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Abstract. In recent years, interest has grown in the use biometric 
systems for identity authentication tasks in digital services, 

forensic and security applications. A unimodal system (employing 

a single biometric trait) with high performance is still vulnerable to 

falsification attacks such as spoofing. For this reason, research on 

multimodal biometrics (employing various biometric traits) has 

increased to reinforce security, increase recognition performance, 
and make false identity authentication more difficult. In this paper, 

we propose a bimodal system that combines speech and face 

modalities by concatenating their feature vectors, these vectors are 
extracted from two convolutional neural networks (CNN) and used 

for identity verification. The performance of unimodal CNNs was 

evaluated individually and compared to the bimodal system of 
concatenated vectors. A data augmentation scheme is used for both 

modalities to evaluate different operation conditions. Results were 

measured in terms of Equal Error Rate (EER). 
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1 Introduction 
 

Traditional methods such as passwords, personal identification numbers (PINs), identification cards, etc. are used to authenticate 

the identity of an individual to access commercial or government digital services, or personal electronic devices. These methods 

have several security risks: the possibility that a third party can obtain or guess passwords or PINs, lost or stolen identification 

tokens, etc. Another frequent risk is that the owner forgets the password or PIN and must request it again. As a result, research 

on biometric applications for different applications has increased in recent years. Since biometric authentication systems use 

traits of an individual's body that remain with one throughout life, they are unique and distinguish one individual from any other 

(Dahea & Fadewar, 2018). 

 

Biometrics is the study of measurement and analysis of both physical and behavioral biological traits with the purpose of 

authenticating the identity of an individual. These traits, also known as biometric traits, are considered unique for every 

individual in a population (Sabhanayagam, Venkatesan, & Senthamaraikannan, 2018). A biometric system aims to perform 

identity authentication considering the information extracted from biometric traits such as: voice, face, iris, fingerprint, gait, 

DNA, among others. The biometric system captures the biometric information, processes this information with mathematical 

methods, matches the processed information with templates previously stored in the system, issues a numerical score resulting 
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from the match, and decides, considering said score (Modak & Jha, 2019). Figure 1 shows the basic building blocks of a 

biometric system. 

 

Although many unimodal biometric systems have high recognition performance, they also have several inherent problems such 

as intraclass variation, low interclass separability, vulnerability to different types of attacks, low-quality-captured biometric data, 

not representative models, etc. 

 

 

 
Fig. 1. Biometric system block diagram. 

 

 

Biometric verification and identification 

 
Identity authentication by a biometric system generally involves two tasks: verification and identification (Dahea & Fadewar, 

2018; Sabhanayagam, Venkatesan, & Senthamaraikannan, 2018; Modak & Jha, 2019). In identification, the features of an 

identity claim are matched with all the templates stored in the biometric system in order to obtain the label of the stored template 

that most closely resembles the identity claim, it is a one-to-many match. In verification, the features of a client are matched 

with a specific template stored in the biometric system to verify that the identity of the client and that of the template are the 

same, it is a one-to-one comparison. 

 

 

Multimodal biometric systems 

 
Multimodal biometric systems have the same basic structure as unimodal systems as presented in Figure 1. The main difference 

is that multimodal systems use a scheme of fusion information at some point in the basic structure of a biometric system. 

Multimodal systems can combine several biometric features or several sources of information for the same trait (Fierrez, 

Morales, Vera-Rodriguez, & Camacho, 2018; Modak & Jha, 2019). Generally, the fusion of information from a multimodal 

system is carried out before the classification of the biometric sample or after the classification. In (Fierrez, Morales, Vera-

Rodriguez, & Camacho, 2018; Dinca & Hancke, 2017), it is detailed that pre-classification fusion can be at sensor level or at 

feature level, while the post-classification fusion can be found at decision, rank and score levels. The fusion levels are briefly 

detailed below: 

 

• Sensor level: the biometric data of various sensors can be combined, either data from various sensors for a 

single biometric trait or one sensor per trait. 

• Feature level: it combines the feature vectors obtained from processing the sampled data from sensors. In a 

similar fashion, there can be several feature vectors per trait or one vector for each trait. 

• Decision level: it combines the identity verification decisions made by individual classifiers into a single 

decision. It is possible to either train various classifiers with data of a single trait, or train various classifiers 

(one classifier per trait) to combine their individual decisions. 

• Rank level: it applies to identity identification and consists in that a classifier can deliver a series of ranked 

identity labels. 

• Score level: the normalized scores from various classifiers are combined into a single score. 

 

Score level fusion is generally considered the most used in multimodal systems, since the decision scores are the result of 

processed data by the classifier, it is widely considered that scores contain more discriminative information. Despite this, the 

other fusion levels are still being investigated to improve multimodal systems performance. 
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2 Related work 

 
Deep Learning (DL) is a Machine Learning (ML) paradigm which consists of a feature extraction scheme using multiple layers; 

the more layers used, the more complex the extracted features. Currently, research on ML and DL methods has increased thanks 

to the increase in computing power of both Central Processing Units (CPUs) and Graphics Processing Units (GPUs) that 

significantly decrease computing time; it is worth mentioning the increase of software libraries specialized in training and 

evaluation of ML and DL models (López, 2019).  

 

ML models, particularly those applied to biometrics, require feature extraction from biometric data through mathematical 

processing techniques to obtain useful information that allows models to distinguish individuals of a population; this 

information is fed to a classifier model which makes the final decision according to the authentication task being performed. 

However, it is possible that certain processing techniques are not compatible with certain biometric traits, with certain databases, 

or with some classifiers (Alay & Al-Baity, 2020). 

 

DL models have generated great interest, as they have shown high recognition performance and don’t have some of the 

limitations of ML models. Among the advantages that DL has over ML are the extraction of more complex characteristics as 

more layers are used, the use of non-linearities to map characteristics to an output domain appropriate to the task to be 

performed, and the offering of a scheme in which a model jointly learns the extracted features and performs classification and/or 

regression (Alay & Al-Baity, 2020; Minaee, Abdolrashidi, Su, Bennamoun, & Zhang, 2019; Irum & Salman, 2019). 

 

In this work we considered the biometric modalities of voice and face; in the next sections we present a brief review of both 

modalities within the Deep Learning scheme. 

 

Related work on voice biometrics 

 

In this work we will refer to voice biometrics as speaker recognition since it is the most-used terminology in literature. 

 

As mentioned above, ML methods are traditionally used for biometric authentication. In the case of speaker recognition, 

different characteristics of the voice signal are used. Usually, these characteristics are extracted from segments of a few 

milliseconds since these segments are considered stationary. 

 

In (Mandalapu et al., 2021), the feature extraction methods are classified into four groups: cepstral coefficients such as the Mel 

Frequency Cepstral Coefficients (MFCC), wavelet transformations, voice frequency features obtained by means of short-time 

Fourier transform (STFT) and Linear Predictive Coefficients (LPC) which model the vocal tract as a filter. In (Kinnunen & Li, 

2010) , other approaches are presented, such as modeling the anatomy of the vocal tract using statistical methods, modeling the 

prosodic content by extracting the fundamental frequency F0 and combining it with other features, and modeling high level 

features by differentiating individuals’ speech patterns. 

 

Classical approaches to model voice features are based on methods such as Vector Quantization (VQ), Gaussian Mixed 

Mixtures (GMM) with the Universal Background Models scheme (GMM-UBM), Hidden Markov Models with GMM (HMM-

GMM), Support Vector Machines (SVM), and Artificial Neural Networks (ANN) (Kinnunen & Li, 2010). 

 

Great progress in the speaker verification task occurred with the development of i-vector, low dimensional vector 

representations that result from projecting the parameters of a GMM to a variability space. The extracted i-vectors are fed to a 

Probabilistic Linear Discriminant Analysis (PLDA) model which then decides based on a score (Sztahó, Szaszák, & Beke, 

2019). 

 

With the rise of DL, Deep Neural Networks (DNN) and CNNs began to be used for speaker recognition (Sztahó, Szaszák, & 

Beke, 2019). The first works used DNNs to calculate statistics to calculate i-vectors with better recognition than those generated 

by GMMs. Other approaches train DNNs for feature extraction from the statistics calculated in the intermediate hidden layers of 

the networks known as Bottleneck features; these features can be used for verification with PLDA or as a basis for calculating i-

vectors. In other approaches, spectro-temporal features such as MFCC or spectrograms are used to train and evaluate CNNs as 

in (Li et al., 2020). The scheme that has gained great notoriety in recent years are the feature embeddings, which consist of 

extracting the parameters of the last hidden layer of a DL network to obtain compact, low-dimensional representations; 

examples of these vectors are d-vectors, j-vectors, and more recently, x-vectors. In recent years, interest has grown in processing 

raw speech signals with DL networks; the network adapts its parameters to the characteristics of the signal. In (Muckenhirn, 
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Doss, & Marcell, 2018), raw speech signal is processed frame-by-frame with a 1D CNN for speaker verification. In (Ravanelli 

& Bengio, 2018), a 1D convolutional layer is proposed to extract frequency features by means of a filter bank modeled as 

parameterized sinc functions; these parameters are adapted through network training; this network was named Sincnet. Irum & 

Salman (2019) and Sztahó, Szaszák, & Beke (2019) offer a more extensive and exhaustive review of DL applied to speaker 

recognition. 

 

 

Related work on face biometrics 

 

Authentication of an individual's identity using his face features is a research topic that continues to be of great interest; different 

model proposals deliver a very high recognition performance for various databases and under different operation conditions. 

 

Face biometrics, better known as face recognition, is a task that aims to have a machine recognize a human being to engage in 

interaction (Masi, Wu, Hassner, & Natarajan, 2018). Hence, various challenges related to the conditions in which face samples 

are captured as images or videos arise; typically, a recognition system for this modality requires considerable computing 

resources. 

 

To perform face recognition, there are various feature extraction methods that have been widely used for many years. In 

Mandalapu et al. (2021), the methods for extracting features from a face image are divided into four groups: signal processing 

methods such as mathematical transformations to other domains such as the Fourier transform (FT), animation-based features 

that consider statistical animation parameters such as face shape and appearance, methods with convolutional kernels such as 

Viola Jones or Haar filters, methods based on texture representations that consider the information contained in the relationships 

of pixels with their neighbors such as Local Binary Pattern (LBP) or Gradient Histogram Oriented (HOG). 

 

In Kortli, Jridi, Al Falou, & Atri (2020) and Andy, Bridget, Dono, & Benjamin (n.d.), face recognition systems are classified 

into 3 categories: local systems that either consider specific features focusing on regions of interest, or that divide the image into 

segments such as HOG; holistic systems that process the face image without dividing it and later convert it into feature vectors 

such as the Eigenfaces system; and third, hybrid systems that combine systems from the two previous categories or other 

approaches such as CNNs. 

 

The above-mentioned approaches offer different recognition performances which are highly dependent on the feature extraction 

method. The use of deep networks became popular due to its high performance for face recognition in large databases. CNNs 

such as Deep-Face and FaceNet generated great interest to continue improving results using DL networks. The main idea of this 

scheme is to use specialized blocks to build a network, such as convolutional layers and pooling layers, and to modify the 

training hyperparameters to accelerate the convergence of the network. Other networks that meant a great improvement in 

creating different blocks for feature extraction are VGG16, ResNet, and GoogleNet (Ríos-Sánchez, Costa-da Silva, Martín-

Yuste, & Sánchez-Ávila, 2020). In recent years, one goal has been to bring the high recognition of DL networks to mobile 

devices with limited computing resources; for example, OpenFace is a project that uses a modified FaceNet network to be 

retrained in different conditions. 

 

Other great advances that have occurred in the face recognition scene with DL is the creation of new cost functions for faster 

network convergence; these functions increase interclass separation and reduce intraclass distance. Examples of these functions 

are triplet loss, contrastive loss and the family of functions derived from the combination of softmax and cross entropy such as 

Additive Margin softmax (AM-Softmax) (Masi, Wu, Hassner, & Natarajan, 2018; Chen, Liu, & Li, 2020).  

 

 

3 Methodology 

 
As mentioned in section 3, in order to build a multimodal biometric system, the combination or fusion of information can be 

performed at different levels.  

 

In Bharathi & Sudhakar (2019), a bimodal system with fingerprint and palm veins was built; 2D Gabor filters are taken as 

features and matched with Euclidean Distance (ED); each modality generates a score; both are fused with a Fuzzy Inference 

System (FIS). In Zhang, Cheng, Jia, Dai, & Xu (2020), voice and face modalities are combined; LBP histograms are extracted 

from face images with ED as the matching function; in voice modality the MFCCs are extracted to train a GMM using the 

Maximum Posterior Likelihood (MAP) criteria for score calculation; scores are fused using a weighting function. Score level 
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fusion can be performed using a DL model; in Cherrat, Alaoui, & Bouzahir (2020), three CNNs are trained for fingerprint, 

finger veins and face modalities; each CNN outputs a single score, and two fusion experiments are performed: the first one uses 

a score weighted sum to obtain a final score; the second experiment uses a multiplicative function. 

 

Feature level fusion has also been extensively investigated given the large amount of discriminant information contained in 

feature vectors. In Xin et al. (2018), feature vectors of fingerprint, finger veins and face modalities are obtained; these vectors 

are concatenated; Fisher vectors are calculated from the concatenated vector; the Fisher vectors are subsequently used to train 

and evaluate different classifiers. In Olazabal et al. (2019), voice and face modalities are combined; for voice, the MFCCs are 

extracted, and for face, HOG and LBP features are extracted; these three vectors are combined using Discriminant Correlation 

Analysis (DCA), K Nearest Neighbors (KNN) is used to classify the combined feature vector. Regarding DL, there are also 

many proposals that use deep networks for feature level fusion. In Leghari, Memon, Dhomeja, Jalbani, & Chandio (2021), 

fingerprint and digital signature modalities are combined by training a two input CNN; each modality is processed in parallel; 

finally, the features extracted with the convolutional layers for each modality are fed to fully connected layers to create feature 

vectors, and then concatenated within the network. A similar approach is found in Luo, Li, & Zhu (2021); iris and periocular 

modalities are fused with a CNN with two inputs; the generated features vectors are combined with spatial and channel attention 

mechanisms. In Alay & Al-Baity (2020), three CNNs are trained for iris, face and finger veins; these networks are trained 

individually, and feature vectors are extracted from each network; the extracted vector are concatenated and fed to a softmax 

classifier for identification purposes. 

 

In our work, we build a bimodal voice and face biometric verification system using CNNs; we follow a scheme similar to (Alay 

& Al-Baity, 2020). We train a CNN for each modality, and the vectors of the last hidden layer of each network were extracted; 

this pair of vectors is concatenated to build the template vector of each client of the system. We employed a multimodal 

database that contains data of voice, face and electroencephalogram (EEG) modalities. Since the database is small, we use a data 

augmentation scheme to generate more information to train and evaluate the system; the augmented data allowed us to perform 

evaluations under different conditions for both modalities; this will be explained in the next sections. 

 

Databases 

 

Biometric data from BIOMEX-DB (Moreno-Rodriguez et al., 2021) was used for our experiments. This database has 

information from 51 volunteers and consists of audio recordings of the pronouncing of isolated digits, and EEG signals recorded 

during pronunciations; only 39 volunteers had video recordings made of their faces during the digit-pronunciations. 

 

For this study, we use both video and audio recordings as face and speech data respectively. The database is divided into 2 sets: 

the first one is composed of audio and video recordings of 10 strings of 10 digits each; the second set consists of recordings of 

10 strings of 4 digits each. 

 

Since there is more speech information than face information, to compensate for the missing face information we included face 

images taken from the Yaleface database (Belhumeur, Hespanha, & Kriegman, 1966). The 12 individuals from BIOMEX-DB 

who only have speech data were matched with 12 subjects from the Yaleface database. How the data will be used in the 

verification task will be explained later. 

 

Speech data preprocessing 

 

The BIOMEX-DB database contains noiseless speech recordings; the speech data was augmented similarly to Snyder, Garcia-

Romero, Sell, Povey, & Khudanpur (2018); however, only background noise from the MUSAN database(Snyder, Chen, & 

Povey, 2015) was added to the original speech samples. Unlike Snyder, Garcia-Romero, Sell, Povey, & Khudanpur (2018), the 

noise samples were added randomly. For each original recording there are four copies with added noise; the noise of each copy 

has a Signal to Noise Ratio (SNR) value in dB; the SNR values considered were: 0, 5, 10 and 15 dB. Finally, all the audio data 

was normalized; the values were in the range (-1,1). 

 

Face data preprocessing 

 

The face images were extracted from the videos of the BIOMEX-DB and Yalefaces databases. Since the recording protocol of 

BIOMEX-DB focused on EEG, in many video frames the volunteer has his/her eyes closed in a state of relaxation; these frames 

are not useful due to the low variability of information they contain; only frames corresponding to moments when digits were 

being pronounced were extracted, so the images contain information on various facial expressions. 
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After the image extraction, we used the Scikit-image library (Boulogne, Warner, & Yager, 2014) face detector based on LBP 

cascade classifiers; the detected faces were cropped to generate new images of 100x100 pixels. Once the face images were 

extracted, geometric transformations were applied for data augmentation; these transformations were: flip them horizontally and 

random rotation with angles between -45° to 45°. Additionally, the brightness of the images was modified by adding random 

offset values to the pixel value; this results in lighter or darker images. A fourth set of augmented images consisted in combining 

the three previous modifications. All images were normalized to 8 bits grayscale. Finally, the LBP operator was applied to all 

the generated images. The LBP operator describes the local texture characteristics, usually applied in tasks of texture 

classification, face analysis and even face recognition through histograms. Among the advantages of this operator is that it is 

rotation and grayscale invariant (Zhang, Qu, Yuan, & Li, 2017). The LBP operator encodes the pixels of the original image and 

generates a new image whose pixels contain information about the relationships they have with their surrounding neighbors; for 

this work the LBP operator was used in its uniform variant using the Scikit-image library. 

 

Various works have shown high performance when training and evaluating a CNN with images generated by LBP operator such 

as (Zhang, Qu, Yuan, & Li, 2017; Ke, Cai, Wang, & Chen, 2018). In Wang, Wang, & Li (2017), good results are shown when 

training a CNN with LBP images in small databases. 

 

CNNs architectures 

 

The CNN for speaker recognition is based on the convolutional Sincnet layer described in Ravanelli & Bengio (2018); this layer 

processes raw audio frames of several milliseconds with a filterbank of bandpass filters, where each filter is modeled as a sinc 

function. The network implemented with Sincnet has shown rapid convergence; it needs to learn fewer parameters; the resulting 

feature maps have an interpretation in the frequency domain and the parameters of the bandpass filters are adapted to the 

frequency features of the system clients’ voice. The Sincnet network architecture used in this work is shown in Table 1. 

 

Table 1. Sincnet network architecture for speaker recognition. 

Layers Filters/Neurons Size Activation fcn 

Sincnet 120 251 LeakyReLU 

Maxpooling1D - 5 - 

Batch Normalization - - - 

Convolution 1D 32 5 LeakyReLU 

Maxpooling 1D - 5 - 

Batch Normalization - - - 

Convolution 1D 64 5 LeakyReLU 

Maxpooling 1D - 5 - 

Batch Normalization - - - 

Fully connected 512 - LeakyReLU 

Batch Normalization - - - 

Fully connected 39 - Softmax 
 

For face modality, the CNN architecture is shown in Table 2. 

 

Table 2. CNN architecture for face recognition. 

Layers Filters/Neurons Size Activation fcn 

Convolution 2D 32 3x3 LeakyReLU 

Maxpooling 2D - 2x2 - 

Batch Normalization - - - 

Convolution 2D 64 5x5 LeakyReLU 

Maxpooling 2D - 2x2 - 

Batch Normalization - - - 

Fully connected 512 - LeakyReLU 

Batch Normalization - - - 

Fully connected 39 - Softmax 
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Both networks have an output layer of 39 neurons since that is the number of individuals from the BIOMEX-DB database that 

have data from both modalities and were considered as the clients whose identity must be verified as true. 

 

CNNs training 

 

In the network training stage, the Keras library was used. This library is included in the Tensorflow platform. For the Sincnet 

network, the training was performed for 50 echos; the network was fed with speech frames of 200 ms; 75 batches of 128 frames 

each were used as training data; the validation data also consisted of 75 batches of 128 frames each; training and validation 

batches were randomly generated at training time. The learning rate was 0.001 and it was decreasing exponentially after epoch 

30. 

 

The speech training data was taken from the recordings of 10-digit pronunciations from the BIOMEX-DB database, by using the 

information from the time labels; the silences between pronounced digits were removed. Training data contained both noisy and 

noiseless data; noise of all SNR values were considered. 

 

The face network was trained for 35 epochs; training set consisted of 50 batches of 80 images each; the validation set had 50 

batches of 30 images; both sets of batches were randomly generated during training time. The learning rate was 0.001 and 

decreased exponentially after epoch 30. The training images were extracted from the videos in which the volunteers spoke 10 

digits as mentioned above. The training set contained LBP images both original and augmented. 

 

Unimodal biometric systems evaluation 

 

To execute the verification task, a d-vector configuration was used; this means that the templates of genuine clients and test 

feature vectors of both genuine clients and imposters are extracted from the last hidden layer of the networks; in our case these 

vectors have a length of 512. To generate these vectors, the trained networks are fed with test samples. This is illustrated in 

Figure 2. 

 

 
Fig. 2. Test feature vector extraction. 

 

The voice evaluation set consisted of the audios with pronunciations of 4-digit strings; time labels were used to remove silences; 

likewise, the face evaluation set consisted of LBP images extracted from the videos of 4-digit-string pronunciations.  

 

To create the voice template and store it in the biometric system, a noiseless audio sample and a noisy audio sample of each 

SNR value were randomly selected. Each audio sample was segmented into 200-ms frames with a 100-ms overlap; then these 

frames were fed to the network and the resulting vectors were averaged. This way, a single feature vector is generated for each 

4-digit audio; this is illustrated in Figure 3. 
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Fig. 3. Test feature vector extraction from a sentence. 

 

The previous process was performed for the 5 selected audios; the 5 averaged vectors obtained are averaged again to obtain the 

template that contains information on the noise levels considered. The template generation is shown in Figure 4. 

 

 
Fig. 4. Voice template feature vector generation. 

 

The face template was generated in a similar way; an untransformed LBP image and an LBP image of each transformation 

described in section 7.3 were randomly selected. These images were fed to the trained face network and each vector extracted 

from the last hidden layer was averaged to obtain the template that contains information on the considered transformations. The 

test vectors are generated in the same way, one per image, without averaging with the vectors from other images. This process is 

shown in Figure 5. 

 

 
Fig. 5. Face template feature vector generation. 

 

In the first stage of evaluation, verification tests were performed for each modality; the verification was made by matching the 

template vectors with the test vectors using cosine distance to generate a score. For our experiments, the templates of genuine 

clients were matched with their corresponding test vectors to evaluate the ability of the system to correctly verify their identity, 

the second match was made with the templates of genuine clients with the imposter test vectors to measure the system’s ability 

to reject impostors.  

 

As mentioned at the end of section 7.4, 39 legitimate clients were considered, corresponding to individuals who have speech and 

video information. The other 12 individuals from the database that only have audio data were taken as impostors, to compensate 

for the missing face information, images from 12 individuals of the Yalefaces database were paired with the impostors of 

BIOMEX-DB; Yalefaces data was preprocessed as described in section 7.3. 

 

The verification results of each modality were measured in terms of Equal Error Rate (EER), which represents the point where 

True Positive Rate (TPR) and False Positive Rate (FPR) measurements are equal. The TPR is the number of times the identity of 

a legitimate client was successfully verified divided by the number of verification tests classified as positive. The FPR is the 

number of times an imposter was mistakenly verified as a legitimate client divided by the total number of tests classified as 

negative. More information on these measurements can be consulted in Fawcett (2006). 

 



Atenco-Vázquez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(3) 2024, 4-14. 

12 

 

Tables 3 and 4 show the verification results of the individual modalities. Both were divided into different conditions considered 

in the data augmentation schemes. 

 

Table 3. Verification results for speaker recognition. 

SNR (dB) EER (%) 

0 15.48 +- 0.36 

5 9.03 +- 0.24 

10 4.53 +- 0.21 

15 4.53 +- 0.21 

Noiseless 4.36 +- 0.18 

 

 

 

Table 4. Verification results for face recognition. 

Transformation EER (%) 

No transformation 2.46 +- 2.3 

Brightness 4.25 +- 2.89 

Horizontal flip 3.09 +- 3 

Rotation 8.95 +- 2.69 

Combined 11.25 +- 1.99  

 

In the second stage of the evaluation, the templates and test feature vectors of both modalities were concatenated; each client has 

a template and test vectors of length 1024. Templates and test vectors were compared with cosine distance. For this bimodal 

experiment, all the conditions considered in the first stage were combined; the results are shown in Table 5. 

 

Table 5. Bimodal verification results. 

Condition EER (%) 

                 

Transformation 

SNR (dB)   

No 

transformation 

Brightness Horizontal 

flip 

Rotation Combined 

0 3.14 +- 0.67 3.87 +- 

0.86 

3.44 +- 

0.63 

4.14 +- 

0.7 

5.1 +- 0.45 

5 2.34 +- 0.65 2.6 +- 0.55 2.64 +- 

0.68 

3.1 +- 

0.38 

3.62 + 0.63 

10 2.03 +- 0.6 2.38 +- 

0.59 

2.16 +- 

0.64 

2.7 +- 

0.36 

3.08 +- 

0.47 

15 1.92 +- 0.59 2.25 +- 

0.61 

2.1 +- 0.7 2.3 +- 

0.39 

2.89 +- 

0.45 

Noiseless 1.82 +- 0.7 2.15 +- 

0.55 

2.09 +- 

0.72 

2.4 +- 

0.38 

2.88 +- 

0.45 
 

4 Discussion 

 
In speaker recognition, the results show that the most difficult case is the SNR of 0 dB; the EER is approximately 15.48; as the 

SNR value increases the EER decreases. The best-case scenario corresponds to noiseless samples, and the EER is approximately 

4.36. For face recognition, the rotation transformation has the highest EER value with approximately 8.95, while the other two 

transformations and the original images have a notably lower EER with 2.46 being the minimum value. When combining the 3 

transformations, the EER has the highest value with 11.25. 
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It is observed that the results of the voice modality do not fluctuate significantly; the largest deviation is 0.36. In face 

recognition the results can be considered better than speaker recognition; however, the results have higher deviations. This 

allows us to conclude that the voice modality delivers the most stable results. 

 

In the bimodal experiment the results were improved considerably compared to the individual modalities. The most noticeable 

improvement is shown in the most difficult conditions of evaluation i.e. 0 dB and combination of transformations. For 0 dB tests 

the EER is considerably lower than the individual test, decreasing from 15.48 to 3.14. The combination of transformation tests 

also showed a considerable decrease of EER, from 11.25 to a low of 2.88. The rest of the bimodal results showed improvement 

compared to unimodal results. Due to the bimodal combination, face recognition results became more stable. 

 

5 Conclusions 

 
Two biometric systems were created based on voice (speaker recognition) and face (face recognition) modalities by training two 

CNNs. Data from the BIOMEX-DB database was used for training and evaluation; we used some subjects from the Yalefaces 

database to create a set of impostors for evaluation purposes. A data augmentation scheme was implemented; we considered a 

specific set of conditions for each modality; augmented data was employed to train and test the CNNs.  

 

Unimodal biometric verification was performed extracting feature vectors from the last hidden layer of the CNNs, then a 

template for each genuine client was created by averaging a specific set of feature vectors; in the final step, we used cosine 

distance as a matching function between templates and test vectors; EER was used to measure the results. To create the bimodal 

system, templates and test feature vectors from both modalities were concatenated and matched in the same way as the unimodal 

cases. 

 

In the first stage of evaluation, unimodal systems were tested under different conditions contemplated in the data augmentation 

scheme. Both modalities showed good results in terms of EER; for speaker recognition the highest value was 15.48 and the 

minimum was 4.36; in face recognition the highest value was 11.25 and the lowest, 2.46. Face recognition obtained the best 

results, while the speaker recognition results are more stable with a lower deviation value. 

 

In the second stage, the multiple conditions of voice and face modalities were combined. The results showed significant 

improvements compared to the first stage, even for the most difficult conditions. The EER with the highest value was 5.1 and 

the lowest 1.82, which are lower than those obtained in the first evaluation. The stability of the results improved compared to 

unimodal face modality.  
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