                          

 

 

7. Conclusions 
 

We recommend the use of the neighborhood operator based on linear approximations of the gradient especially for linear Pareto 

shapes. The parameter 𝑄𝑚𝑖𝑛 has to be smaller enough in decimal precision to detect the changes in the objective functions of the 

treated problem. For problems with differences below 30 decimals (𝑄𝑚𝑖𝑛=1E-30) we recommend a smoother reduction factor as 

999E-3. The inclusion of polynomial mutation allows the algorithm to work with not only linear Pareto shapes, as show in 

LZ09_F8, DTLZ5, DTLZ6. The weakness of the proposed approach is observed when very small changes in the objective 

values happen, then a smoother reduction factor and smaller final threshold is needed. However, those are natural deficiencies of 

the threshold approach, while our proposal remains independent from a particular path-search algorithm and was proved to yield 

good performance. 

 

The impact of higher order linear approximations and how it affects the final Pareto front representation still need to be 

researched. Path-search based on decomposition for multi-objective optimization is a promising research area, with many 

traditional methods not which have not been researched yet. We invite researchers to test the proposed neighborhood operator as 

an alternative to their operators and encourage them to implement new operators to increase the knowledge on path-search 

algorithms for continuous optimization problems. 
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