Capacitated Multi-Facility Location Problem on the Ellipsoid with Multi-Zone Restrictions

Lucía Cazabal-Valencia, *Santiago-Omar Caballero-Morales, José-Luís Martínez-Flores, Damián-Emilio Gibaja-Romero
Universidad Popular Autónoma del Estado de Puebla A.C., Postgraduate Department of Logistics and Supply Chain Management, 17 Sur 901, Barrio de Santiago, 72410, Puebla, México
lucia.cazabal01@upaep.edu.mx, santiagoomar.caballero@upaep.mx,
joseluis.martinez01@upaep.mx, damianemilio.gibaja@upaep.mx

Abstract

One of the main problems faced by organizations is the strategic location of its facilities. This is because resource acquisition and operational performance of the supply chain depend on this aspect. Complexity is increased if the most suitable location is not available due to zone restrictions. While facility location models have been developed to solve this problem, only a single zone restriction has been studied. The present work contributes to this context by (a) proposing a solving method for the multi-facility location problem with multi-zone restrictions, (b) considering the ellipsoidal surface of the Earth to provide more accurate estimates of distances, and (c) developing a large instance with real geographic location data for validation of the method and benchmark studies. The results reported in this work corroborate the suitability of the method and that, even with multi-zone restrictions, minimum distance/costs can be achieved when compared to the non-restricted problem.

Keywords: Facility Location Problem, Restricted Zones, Ellipsoidal Earth, Inverse Problem

Article Info
Received Feb 24, 2022
Accepted August 16, 2022

1. Introduction

In economic-administrative terms, the location of facilities is a factor that determines the feasibility of business and supply chain infrastructure. As discussed by Shih [1], 'poor facility location decisions can lead to high transportation costs, inadequate supplies of raw materials and labour loss of competitive advantage, and financial loss [2]". For this reason, it is very important to identify and evaluate the feasibility of locations based on investment and operational requirements.

Within the discipline of Operations Research, Location Theory is focused on the development of models to formally address facility location decisions. These models increase in complexity as more restrictions and variables are considered to properly represent real problems and thus, to provide adequate solutions [3].

Thus, facility location decisions involve several factors which are related to practical situations. Among the factors that affect facility location and re-location decisions the following can be mentioned [4,5]:

- Transportation infrastructure, means and costs
- Availability of labour force and salaries
- Location and availability of suppliers
- Market proximity
- Environmental and topography characteristics
- Waste disposal infrastructure
- Taxes and governmental regulations
- Availability of water, electric power and other supplies
- Social and cultural conditions (living conditions)
- Availability and reliability of support systems
- Irregular spatial distribution of customers

Another factor which is relevant to facility location problems is the surface model because distances and transportation routes depend on this aspect. Most works have considered the flat or spherical surface for facility location problems [6]. This assumption can lead to significant driving distance variations between widely separated location points [1]. The ellipsoidal surface model has led to more accurate estimations of distances between real geographical points.

The complexity of the problem is further increased when the best suitable location option, based on cost or distance, cannot be reached. In this aspect, few works on facility location have considered restrictions that define prohibited zones, congested areas, and barrier regions [7,8,9].

Hence, the present work extends on these aspects by developing a multi-facility location model on the ellipsoidal Earth with multi-zone restrictions. Also, a large test instance of geographical location points was developed to provide benchmark data for future research.

The present work is structured as follows: Section 2 presents the technical background of key aspects such as distances on the ellipsoid and zone restriction approaches. Then, Section 3 presents the development of the proposed multi-facility location model with multi-zone restrictions on the ellipsoidal Earth. The assessment of the model, including details of the solving method and the test instance, is presented and analyzed in Section 4. Finally, the conclusions and future work are presented in Section 5.

2. Technical Background

2.1 Ellipsoidal Model of the Earth

In Geoscience has developed theoretical studies referring to the size and shape of the Earth [10]. These studies have been very important in many contexts such as the optimization of aircraft routes and ships [11]. Thus, providing more accurate models of the Earth's size and shape have repercussions on costs, distances and/or times associated with the location of facilities [12].

In this context, the geoid, which is considered to represent the truer shape of the Earth, can be approximated as a reference ellipsoid $[6,13]$. As presented in Figure 1, the geodesic on an ellipsoid can be defined as the unique curve on the surface of the ellipsoid with the shortest distance between two points, where these points are determined by their latitude (λ) and longitude (ϕ) coordinates.

Figure 1. Geodesic on an ellipsoid ${ }^{14}$.

When determining the length of the geodesic on the ellipsoid, it is important to mention the associated direct and inverse problems associated to geodesics [6,14,15]:

- Direct problem: given the latitude and longitude of a location $A\left(\lambda_{A}, \phi_{A}\right)$, the azimuth (direction) $\alpha_{A B}$, and the geodetic distance $S_{A B}$, the problem consists of determining the latitude and longitude coordinates of location $B\left(\lambda_{B}, \phi_{B}\right)$ and the inverse azimuth.
- Inverse problem: given the latitudes and longitudes of two locations A and $B\left(\lambda_{A}, \phi_{A}, \lambda_{B}, \phi_{B}\right)$, the problem consists of determining the azimuths and the geodetic distance $S_{A B}$ between these locations.

Some solution methods have been proposed for both problems. Pittman [16] provided solutions through integrals while Deakin and Hunter [14] developed the Bessel method through elliptical integrals by series expansions. Kivioja [17] and Sjöberg et al. [18] provided strict solutions for the sphere and ellipsoidal correction through numerical integration.

For the purposes of this work the inverse problem is considered to estimate the geodesic distance $\left(S_{A B}\right)$ between geographic locations. Particularly, the iterative method of Vincenty [15] was implemented due to its computational flexibility [6].

2.2 Zone Restrictions

The facility location problem seeks to determine the most suitable location for a facility (or set of facilities) to minimize the total cost or distance between it and a set of customers. When multiple facilities are considered, the minimization task depends also on determining which customers are to be assigned to each facility. This leads to define the multi-facility location problem as a NP-hard problem which is of high computational complexity [19].

In practice, minimization of distances or costs may not be the only factors to be considered by the facility location problem. Other variants of the problem, for example, when the possible locations are limited to a closed set, when there is a maximum distance restriction from a facility to the customers, or when the facility should not be located at the North of a specific line, adds complexity to the location task [20].

Given these variants, the importance of location models with zone restriction emerges, which may take different approaches:

- Restriction by region or area
- Restriction by flow or circulation
- Restriction by physical or geographic barrier
- Restriction by maximum distance

The work reported by Santra [21] focused on finding the locations of new facilities (multi-facility) considering a circular region around the center of gravity of a given number of existing facilities. The problem was addressed deterministically [21] and stochastically [22] on a plain surface with Euclidean distances. This work was extended to address the problem in a deterministic way with a triangular region on a plain surface with Euclidean distances [23].

Hamacher and Klamroth [24] presented theoretical and practical analyzes were presented. These were focused on locating a single facility considering a convex polyhedral barrier to restrict the crossing between facilities. This work also considered Euclidean distances and a plain surface.

Finally, other works [8,9] considered the problem of locating a new facility within a set of existing facilities and in the presence of a single region where the location of the facility and trips were not allowed. This region was defined as a convex polyhedral barrier on a plain surface with Euclidean distances.

These works provide reference to contrast the contribution of the present work which consists of the following:

- Plain surface and Euclidean distance have been considered in the reviewed works. Here, multiple facilities are to be located to minimize the total distance to customers on the ellipsoid, which is a more representative surface model of the Earth. Arc length on the ellipsoid is considered as the distance metric.
- Single restricted region has been considered in the reviewed works. Here, multiple circular restricted zones of different sizes are considered for the multi-facility location problem on the ellipsoid.

In the following section, the details of the proposed model are described.

3. Development of the Multi-Facility Location Model with Multi-Zone Restrictions on the Ellipsoid

In this work the continuous facility location problem of Weber is considered. This problem consists of finding the coordinate $\left(x^{*}, y^{*}\right)$ of the facility that minimizes the sum of weighted distances between this point and n customer points with coordinates $\left(a_{i}, b_{i}\right)$ where $i=1, \ldots, n$. The Weber problem is continuous because $\left(x^{*}, y^{*}\right)$ can take any value within the location space, and thus, its solution can lead to minimum coverage distance ${ }^{19}$. With these definitions and by considering the work of Chaves et al. [25], the objective function of the capacitated multi-facility Weber problem can be expressed as:

$$
\begin{equation*}
\text { Minimize } \sum_{i=1}^{n} \sum_{j=1}^{m} z_{i j} d_{i j} \tag{1}
\end{equation*}
$$

Where $z_{i j}=1$ if customer i is served by the facility j, and $z_{i j}=0$ otherwise. $d_{i j}=$ distance between the location of the facility at $\left(x_{j}{ }^{*}, y_{j}^{*}\right)$ and the assigned customer i at $\left(a_{i}, b_{i}\right)$. Then, this function is subject to:

$$
\begin{array}{cl}
\sum_{j=1}^{m} z_{i j}=1 & \forall i \in n \\
\sum_{i=1}^{n} z_{i j}=n_{j} & \forall j \in m \\
\sum_{i=1}^{n} p_{i} z_{i j} \leq H_{j} & \forall j \in m \tag{4}
\end{array}
$$

$$
\begin{equation*}
n_{j} \in n, z_{i j} \in\{0,1\}, \quad \forall i \in n, \forall j \in m \tag{5}
\end{equation*}
$$

Where n is the set of customers, m is the set of facilities, n_{j} is the number of customers served by facility j, p_{i} is the demand of customer i and H_{j} is the capacity of facility j (in this case, all facilities have the same capacity, thus, $H_{j}=H$). As most of the metric distances are non-linear, (1) defines the non-linear objective function which consists on minimizing the total distance between each customer and the facility where the customer is assigned. (2) and (3) are restrictions that define that each customer is only assigned to one facility and provides the number of customers assigned to each facility respectively. (4) defines that the total demands of the customers assigned to a facility j must not exceed its capacity. Finally, (5) define the decision variable $z_{i j}$ and the upper limits for the number of customers assigned to each facility $\left(n_{j}\right)$.

In terms of the ellipsoidal Earth, as mentioned in Section 2.1, locations are expressed in latitude (λ) and longitude (ϕ) coordinates. Thus, $\left(x_{j}{ }^{*}, y_{j}{ }^{*}\right) \rightarrow\left(\phi_{j}^{*}, \lambda_{j}{ }^{*}\right)$ and $d_{i j} \rightarrow \mathrm{~s}_{\mathrm{ij}}$ where $s_{i j}$ is the arc length on the ellipsoidal Earth (geodetic distance) between the facility j located at $\left(\phi_{j}{ }^{*}, \lambda_{j}{ }^{*}\right)$ and the customer i located at $\left(\phi_{i}, \lambda_{i}\right)$. This leads to the following updated objective function for the capacitated multi-facility Weber problem on the ellipsoid:

$$
\begin{equation*}
\text { Minimize }_{\phi_{j}^{*}, \lambda_{j}^{*}}=\sum_{i=1}^{n} \sum_{j=1}^{m} z_{i j} s_{i j} \tag{6}
\end{equation*}
$$

While restrictions (2) to (5) do not need further adaptation for the ellipsoidal model, the following restrictions are added to keep consistency to the search space on the ellipsoid:

$$
\begin{gather*}
\frac{\left(e \cos \phi_{j}^{*} \cos \lambda_{j}^{*}\right)^{2}}{e^{2}}+\frac{\left(f \cos \phi_{j}^{*} \sin \lambda_{j}^{*}\right)^{2}}{f^{2}}+\frac{\left(g \sin \phi_{j}^{*}\right)^{2}}{g^{2}}=1 \tag{7}\\
-\frac{\pi}{2}<\phi_{j}^{*} \leq \frac{\pi}{2},-\pi<\lambda_{j}^{*} \leq \pi \tag{8}
\end{gather*}
$$

Where e is the major semi-axis of the ellipsoid, and f and g are the minor semi-axes of the ellipsoid. Finally, an additional restriction procedure for multiple restricted zones is required. Note that this restriction applies over the coordinates $\left(\phi_{j}{ }^{*}, \lambda_{j}{ }^{*}\right)$ which directly affect the decision variable $z_{i j}$.

If a set v of restricted or forbidden circular zones with centers located at ($\phi_{f}{ }^{*}, \lambda_{f}{ }^{*}$) and radius r_{f} exist, then, a candidate location for a facility $\left(\phi_{j}^{*}, \lambda_{j}{ }^{*}\right)$ is located within a restricted zone if the geodetic distance between this location at $\left(\phi_{j}^{*}, \lambda_{j}{ }^{*}\right)$ and any center of forbidden zone $\left(\phi_{f}{ }^{*}, \lambda_{f}{ }^{*}\right)$ is smaller than (or equal to) to any r_{f}. Otherwise, the candidate solution is valid as it is out of any restricted zone. This can be expressed as:

$$
\begin{equation*}
s_{j f}>r_{f} \quad \forall j \in m, \forall f \in v \tag{9}
\end{equation*}
$$

This restriction defines that all geodetic distances between the centers of the restricted zones and the facilities must be larger than r_{f} to ensure compliance of the forbidden zones.

4. Assessment of the Multi-Facility Location Model

4.1 Solving Method

As the multi-facility location problem is an NP-hard problem, the use of a meta-heuristic to provide suitable solutions was considered. The extended GRASP capacitated k-means clustering (GRASP-CKMC) algorithm presented by Caballero et al. [26] was considered for the purposes of the present work.

The GRASP-CKMC algorithm provided suitable solutions for the capacitated centered clustering problem (CCCP) which is a well-known multi-facility location problem (average error $<5.0 \%$ for large well known instances). However, the CCCP is different from the multi-facility Weber problem because, instead of locating the facilities at the locations of minimum distance to customers, the CCCP locates the facilities at average locations (centroids) between the assigned customers. Other differences of the CCCP and the GRASP-CKMC algorithm are that restrictions on the locations for facilities are not considered and the number of facilities is a decision variable.

Hence, changes were performed to adapt the GRASP-CKMC algorithm to the present work. These changes are the following:
a) the minimum number of facilities is estimated based on a lower bound defined by:

$$
\begin{equation*}
m_{L B}=\frac{\sum_{i=1}^{n} p_{i}}{H} \tag{10}
\end{equation*}
$$

Note that this approximation considers that demands can be partially served by a facility. As restriction (2) defines that the demand of a customer must be served by a single facility, the complying number of facilities may be larger than $m_{L B}$. For this work, the number of facilities is considered as $m=m_{L B}+10$.
b) For a set of assigned customers to facility j (performed by the GRASP-CKMC) the location of minimum distance of the facility $\left(\phi_{j}^{*}, \lambda_{j}^{*}\right)$ is estimated by means of a micro genetic algorithm ($\mu \mathrm{GA}$). Figure 2 presents the structure of this algorithm.

Figure 2. Structure of the $\mu \mathrm{GA}$ with restricted zones.
c) As presented in Figure 2, the searching mechanism of the $\mu \mathrm{GA}$ for $\left(\phi_{j}{ }^{*}, \lambda_{j}{ }^{*}\right)$ must comply with zone restrictions. When a candidate solution for $\left(\phi_{j}^{*}, \lambda_{j}^{*}\right)$ is generated through the reproduction operators of the $\mu \mathrm{GA}$ its suitability is verified to comply with restriction (9).
If compliance is not achieved, then the candidate solution is adjusted to comply with restriction (9). This is performed by "projecting" the non-compliant location within the restricted zone to a location over its perimeter (out of the restricted zone). This is performed as presented in Figure 3.
If a candidate solution (ϕ, λ) generated by the reproduction or initialization procedure of the $\mu \mathrm{GA}$ is within the perimeter of a restricted zone with center at $\left(\phi_{f}{ }^{*}, \lambda_{f}^{*}\right)$ and radius r_{f}, the vector representing its projecting direction can be obtained as:

$$
\begin{equation*}
\boldsymbol{V}=\left[\phi-\phi_{f}^{*}, \lambda-\lambda_{f}^{*}\right] \tag{11}
\end{equation*}
$$

The length of this vector (i.e., $|\boldsymbol{V}|$) can be obtained as the geodetic (ellipsoidal) distance between (ϕ, λ) and $\left(\phi_{f}{ }^{*}, \lambda_{f}^{*}\right)$. Then, the required distance to move (ϕ, λ) to the limits of the restricted zone over the direction of \boldsymbol{V} can be obtained as $r_{f}-|\boldsymbol{V}|+\beta$, where β is a very small distance value to ensure projection out of the restricted zone. Finally, the adjusted location of (ϕ, λ) can be obtained as:

$$
\begin{equation*}
(\phi, \lambda)^{\prime}=(\phi, \lambda)+\frac{\boldsymbol{V}}{|\boldsymbol{V}|}\left(r_{f}-|\boldsymbol{V}|+\beta\right) \tag{12}
\end{equation*}
$$

Figure 3. Adjustment of solution to locate it out of the restricted zone.
The adapted GRASP-CKMC was implemented in MATLAB R2018a. The hardware was a HP Z230 Workstation with Intel Xeon CPU E3-1240 v3 at 3.40 GHz and 8 GB RAM.

4.2 Test instance

For testing purposes with real data an instance with 500 location points was developed. Demand data for each point was randomly generated and the coordinates were considered in radians. These locations are presented in Table 1. Note that this data can be used also for benchmark purposes.

The number of restricted zones was considered as equal to the number of required facilities which was set to 60 according to $m=m_{L B}+10$.

Table 1．Test instance with 500 geographic locations．

		－1．7079 12	101	0.9731	0.6465	56	201	0.223			30	0.748	2843		401	0.556		
		－1．2411 109	102			184	202			11								
	0.7385	－1．2451	103	0.944	0.3212	124	203	0.15		67	30				403			
4	0.6193	－1．7062	104	0.944	319		204	0.1	1.354	68	304	0.9830	0.1488	134	404			
5	0.6509	－2．1310	105	0.9718	0.3695	156	205	0.189	1.3511	50	305	0.6224	－0．0963		405			
6	0.352	5270	106	0.8227	0.3013	20	206	0.256	1.35	74	306	0.6153	－0．1063		406			
	0.332	-1.715792	107			64	207			76	30				40			
8	0.795	$\begin{array}{lll}-1.2893 & 163\end{array}$	108	0.8	0.2772	67	208	0.3	1.5	165	308	0.4	－0．23		408			
	，	－1．3849	109	0.77	0.3446	131	209	0.40	1.568		309	0.29	－0．2	98	409	0.01		
10	0.8437	－1．7519	110	0.744	0.4046	195	210	0.39	1.60	20	310	0.2	－0．26	171	410			
11	0.179	－1．4816	111	0.735	0.430	24	211	0.4	1.59	52	311	0.1811	－0．21		411	－0．1		
12	0.1775	-1.1879 199	112	077	0.4143	162	212	0.434		21	312		－0．153		412	－0．0662		
13	0.5136	$-1.7210 \quad 17$	113	0.8203	0.5012		213	0.414	1.616	110	313	0.107	－0．105		413	－0．0907		
14	0.108	-1.3190 72	114	0.833	0.4767	15	214	0.39	1.6		314	0.18	-0.08	148	414	－0．10		
15	0.7390	－1．4517 192	115	0.88	0.5271	197	215	0.37	1.672		315	0.1098	－0．0	42	415	－0．		
16	0.324	－1．6697	116	0.8992	0.5355	93	216	0.29	1.6	158	316	0.09	－0．00	59	416	-0.1		
17	0.451	1.7032	117	0.9358	0.476	126	217	0.279			317				417	－0．2338		
18	0.4079	130	118	0.9537	0.4338	184	218	0.279	1.648		318	0.12	． 034		418	－0．2744		
19	0.554	－2．035	119	1.0355	0.4318		219	0.28	1.65	17	319	0.169	0.0288	4	419	－0．28	－0．85	
20	0.8132	－2．10．	120	1.0	0.4163		220	0.2	1.6626	35	320	0.129	0.0657	93	420	-0.2	－0．86	
21	0.6840	－2．0766	121	1.0224	053	187	221	0.280	1.66	63	321	0.22	． 0900	10	42	－0．3		
22	0.6912	－1．9345 141	122	1.019	0.395		222	0.209		162	322		19		422	－0．2		
23	0.1733	－1．46	12	1.018	0.385	39	223	0.243			323	0.09		173	423			
24	0.154	－1．3930	124	1.026	0.3950	85	224	0.17	1.845		324	0.070	． 16	39	424	－0．39		
25	－0．60	－1．022	125	1.0302	0.3942		225	0.05	1.7736	150	325	0.185	0.2488	104	42	－0．4279	－1．02	
26	0.7778	－1．1394	126	1.0276	0.4004	168	226	－0．0	1.994		326	0.04	0.2681	138	426	－0．4		
27	0.934	－1．9857	127	1.0299	0.4061	160	227	－0．0332	2.027	171	327	－0．05	． 1916		427	－0．5489		
	0.596	$\begin{array}{ll}-2.0496 & 55\end{array}$	128	，		176	228	-0.02			328				428			
29	－0．288	－1．1902 176	129	1.0	0.4102	151	229	-0.00	2.040		329	－0．07	0.23	122	429	－0．60		87
30	0	－1．43	130	1.033	0.4138	137	230	－0．00	2.0213	86	330	0.0282	0.2798		430	－0．59	-0.96	
31	0.389	-1.471	131	1.0474	0.1923		231	0.0116	1.969		331	-0.1131	0.2933	88	431	-0.6095	－1．01	
	0.612	-1.8643	132	1.109	0.2678		232	0.034	1.97		332	0.06	． 4863	62	43	－0．6		
	－0．39	-0.7640	13			156	233	0.068			33	－0．15			43			
34	-0.06	-0.93	134	1.154	0.6699	180	234	0.038	1.94		334	－0．15	． 2306	189	434			45
	0.678	-1.34	135	1.0628	0.8682		235	0.019	1.924		335	-0.25	0.308		435	0.71		78
	0.546	－1．98	136	1.178	1.1162	115	236	0.002	1.936		336	-0.35	0.2609	198	436	0.7297		
	0.276	－1．69	137	1.0100	0.9787	171	237	0.000	1.94		33	-0.46	0.2836		437	0.7215		
	0.501	－1．85	138	0.556			23	0.076	2.05		33	-0.56	0.31		438			
	0.419	－1．826	139	0.679	1.007	159	239	0.089	2.068		33	-0.50	． 45	118	439	0.6		
40	0.5550	－1．857	140	0．720．	1.206	61	240	0.08	2.06	112	340	-0.44	0.4897	13	440	0.6618		
	0.1913	-1.30	141	0.753	1.3065		241	0.102	2.05		341	－0．41	0.3975		44			
	－0．6038	－1．019	142	0.8930	1.2445	95	24	023	2.000	164	34	－0．35	0.45		442	0.6		
	0.269	－1．5778 1111	143	0.962	1.0669	153	243	－0．0229	2.00	46	34	－0．31	． 4857	101	443	0.6		
	0.234	-1.55	144	0.889	0.90	165	244	－0．04	1.97	187	34	－0．31	．53		444			3
45	0.158	－1．382	145	0.877	0.995		245	－0．04	1.94	138	345	-0.40	0.61	5	445	0.7436		
	0.335	－1．748	146				246	－0．04	1.936		346	－0．28	0.57	174	446			
	－0．	－1．3713	147	0.879	1.399		24	－0．03	1.935			－0．22	0.68		44	0.6		
	－0．1592	－1．26	148	0.754	1.338	63	248	－0．006	1.96	5		－0．24	． 58	12	448	0.6523		
	－0．192	－1．092	149	0.750	1.3825	152	249	238	2.15	171	34	－0．25	0.4323	145	449	0.63		
	0.049	-1.06	150	0.75	1.39		25	0.24	2.13		3	－0．17	0.54		450	0.6371	－0．081	22
51	0.762	－1．3893	151				251	0.2				－0．13		71	451			
	0.688	－1．3113	152	0748	382	190	252	－0．55	2.02			－0．11	06	43	45	0.7390		195
	0.8170	－1．7599	153	0.6603	1.3076	71	253	－0．527	2.05	145	35	－0．04	0.5793		453	0.72		
	0.810	－1．8345 48	154	0.3978		158	254	－0．471	2.01		35	0.04	． 56	102	454	0.72		
	0.817	－1．961	155	0.435	0.96	124	25	－0．43	2.03	120	35	0.0	． 56		455	0.72		
	0.630	－2．015	156		0.9621	179	256	－0．37					0.517		456			
	0.782	－2．142					257											
	0.981	－2．048	158	0.4315	0.8074			0.86				0.12	3189		458	0.71		
	0.994	-1.7713190	159	0.427			259	0.86				0.14			45			
	-0.57	－1．24	160	0.374		43	260	0.87	1.72		360	－0．02	647	62	460	0.71		
6	-0.679	－1．190	161	0.31	0.74	185	261	0.88			36	0.04	． 6627	161	46			
	－0．	－1．087	162				26	． 88		120					46			
		－1．0912	163					0.697				0.04			46	0.6878		
	－0．621	－1．1268 126	164				26	0.66							46			
	－0．58	－1．234	165	0.236	0.81	104	265	0.543	1.920	183	36	0.06	7952	116	46.			7
	-0.66	－1．0078	166	0.251	0.82	121	266	0.48				0.14	8460		466			2
	-0.58	－0．933	167			129	26	0.60					0.7685	185	46	．		
	－0．54	－0．975	168	0.323			268	736		175		0.19			468	0.7		析
	－0．44	－0．862	169			112		0.775				0.09						
	－0．413	－0．818	170	0.370	0.96		270	0.775		128	37	0.11	7	195	470	0.67		0
	－0．399	－0．7632	171	． 4	0.6370	164	271	0.75	1.93		371	0.16	．		471	．		
	－0．22	－0．670	172	0.547	0.6396	146	272	， 623				0.19	0.6428		472	0.6		
	－0．20	－0．671	173		0.6321			0.63				0.23	． 68		473	0.6671		98
	2020	$\begin{array}{lll}-0.8573 & 172\end{array}$	174	0.608	0.6643	174	274	， 6	2.20			0.21			474	0.67		
	－0．023	－0．8481	175	0.655	0.3936		275	0.604	2.20	87		0.20	75		475	0.66		17
	．	-0.8976 120	176	0.730	0.0486	186	276	0.58	2.208	65	376	0.29	0.6714		476	0.6		110
	0.6682	－1．6525	177	0.736	0380	165	277	0.572	2.280	104	37	0.26	0.65	158	477	0.6		
	0.625	－1．5827	178	0.7430	－0．0076	38	278	0.591	2.281		378	0.22	． 52		478	0.6992		124
	0.620	－1．7169	179	－．85		185	279	0.605				0.22	0.40		49	．		9
	0.59	－1．5834	180	－		141	28	．		151		0.33	0.530		48	． 7		158
8	8	－1．6416 102	181	0.725	020		281	0.622	2.436			0.3	0.6510	78	481	0.75		129
82	0.	－1．9923	182	0.334	2728	129	282	0.631	2.40		382	0.36	0.52	104	482	0.70		
	0.928	－1．9950	183	0.343	1.2694		283	0.662	2.43			0.211	0.2624		483	0.7010		44
	0.945	-1.8225	184	0.346	222	109	284	0.693	2.46	38	38	0.15	． 32		484	．		
	仿	$\begin{array}{ll}-1.1407 & 181\end{array}$	185	－3．48	1271	191	285	0.78	2．461	39	385	0.232	0.3435		485	． 06		188
	0.843	-0.9969	186	0.353	1.27		286	0.74	2.461	117	386	0.30	0．3	25	486	0.66		
	0.8096	$\begin{array}{lll}-1.1022 & 164\end{array}$	187	0.369	1.2685	18	287	0.746	2.49	88	387	0.37	0.29	106	487	0.65	－0．05	12
	0.8230	${ }^{-1.1969}$	188	0.369	1.2899	175	288	0.763	2.48	67	388	0.29	0.1393	135	488	0.6		17
	0.789	-1.3279	189	0.388	2348	189	289	0.765	2.50		389	0.36	． 21		489	0.65		42
	0.730	－1．5361	190	迷	2007	57	290	0.756	2.54	48	39	0.293	2	175	490	0.64		73
	0.766	$\begin{array}{ll}-1.6797 & 188\end{array}$	191	0.4	1.287	28	291	0.618	1.64	27	391	0.52	0.54	174	491	0.67		142
	680	-1.8814	192	0.379	1.382	55	292	0.708	1.44	188	392	0.44	0.50	94	492	0.68	－0．1	49
	0.7375	-1.5570	193	0.381	1.382	181	293	－0．1012	2.342	72	393	0.41	0.6189	151	493	0.70	－0．1	36
	0.643	－1．8234	194	0.303	1.3660	1972	294	－0．11	2.34	84	394	0.5	0.474	53	494	0.70		181
	0.5970	－1．866	195	0.2917	左	199	295	－0．136	2.412	94	395	0.471	2514	174	495	0.718		29
	0.5953	－1．8719	196	0.29.	1.4345	80	296	－0．13	2.42	142	396	0.5	0.2886	154	496	0.67		
	0.5426	－1．8853	197	0.2976	1.4356		297	-0.09	2.46		397	0.4	0.3674	83	497	0.66	－0．12	83
	556	－1．7875	198	0.298	435	35	298	-0.10	2.5455	185	398	0.422	0.4030	184	498	0.7090		
	83	－1．7041	199	313	1.4358	87	299	－0．11	2.56	19	399	0.44	－0．0762	113	499	0.720	－0．13	67
	0.4339	-1.7382 89																

4.3 Results

As previously mentioned, 60 facilities were considered to serve the demands of the 500 customer locations presented in Table 1. First, the multi-facility Weber problem on the ellipsoid without zone restriction was solved with the adapted GRASP-CKMC. The general assignment which is presented in Figure 4 led to a total coverage distance of 4,259.07364 km.

Figure 4. Solution of the multi-facility Weber problem on the ellipsoidal Earth without zone restriction
Second, with the most suitable locations for the facilities the multi-zone restriction was established. For this case, the locations of the facilities were determined as forbidden (restricted) and random radius were assigned to each facility to define the size of the restricted zone. When solving the instance with the multi-zone restriction the adapted GRASP-CKMC led to the general assignment presented in Figure 5 with a total coverage distance of $4,342.91858 \mathrm{~km}$. This represents an increase of just $(4,342.91858 / 4,259.07364-1) \times 100=1.968 \%$ when compared to the unrestricted problem. Thus, even if the most suitable locations are no longer allowable, the adapted GRASP-CKMC algorithm can provide very efficient solutions. Figure 6 presents a more detailed closeup of the difference between solutions for the unrestricted and the restricted problems.

Figure 5. Solution of the multi-facility Weber problem on the ellipsoidal Earth with zone restriction

Figure 6. Comparison of solutions for the (a) unrestricted multi-facility Weber problem and the (b) restricted multi-facility Weber problem on the ellipsoidal Earth.

In Figure 6 (a) the unrestricted problem is solved and the facilities are located in the minimum distance location. Figure 6 (b) presents the solutions for the restricted problem if the previous locations for the facilities are restricted or forbidden. As presented, all facilities are located out of the restricted zones and re-assignment of customers is appropriately performed.

5. Conclusions

The location of facilities can determine the economic success of businesses and industries. Thus, uncertainty in the decision process to determine the most appropriate location can lead to negative economic performance.

In practice, uncertainty is increased when the most suitable location cannot be selected. In such case, more appropriate methods are required to identify the best alternative location in presence of this restriction.

This problem has been addressed in the specialized literature, however, these consider only a single location restriction with standard (non-geographical) data on the plain model of the Earth surface which leads to Euclidean distances.

The present work extends on this context by addressing the multi-facility Weber problem considering the ellipsoidal model of the Earth surface which leads to a more accurate representation of geographical distances. In addition, circular multi-zone restrictions were considered.

Besides extending on the mathematical modelling of the multi-facility Weber problem to include multi-zone restrictions, a method was proposed to adjust candidate solutions for this problem to locate them out of the restricted zones. This method can be integrated into other solving methods such as meta-heuristics to integrate this restriction into other facility location problems.

The results obtained with a large instance support the functionality of the model and the adjustment method, providing solutions with an error of 1.96% when compared to the unrestricted problem. Thus, the proposed model can be used in practical cases where multiple restrictions exist on the eligible locations.

References

1 H. Shih. Facility location decisions based on driving distances on spherical surface. American Journal of Operations Research Vol. 5, pp. 450-492, 2015.
2 R.D. Reid and Sanders N.R. Operations management. 5th ed. New Jersey: John Wiley \& Sons, 2013.
3 J. Puerto and Rodriguez A.M. Modelos de Localización Continua. Boletín de la Sociedad Española de Matemática Aplicada Vol. 29, pp. 89-132, 2004.
4 M.A. Chávez. Estudio de Localización para una Empresa Fabricante de Herramentales. BSc. Dissertation, Universidad Nacional Autónoma de México, 2010.
5 J. Bosques and Franco S. Modelos de Localización-Asignación y Evaluación Multi-criterio para la Localización de Instalaciones no Deseables. Serie Geográfica Vol. 5, pp. 97-111, 1995.
6 L. Cazabal, Caballero S.O. and Martínez J.L. Logistic Model for the Facility Location Problem on Ellipsoids. International Journal of Engineering Business Management Vol. 8, pp. 1-9, 2016.
7 L. Martino, Said S. and Gabor N. Region-Rejection Based Heuristics for the Capacitated Multi-Source Weber Problem. Computers \& Operations Research Vol. 36, pp. 2007-2017, 2009.
8 A. Mehdi, Reza Z. and Walid K. A rectilinear distance location-relocation problem with a probabilistic restriction: Mathematical modelling and solution approaches. International Journal of Production Research Vol. 54, pp. 629-646, 2016.
9 M. Bischoff and Klamroth K. An efficient solution method for Weber problems with barriers based on genetic algorithms. European Journal of Operational Research Vol. 177, pp. 22-41, 2007.
10 D. Boccaletti. The Shape and Size of the Earth: A Historical Journey from Homer to Artificial Satellites. Springer International Publishing, 2019
11 L.E. Sjöberg. New Solutions to the Direct and Indirect Geodetic Problems on the Ellipsoid, Zeitschrift fuer Vermessungswesen Vol. 131, pp. 35-39, 2006.
12 I.D. Hernández. Localización Industrial en México. Ensayos Vol. 26, pp. 43-85, 2007.
13 E. Mysen. GOCE quasigeoid performance for Norway. International Journal of Applied Earth Observation and Geoinformation Vol. 35 (Part A), pp. 136-139.
14 R.E. Deakin and Hunter M.N. Geodesics on an Ellipsoid-Bessel's Method. SRI International, pp. 1-29, 2007.
15 T. Vincenty. Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations. Survey Review Vol. 23, No. 176, pp. 88-93, 1975.
16 M.E. Pittman. Precision direct and inverse solution of the geodesic. Surveying and Mapping Vol. 46, No. 1, pp. 47-54, 1986.
17 L.A. Kivioja. Computation of geodetic direct and indirect problems by computers accumulating increments from geodetic line elements. Bulletin Géodésique Vol. 99, No. 1, pp. 55-63, 1971.

18 L.E. Sjöberg and Shirazian M. Solving the Direct and Inverse Geodetic Problems on the Ellipsoid by Numerical Integration. Journal of Surveying Engineering Vol. 138, pp. 9-16, 2012.
19 D. Dinler, Tural M.K. and Iyigun C. Heuristic for a Continuous Multi-Facility Location Problem with Demand Regions. Computers \& Operations Research Vol. 62, pp. 237-256, 2015.
20 A.P. Hurter, Schaefer M.K. and Wendell R.E. Solutions of Constrained Location Problems, Management Science Vol. 22, No. 1, 51-56, 1975.
21 A.K. Santra. Optimality of Deterministic Multifacility Location Problem with Circular Area Constraint. Journal of the Scientific and Industrial Research Vol. 76, No. 3, pp. 145-148, 2017.
22 A.K. Santra. Stochastic Multifacility Location problem under Circular Area Constraint with Euclidian Norman, Journal of the Scientific and Industrial Research Vol. 76, No. 5, pp. 279-283, 2017.
23 A.K. Santra. Stochastic Multifacility Location Problem under Triangular Area Constraint with Squared Euclidean Norm. Journal of the Scientific and Industrial Research Vol. 78, pp. 19-21, 2019.
24 H.W. Hamacher and Klamroth K. Planar Weber Location Problems with Barriers and Block Norms. Annals of Operations Research Vol. 96, pp. 191-208, 2000.
25 A.A. Chaves and Nogueira-Lorena L.A. Hybrid evolutionary algorithm for the Capacitated Centered Clustering Problem. Expert Systems with Applications Vol. 38, pp. 5013-5018, 2011.
26 S.O. Caballero, Barojas E., Sánchez D. and Martínez J.L. Extended GRASP-Capacitated K-Means Clustering Algorithm to Establish Humanitarian Support Centers in Large Regions at Risk in Mexico. Journal of Optimization, pp. 1-14, 2018.

