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Abstract. Protein folding problem (PFP) is a challenge in some areas, such as molecular biology, 

computational biology, combinatorial optimization, and computer science. This is due to the large number of 

conformational structures that a protein can take from its primary structure to the native structure (NS). The 

aim of PFP is to find the NS of a protein target sequence. In general, the NS which has the lowest Gibbs 

energy or an energy close to it. In this paper, a Simulated Annealing like algorithm is presented, using the 

Golden Ratio search strategy and evolutionary techniques for PFP in small peptides. This method looks for 

the NS using only the protein's amino acid sequence, and determines the three-dimensional structure with the 

minimum energy or a close value of it. 

Keywords: Protein Structure Prediction, GRSA, Evolutionary algorithms. 

 

1. Introduction 

Proteins are molecules made of amino acids. They play a central role in biological processes. For example, proteins transport 

molecules such as oxygen (hemoglobin), also they are involved in the immune system (antibodies), and provide support in our 

bodies (collagen and elastin). The atoms of a protein are linked in a three-dimensional structure where Gibbs free energy is the 

lowest [1]. Is in this structure in which a protein can perform its biological function in our body. PFP is an NP-hard problem that 

consists of finding the three-dimensional structure of a protein; this structure is known as Native Structure (NS) and is 

characterized by the lowest energy in the last configuration of amino acids’ atoms [2][1][3]. A protein can take a high number of 

different conformational structures from its amino acids sequence (primary structure) to its NS, therefore, the total number of 

possible conformations is an exponential function of the total number of degrees of freedom in the amino acid chain. The natural 

process in which a protein gets to its native state is not understood at all, because in nature a protein does not explore all its 

possible states. So, the protein takes an unknown path to its native structure [4]. The importance of PFP lies in the fact that 

certain diseases as Alzheimer, Parkinson, Prion, and Tauopathy, are related to the incorrect folding of some proteins [5], this is 

the main reason why it is important to understand the protein folding process, because this may lead to manipulation of proteins 

to prevent or find the cure for some illnesses. 

The main challenge of PFP is to understand how the information encoded in the sequence of amino acid is expressed into the 

three-dimensional structure, and with this limited knowledge, to develop computational methodologies that can correctly predict 

the native structure of a protein. Several methods for studying proteins structure have been used for years. Main methods with 

this purpose are X-ray crystallography, and nuclear magnetic resonance (NMR). But these methods can have some 

disadvantages, the size of proteins can limit their success, for more accuracy a preprocessed protein can be needed, they can be 

expensive, and their process can take a long time (sometimes it can take almost a year) [6]. Therefore, computational methods 

are becoming important; besides many methods and algorithms have been proposed, tested, and analyzed over the years as a 

solution to this complex problem.  
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Due to the complexity of the problem and the long time that takes to analyze all that possible conformations, and that even for a 

small protein molecule the high dimensionality of the search space makes the problem intractable [4], only a tiny portion of 

protein sequences have experimentally solved three-dimensional structures. This fact had motivated further research in 

Computational Protein Structure Prediction Methods. Different computational approaches for finding the three-dimensional 

structure have been proposed. Algorithms are based on these strategies for solving protein folding problem, these algorithms 

search structures on a huge space of possible solutions. These methods can obtain several structures very close to the native 

structure. These computational strategies can be classified into 3 categories: (a) ab initio, (b) homology, and (c) threading [7]. 

Homology and threading methods use protein information looking for finding a solution of the problem, in contrast, ab initio 

uses only the amino acid sequence without additional structural information. Anfinsen (Nobel Prize in Chemistry, 1972) shows 

that only ab initio can solve PFP [1]. Ab initio is an interesting strategy for the next reasons: a) a lot of proteins do not have any 

homology with other proteins which native structure is known; b) the other strategies do not give information about why a 

protein adopts a certain structure; and c) even though, some proteins show high resemblance to other proteins, they adopt 

structures completely different [8]. On the contrary, the bases of ab initio come from physical concepts based on energy 

functions [9], which can be model as an optimization problem. As a result, only predictions made with ab initio can be fully 

reliable. The algorithm proposed in this work belongs to the ab initio strategy. 

For solving PFP, some heuristics methods have been used, most common are simulated annealing (SA), genetic algorithms 

(GA), ant colony optimization (ACO), tabu search (TS), and other heuristics. The most successful methods for finding the PFP 

solution are heuristics based on Simulated Annealing (SA), and Monte Carlo method; these successful methods are usually 

hybridized with other heuristics and strategies [10]. However, simulating the folding of a protein from a stretched configuration 

to its native structure remains a challenge [11], and the scientific community is working on more powerful algorithms, and 

trying to solve the question related to Levintal´s Paradox: how nature does protein folding? [4]. To answer this unsolved 

question is important because PFP is an NP-Hard problem, but nature uses only some seconds or even nanoseconds for any 

protein folding process. 

To generate high-quality solutions for PFP, new and more efficient SA algorithms have been designed; Golden Ratio Simulated 

Annealing (GRSA) is one of these algorithms [12]; this algorithm has shown to be very efficient for small proteins as Met-

enkephalin, C-Peptide, 1EOG, 1ENH, and 1BDD. GRSA uses several strategies for finding the best solution of PFP. In GRSA, 

SA parameters are tuned with an analytical method, uses a heuristic technique for dividing the search space into sections, it has 

a phase which detects the thermal equilibrium by a least squares method, and a reheat strategy to escape from local optima. In 

this paper, we propose a hybrid algorithm based on GRSA and evolutionary techniques. The performance of the new algorithm 

named EGRSA (Evolutionary Golden Ratio Simulated Annealing) is compared with GRSA using the pentapeptide Met-

enkephalin. The experimentation discussed in the paper shows that the new algorithm finds similar results to the those reported 

by GRSA. This is important because PFP can be solved for bigger proteins. 

This paper is organized as follows: in section 2, Protein Folding Problem is described. Section 3, describes the simulated 

annealing algorithm and techniques used in the GRSA hybridization. Section 4, describes the analytical tuning method used by 

GRSA and EGRA. In section 5, EGRSA is presented. Finally, in section 6 the results obtained by EGRSA are shown and 

compared with those obtained by GRSA. 

 

2. Protein Folding Problem 

Protein folding problem is the process of finding the three-dimensional native structure of a protein, in this conformation the 

protein fulfills its biological function. Find the NS among all the possible conformations of a protein is an enormous challenge 

because the space of possible conformations is extremely large [2].  

For practical purposes, PFP can be defined using the free energy 𝑓(𝝈) of the amino acids set, where 𝝈 is a vector of the 𝑚 

dihedral angles of the amino acids; that is 𝝈 = {𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑚}. More precisely, PFP consists of finding the minimum free 

energy 𝑓∗(𝝈∗). Then, PFP is defined as follows: 

 Given a sequence of 𝑛 amino acids; 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, that represents the primary structure of a protein with a set of 

dihedral angles 𝝈 = {𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑚}, and an energy function 𝑓(𝜎1, 𝜎2, … , 𝜎𝑚) that represents the free energy or 

Gibbs energy, 
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 Find the native structure of the protein, such that 𝑓∗(𝝈∗) represents the minimum energy value, where the optimal 

solution 𝝈∗ = {𝜎1
∗, 𝜎2

∗, 𝜎3
∗, … , 𝜎𝑚

∗ } defines the best three-dimensional configuration. The PFP variables are the set 𝝈 of 

dihedral angles. 

The atoms of a protein are represented in three-dimensional Cartesian coordinates. There are four types of torsion angles or 

dihedral angles:  

 The angle between the amino group and the alpha carbon is referred as Phi (𝜙). This angle represents the angle 

between the amino group (or 𝑁𝐻2) of the amino acid 𝑖, and the alpha Carbon 𝐶𝑖 in the sequence; it represents the bond 

angle between the 𝑁𝑖 atom of amino group and the alpha carbon (𝛼𝐶𝑖). 

 The dihedral angle between the alpha carbon and the carboxyl group is referred as Psi (𝜓 ). Psi represents the angle 

between the carboxyl (𝐶𝑂𝑂𝐻𝑖) group of the amino acid 𝑖, and the alpha carbon 𝑖 (𝐶𝑖) of the same amino acid. Psi 

measures the angle of the covalent bond between the 𝐶𝑖 of the carboxyl group, and the alpha carbon (𝛼𝐶𝑖). 

 The omega angle (𝜔) is defined for each two consecutive amino acids; it is the angle of the covalent bond between the 

atom 𝑁𝑖 of amino acid 𝑖, and carbon 𝐶(𝑖−1) of the carboxyl group of the amino acid (𝑖 − 1).  

 And, finally each Chi angle (𝜒) is defined between the two planes conformed by two consecutive carbon atoms in the 

radical group. 

The determination of the value for these four angles for each of the amino acids that make up the protein sequence, constitute 

the variables of the problem. 

 

The protein’s energy depends on the interaction among their atoms. And this energy is affected by the position of atoms , torsion 

angles and distance among atoms. To measure the energy of a protein, force fields are used; these include many interactions 

among atoms affecting different energies [13]. A force field includes terms associated with the bond interactions, and terms 

associated with no-bond interactions. The bond interactions are associated with chemical bonds, for example hydrogen bond 

interactions. The no-bond interactions include interaction between atoms that are not directly joined by chemical bonds; for 

example, electrostatic and Van der Waals interactions. Some of the most popular and successful software systems for 

calculating force fields are CHARMM [14], AMBER [15], ECEPP/2 and ECEPP/3 [16]. In this paper ECEPP/2 force field is 

used [17]. 

 

ECEPP is a relatively simple force field based on rigid geometry (i.e., constant bond angles and lengths), with conformations 

thus defined solely by the backbone and side chain dihedral angles. In ECEPP/2 the potential energy is given by the sum of the 

electrostatic term 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 , Lennard-Jones term 𝐸𝐿𝐽, and hydrogen-bond term 𝐸𝐻𝐵 for all pairs of atoms in the peptide 

together with the torsion term 𝐸𝑡𝑜𝑟  for all torsion angles [18]: 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝐿𝐽 + 𝐸𝐻𝐵 + 𝐸𝑡𝑜𝑟  (1) 

 

These terms in equation (1) are expressed in equation (2) through which energy function ECEPP/2 minimize the energy [18]. 
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Where: 

- 𝑟𝑖𝑗  is the distance in Å between the atoms 𝑖 and 𝑗.  

- 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐶𝑖𝑗 and 𝐷𝑖𝑗 are the parameters of the empirical potentials. 

- 𝑞𝑖 and 𝑞𝑗 are the partial charges on the atoms 𝑖 and 𝑗, respectively. 

- 𝜀 is the dielectric constant which is usually set to 𝜀 =  2.  

- 332 is a factor for using the energy units expressed in kcal/mol. 

- 𝑈𝑛 is the energetic torsion barrier of rotation about the bond 𝑛. 

- 𝑘𝑛 is the multiplicity of the torsion angle 𝜑𝑛. 

 



Maldonado-Nava / Evolutionary GRSA for Protein Structure Prediction. IJCOPI, Vol. 7, No. 3, Sep-Dec 2016, pp. 75-86. ISSN: 2007-1558. 

78 

 

3. Golden Ratio Simulated Annealing  

Simulated Annealing (SA) algorithm was proposed by Kirkpatrick, which applies the Metropolis algorithm to minimization 

problems [19]. SA represents a thermodynamic process where the metal passes through a thermodynamic phase called 

annealing. Simulated annealing is a procedure that introduces a random phase in the acceptance of movements, such that if the 

movement produces an improvement in the solution, then it is accepted; on the contrary, if the movement leads to a worse 

solution, a criterion based on Boltzmann’s probability is applied in order to decide whether the solution is accepted or not. SA 

begins generating an initial solution, which is set as the current solution. Classical simulated annealing consists of two cycles; an 

external cycle that is controlled by a temperature parameter, which varies temperature from a high temperature to a close to zero 

final temperature; the temperature is very slowly reduced using a cooling function. Inside the temperature cycle the Metropolis 

cycle is executed, inside this inner cycle a new solution is generated by modifying the previous solution by a perturbation 

function. After Metropolis cycle is completed, the value of the temperature is updated. This procedure can be observed in the 

algorithm 1. 

 

Algorithm 1. Classical Simulated Annealing 

  1: SA (𝑇𝑖 , 𝑇𝑓𝑝, 𝑇𝑓, 𝛼) 

  2:        𝑇𝑘 =  𝑇𝑖  

  3:        𝑆𝑖 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 

  4:        while 𝑇𝑘 ≥  𝑇𝑓 do 

  5:             while 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠 do 

  6:                     𝑆𝑗  =  𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛(𝑆𝑖) 

  7:                     ∆𝐸 = 𝐸(𝑆𝑗) − 𝐸(𝑆𝑖) 

  8:                     if ∆𝐸 ≤ 0 then 

  9:                           𝑆𝑖  =  𝑆𝑗 

10:                     else if 𝑒−∆𝐸/𝑇𝑖  <  𝑟𝑎𝑛𝑑𝑜𝑚[0; 1) then 

11:                           𝑆𝑖  =  𝑆𝑗 

12:                    end 

13:           end 

14:           𝑇𝑘+1  =  𝛼 ∗ 𝑇𝑘 

15:      end 

16: end  

 

Simulated annealing has been used for solving PFP as mentioned earlier. However, the classic SA may take a lot of time and can 

be trapped on local minima. To improve the quality of the results obtained by SA, some heuristics and techniques can be used, 

such as the Golden Ratio search technique. Golden Ratio (GR) is an irrational number used in antiquity to design architectural 

masterpieces, and is represented by the letter Φ. GR is applied as a search strategy to find the maximum or minimum a function 

with some efficacy [20]. This strategy is based on eliminating a region, at each stage, of the interval in which the minimum or 

maximum is comprised and when the possible region is small enough the search ends. These techniques use a constant 

relationship to divide the interval into segments and in this way, will be reduced the search space.  

We can find a GR extension, that is an hybridization of GR and simulated annealing, named GRSA (Golden Ratio Simulated 

Annealing) algorithm, which has been applied for NP-hard problems such as Scheduling [21] and SAT [22]. Recently GRSA 

was successfully applied to the PFP, obtaining very good quality solutions for some peptides [12]. However, it is necessary to 

improve the quality of solutions obtained by GRSA to increase its applicability. GRSA for PFP hybridize Golden Ratio and 

Simulated Annealing in an algorithm that divides the solution space into sections [12]. This algorithm uses three main strategies: 

firstly, temperature parameters are tuned with an analytical-experimental approach; secondly, a special phase which detects the 

thermal equilibrium by a least squares method; and a reheat strategy to escape from local optima is applied. 

One of the main differences between classic SA and GRSA is the cooling scheme. A classic SA uses a cooling function, for 

example geometric, exponential, and logarithmic functions; the selected function reduces the temperature from high temperature 

to low temperature in the external cycle. In GRSA some cut-off temperatures 𝑇𝑓𝑝𝑛 are calculated using the golden number 𝛷; 

this temperature is decremented through the geometric cooling function 𝐶𝑘+1 = 𝛼𝐶𝑘, and once 𝑇𝑓𝑝𝑛 is reached, a new phase 
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begins where the value of the parameter 𝛼 is updated and another 𝑇𝑓𝑝 is recalculated. This procedure continues until the number 

of cuts (𝑇𝑓𝑝𝑛) is reached, the last phase is executed until the final temperature is reached. Other strategy we can find in GRSA is 

a stop criterion (SC), which is implemented when the algorithm at low temperatures no longer improves its quality. To 

determine the stop condition, the least squares method is applied, this method uses a linear equation 𝐸(𝐼) = 𝑚𝐼 + 𝑏, where 𝐸(𝐼) 

is the set of energies for every 𝐼 metropolis cycle, 𝑚 is the slope and 𝑏 is the interceptor. The equilibrium is almost reached 

when 𝑚 is close to zero [14]. If 𝑚 is close to zero, GRSA is finished. In order to improve its quality, in the GRSA algorithm, a 

reheat strategy (RH) was implemented, which is applied in two phases: a) at the end of the last GR section and b) when the 

equilibrium is detected [12]. 

 

4. Analytical tuning 

For a better performance of the Simulated annealing algorithms, parameters must be tuned. More efficiency and efficacy of the 

Simulated Annealing algorithm can be achieved using the best values for some parameters of the cooling scheme. The cooling 

scheme includes the cooling function, the initial and final temperatures, and the length of the Markov chain.  

The initial temperature of the algorithm should allow the acceptance of all possible transitions and the free movement in the 

solution space. When the temperature is very high, almost any solution is acceptable even if it is worse than the current one. 

When the temperature is very small, it only accepts solutions that are better than the current one. If the initial temperature is too 

high, a lot of time can be wasted in the first few cycles, and if it is very low, the probability of being trapped in a local optimum 

is very high. However, if the final temperature is very high, the probability of being trapped in a local optimum is very high. If 

the temperature is very low, probably the search process will be very exhaustive and will consume a lot of time. Therefore, a 

good choice of the initial and final temperature is of great importance to achieve a good performance of the SA. 

Simulated Annealing requires a well-defined neighborhood structure and other parameters as initial and final temperatures. To 

determine these parameters, an analytical tuning method was applied. This method is described as follows: 

The calculation of the initial temperature 𝑇𝑖  is based on the accepting probability 𝑃𝐴(𝑆𝑗) of one proposed solution (𝑆𝑗) and the 

maximum cost deterioration of the objective function named ∆𝑍𝑉𝑚𝑎𝑥. ∆𝑍𝑉𝑚𝑎𝑥  gives the maximum deterioration that may be 

produced during the execution of the algorithm, so the way of making sure that ∆𝑍𝑉𝑚𝑎𝑥 be accepted, at the initial temperature 

𝑇𝑖 . At the beginning 𝑃𝐴 is close to 1; 𝑃𝐴(∆𝑍𝑖𝑗) ≈ 1, and the temperature is extremely high, almost any solution is accepted at this 

temperature. When the process is ending, the acceptance probability is too low (𝑃𝐴(∆𝑍𝑖𝑗) ≈ 0). The initial temperature 𝑇𝑖  is 

calculated as follows: 

𝑇𝑖 = −
∆𝑍𝑉𝑚𝑎𝑥  

ln(𝑃𝐴(∆𝑍𝑉𝑚𝑎𝑥  ))
 (3) 

 

∆𝑍𝑉𝑚𝑖𝑛 establishes the minimum deterioration that can be produced during the execution of the algorithm. In a similar way that 

for 𝑇𝑖  temperature, the final temperature 𝑇𝑓 is setting by the next equation: 

𝑇𝑓 = −
∆𝑍𝑉𝑚𝑖𝑛  

ln(𝑃𝐴(∆𝑍𝑉𝑚𝑖𝑛  ))
 (4) 

 

Not only initial and final temperatures are calculated with the analytical tuning, as the same way does the Metropolis cycle 

length. Analytical method determines the Metropolis cycle length 𝐿𝑘 with a Markov model. 

SA algorithm can be seen like a sequence of homogeneous Markov chains [7], where each Markov chain is constructed for 

descending values of the control parameter 𝑇𝑘 > 0, which is set by a cooling function: 𝑇𝑘+1  =  𝑓(𝑇𝑘). When SA is just at the 

beginning the Markov chain length is small (𝐿𝑘 = 𝐿1 ≈ 1). By the time 𝑘 → ∞ the value of 𝑇𝑘 is decremented by the next 

cooling function until the final temperature is reached (𝑇𝑘 = 𝑇𝑓). 
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𝑇𝑘+1 = 𝛼𝑇𝑘 (5) 

where α is normally in the range of 0.7 ≤ α ≤ 0.99. 

The length of each Markov chain must be incremented at any temperature cycle in a similar but in inverse way that 𝑇𝑘 is 

decremented. That means, 𝐿𝑘 must be incremented until 𝐿𝑚𝑎𝑥  is reached at 𝑇𝑓 by applying an increment Markov chain factor 𝛽. 

The cooling function given by (5) is applied many times until the final temperature 𝑇𝑓 is reached. Because Metropolis cycle is 

finished when the stochastic equilibrium is reached, it can be also modeled as a Markov Chain as follows: 

𝐿𝑘+1 = 𝛽𝐿𝑘 (6) 

𝐿𝑘 represents the length of the current Markov chain at a given temperature, that means the number of iterations of the 

Metropolis cycle for a 𝑘 temperature. So, 𝐿𝑘+1 represents the length of the next Markov chain. In this Markov Model, 𝛽 

represents an increment of the number of iterations in the next Metropolis cycle. 

The cooling function is applied repeatedly until 𝑇𝑘 = 𝑇𝑓 we get: 

𝑇1 = 𝛼𝑇1 

𝑇2 = 𝛼𝑇1 = 𝛼2𝑇1 

𝑇3 = 𝛼𝑇2 = 𝛼3𝑇1 

⋮ 

𝑇𝑛 = 𝛼𝑇𝑛−1 = 𝛼𝑛𝑇1 (7) 

Therefore, we can see that if we know the initial (𝑇1) and final (𝑇𝑓) temperatures and the cooling coefficient (𝛼), the number of 

times that the Metropolis cycle is executed can be calculated as: 

ln 𝑇𝑓 = 𝑛 ln 𝛼 + ln 𝑇1  

𝑛 =
ln 𝑇𝑓 − ln 𝑇1

ln 𝛼
 (8) 

 

In a similar way, applying systematically 𝐿𝑘+1 = 𝛽𝐿𝑘 we get: 

𝐿1 = 𝛽𝐿1 

𝐿2 = 𝛽𝐿1 = 𝛽2𝐿1 

𝐿3 = 𝛽𝐿2 = 𝛽3𝐿1 

⋮ 

𝐿𝑛 = 𝛽𝐿𝑛−1 = 𝛽𝑛𝐿1 

𝐿𝑚𝑎𝑥 = 𝛽𝑛𝐿1 (9) 

𝛽 =  exp (
ln 𝐿𝑚𝑎𝑥 − ln 𝐿1

𝑛
) (10) 

 

This is the analytical tuning method proposed in [23], used in GRSA [12] and used un this paper for comparing results with 

GRSA. 
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5. Evolutionary Golden Ratio Simulated Annealing  

In this work, we propose a GRSA hybridization [12] with evolutionary techniques for solving PFP. As is well known, 

evolutionary algorithms, are a neo-Darwinian approach to species evolution based on the idea that individuals who have a better 

adaptation to the environment have a higher probability of living longer, and generate offspring that inherit their characteristics. 

On the other hand, individuals with poorer adaptation to the environment are less probably to survive, to be offspring and more 

probably to become extinct. 

EGRSA is presented in algorithm 2. The difference between a classic SA and EGRSA is the perturbation and the cooling 

scheme, in EGRSA to get a new solution (perturbation), an evolutionary strategy is used (line 7). The cooling scheme is 

calculated in lines 15-20. When the current temperature reaches 𝑇𝑓𝑝 (previously calculated using golden number Φ), the 𝛼 

parameter is updated and the next 𝑇𝑓𝑝 value is computed. This allows a dynamic behavior of the cooling scheme (in Fig. 1 this 

behavior can be observed). 

 

Algorithm 2. EGRSA 

  1: SA (𝑇𝑖 , 𝑇𝑓𝑝, 𝑇𝑓, E, S, 𝛼) 

  2:        𝑇𝑘 =  𝑇𝑖  

  3:        𝑆𝑖 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 

  4:        while 𝑇𝑘 ≥  𝑇𝑓 do 

  5:             𝑇𝑓𝑝 =  𝑇𝑓𝑝 ∗ Φ 

  6:             while 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠 do 

  7:                     𝑆𝑗  =  𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛(𝑆𝑖) 

  8:                     ∆𝐸 = 𝐸(𝑆𝑗) − 𝐸(𝑆𝑖) 

  9:                     if ∆𝐸 ≤ 0 then 

10:                           𝑆𝑖  =  𝑆𝑗 

11:                     else if 𝑒−∆𝐸/𝑇𝑖  <  𝑟𝑎𝑛𝑑𝑜𝑚[0; 1) then 

12:                           𝑆𝑖  =  𝑆𝑗 

13:                    end if 

14:             end while 

15:             if 𝑇𝑘 ≤  𝑇𝑓𝑝 then 

16:                  𝛼 = 𝛼𝑛𝑒𝑤             

17:                  𝑇𝑘+1  =  𝛼 ∗ 𝑇𝑘 

18:             else 

19:                   𝑇𝑘+1  =  𝛼 ∗ 𝑇𝑘 

20:             end if 

21:      end while 

22: end  

 

Evolutionary Golden Ratio Simulated Annealing (EGRSA) is a hybrid algorithm, incorporating evolutionary techniques to 

GRSA. In EGRSA an evolutionary algorithm changes the classic simulated annealing perturbation method, in which crossover 

and mutation operators are used, thus returning a quality solution. In this phase, an initial population is generated. Each 

chromosome consists of the set of dihedral angles 𝝈 = {𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑚} of the protein. From this population, 4 individuals are 

randomly selected by binary tournament, the 2 best (with a probability of 5% of selecting a worse one) will be the parents who 

through a crossover at one point will generate two children. Once the crossover phase is finished, mutation phase will be made 

bit per bit (with a 5% probability) to the children generated in the crossover phase, if this is the case, a mutation will be made to 

the random selected gene. To generate the population of the next generation, an elite selection is used, which consists of 50% of 

the best parents and the other 50% of the best children. This process is repeated 𝑛 number of generations, and once completed 

the best individual is taken and compared against the best individual of the simulated annealing algorithm in the Metropolis 

phase. This procedure is represented in algorithm 3, and it is implemented in line 7 of the algorithm 2. The chromosome is 

created from the structure of the peptide. Each individual is a string of 𝜙, 𝜓, 𝜔, and 𝜒 angles representing the amino acids 

conformation, as can be observed in figure 1. 
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𝜙1 𝜓1 𝜒1 𝜔1 𝜙2 𝜓2 𝜒2 𝜔2 𝜙3 𝜓3 𝜒3 𝜔3 … 𝜙𝑛 𝜓𝑛 𝜒𝑛 𝜔𝑛 

Amino acid 1 Amino acid 2 Amino acid 3 … Amino acid 𝑛 

Figure 1. Representation of the chromosome. 

 

 

Algorithm 3. Perturbation 

  1: 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛() 

  2:     𝑛 = 𝑛𝑢𝑚𝐺𝑒𝑛, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙[], 𝑏𝑒𝑠𝑡𝐸𝑛𝑒𝑟𝑔𝑦 

  3:     𝑝𝑜𝑏 = 𝑖𝑛𝑖𝑐𝑖𝑡𝑃𝑜𝑏() 

  4:     while 𝑔𝑒𝑛 ≤  𝑛 do 

  5:             𝑠𝑒𝑙𝑒𝑐 = 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡() 

  6:             𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑃𝑎𝑟𝑒𝑛𝑡𝑠() 
  7:             𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛∗ = 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛() 

  8:             𝑝𝑜𝑏∗ = 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑜𝑏() 

  9:     end while 

10:     𝑟𝑒𝑡𝑢𝑟𝑛(𝑏𝑒𝑠𝑡𝑆𝑜𝑙[], 𝑏𝑒𝑠𝑡𝐸𝑛𝑒𝑟𝑔𝑦) 

11: end 

 

 

 
Fig. 1. GRSA temperature behavior. 

 

6.  Implementation and Results 

The algorithm was tested with Met-enkephalin, which is one of the most used peptides. Met-enkephalin was used in [12], and 

has been widely used to proof algorithms such as simulated annealing and variants. Met-enkephalin consists of a total of 75 

atoms described by 24 independent backbone and side-chain dihedral angles. This brain neuro peptide consists of 5 amino acids 

with the amino-acid sequence: Tyr-Gly-Gly-Phe-Met. Because it is one of the smallest peptides that have biological functions, it 

has served as a bench mark for testing a new simulation method [24]. Even such a small peptide gives rise to a complex 

conformational space, and the total number of local minima was estimated to be no less than 1011 [25]. Met-enkephalin has 

been extensively studied computationally [25][26][27][28][29][30][31][17] because of the complexity, and its short sequence, 

these characteristics allow significant computational studies, and it has been considered as a benchmark model used as test for 

classical simulated annealing implementations [30]. 
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In this paper the energy function ECEPP/2 implemented in the software package SMMP is used [17]. ECEPP/2 was chosen 

because the state of the art research work used for comparative purposes applies this force field, and because for ECEPP/2 the 

Met-enkephalin lowest energy conformation is known [26][27][28]. The initial and final temperatures of the algorithm were 

tuned with an analytical method [10] described in section 4. In this implementation, five GR sections, a stop criterion, and reheat 

strategy are used in order to compare results with GRSA using the same strategies, and to observe the differences between the 

original perturbation [12] and the evolutive perturbation used in EGRSA.  

EGRSA was executed 30 times to validate the algorithm results. This experimentation was carried out in a personal computer, 

with the following characteristics: Intel Core i5 3210M processor at 2.50 GHz, memory 6.0 GB, and Windows 7 Professional 

64-bit operative system, and the best solution was obtained. 

The best energies (expressed in kcal/mol) obtained by EGRSA with the five GR sections and the stop criterion (SC) are 

compared to those obtained with GRSA and the same strategies, these results are shown in Table 1. We can observe in table 1 

that in this implementation the best energy was obtained by EGRSA with the stop criterion and five golden sections, the energy 

obtained was -10.6925 kcal/mol. While GRSA, using the same strategies obtained -10.6006 kcal/mol. 

 

Table 1. Met-enkephalin results with GRSACP and EGRSACP. 

Number of GR Sections GRSASC EGRSASC 

GR 1 -10.4528 -9.2848 

GR 2 -10.1119 -10.0529 

GR 3 -10.5314 -10.5846 

GR 4 -10.6006 -10.3601 

GR 5 -10.1540 -10.6925 

 

A second implementation of EGRSA was tested, but in this case the reheat strategy (RH) was included in together with five GR 

sections and the stop criterion (SC). Best energies for Met-enkephalin obtained by EGRSA (five GR section, a stop criterion and 

reheat strategy) are compared to those obtained by GRSA (five GR sections, stop criterion and reheat strategy) and are shown in 

table 2. We can see in table 2, that the best results with these strategies were obtained by GRSA using one golden section, the 

minimum energy is -10.6360 kcal/mol. While best energy obtained by EGRSA was -10.1562 kcal/mol. 

 

Table 2. Met-enkephalin results with GRSARHCP and EGRSARHCP. 

Number of GR sections GRSARHCP EGRSARHCP 

GR 1 -10.6360 -10.0812 

GR 2 -10.3443 -10.1201 

GR 3 -10.5174 -9.8942 

GR 4 -10.3552 -10.1562 

GR 5 -10.1838 -9.5018 

 

 

For PFP algorithms, not only the minimum energy should be analyzed; in addition, for validation purposes, the configuration 

related with this energy should be measured and compared with the NS or the best structure reported. To know the quality of the 

found solution, the RMSD is usually used [32]. This is a structural measure between the native structure and the solution found. 

When RMSD is close to zero, there is a perfect structural similarity between the two compared structures, when the value is 

greater than zero, the structural quality is reduced. Another metric named TM-Score is also used for measuring structures 

similarity. This metric measures the structure similarity between two structures (the native structure and the found solution). For 

Protein pairs with a 𝑇𝑀 − 𝑆𝑐𝑜𝑟𝑒 > 0.5 are mostly in the same fold, while those with a 𝑇𝑀 − 𝑆𝑐𝑜𝑟𝑒 < 0.5 are mainly not in the 

same fold [33].  As we mentioned in the beginning of this section it is very common to use Met-enkephalin for testing PFP 

algorithms for peptides [24]. 
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Best solutions quality found by EGRSA for Met-Enkephalin are shown in table 3. We can observe that the RMSD and TM score 

for the best solution of EGRSA are 0.19 and 0.52416, respectively. Consequently, the energy of -10.6925 kcal/mol is a correct 

solution. Furthermore, the RMSD and TM-Score indicate that the configuration presents a good alignment to the native 

structure. Notice, that even the second best result (with an energy value of -10.1562 kcal/mol) is an acceptable solution; this is 

because the RMSD and TM-score values are into the acceptable criteria. 

 

Table 3. Best energy, RMSD and TM-Score for Met-Enkephalin. 

Energy value 

(kcal/mol) 
Strategy 

Golden 

section 
RMSD TM-Score 

-10.6925 Stop criterion 5 GR 0.19 0.52416 

-10.1562 
Stop criterion 

Reheat 
4 GR 0.36 0.39550 

 

 

For Met-enkephalin the best results reported in literature using the force field ECEPP/2 are -10.72 kcal/mol (𝜔 angle fixed to 

180°) [17] and -12.90 kcal/mol (𝜔 angle variable) [29]. For classic simulated annealing the best reported result is -5 kcal/mol 

[29]. Notice that the best energy found by EGRSA of -10.6925 kcal/mol is very close of the native structure and the difference is 

less than one percent (barely 0.25 %). 

 

 

7.  Conclusions 

In this work a simulated annealing algorithm hybridized with Golden Ratio strategy and an evolutionary algorithm applied to the 

protein folding problem was presented. Experimentation was performed with Met-Enkephalin, which is usually used as a 

benchmark. Results obtained by this algorithm were compared with results obtained by GRSA and three strategies (GR sections, 

stop criterion and reheat). As we can see in section 6, two implementations were tested: an implementation of EGRSA using 

five golden sections and a stop criterion, and a second implementation using additionally a reheat strategy. 

For the first implementation of EGRSA algorithm, results show that it had better performance than the original GRSA and very 

close to the native structure. In fact, the solution found by the proposed algorithm is practically the same corresponding to the 

NS. The measures used related to the quality of PFP algorithms indicate a very good performance of the proposed algorithm. 

As a future work, new research should be developed in order to evaluate bigger peptides and proteins. 
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