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Abstract. Classification models of the states produced in 

the gelation tests of organic molecules require designing 

several corpora of data based on their characteristics. This 

work studies 15 solvents characterized by Hansen 

Solubility Parameters and a series of alkoxybenzoates. 

Characterization of the alkoxybenzoates has as distinctive 

feature the number of carbons on its alkyl tails. Solvent and 

molecule properties were evaluated as attributes on corpus 

through the kNN algorithm. Three corpora were tested in 

different algorithm configurations, varying each corpus 

content according to the solvents and molecules attributes. 

Relevance of some attributes over others on the 

performance prediction of the products class can be 

appreciated. Significant instances were correctly classified 

on corpora when the HSP and the alkoxybenzoate alkyl 

ether tail length were considered, thus, stating the influence 

of these properties on classification accuracy. The most 

suitable configurations in kNN as metric, k value, and 

attribute weight were determined according to each corpus. 
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1. Introduction 
 

Organogels are thermally reversible viscoelastic solid-like materials composed of an organic liquid and small quantities of low 

molecular mass molecules. These materials have gained much interest and are currently highly investigated because of the wide 

variety of applications that organogels have shown.  

 

Organogel molecules can entrap organic liquids through self-assembly in a solid three-dimensional network and return to the 

solution state upon heating. The diverse applicability of these materials includes electronics, food, drugs, plastics, contaminant 

removal agents like fuels [1],[2],[3].  

 

Many molecules with different chemical structures capable of congealing organic solvents and acting as organogelators have 

been reported both in the industry and research fields; however, the methods to know a priori the suitable design of gelators and 

the solvents to match and produce the gel are shallow. Designing a molecule is still a restricted and tedious limited-step process 

to achieve the gel state. Generally, they are discovered experimentally modulating slight changes in the chemical structure, 

testing several solvents, and changing the concentration ratio. 

 

Based on the previously mentioned weakness, many analog molecules within a chemical structure design fail to congeal. In 

order to understand the lack of gel formation, several studies report the relevance of the non-covalent forces balance leading to 

self-assembly. It has been reported that slight modifications on the number of carbons in alkyl tails can interrupt gel formation 

due to the fragile balance of these forces [4], [5], [6]. 
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Several approaches have been used to elucidate the design requirements of an efficient organogelator. Most attempts use 

artificial intelligence algorithms to process databases with suitable molecular properties to represent aggregation phenomena. 

Some of these computational tools relate specific, measurable properties to a given physical product state obtained from a 

chemical experiment, based on the principle that these products depend on the components’ molecular properties [7].         

 

Commonly, the properties used to describe a physicochemical phenomenon like gelification have different dimensions; zero-

dimensional (like molecular weight), uni-dimensional (sum of specific molecular fragments), and bi-dimensional (number and 

types of atoms describing molecular constitution). Machine learning methods can process the databases designed with these 

properties to classify the aggregation state produced with a given molecule [8].  

 

Hansen Solubility Parameters (HSP) are molecular properties currently used as attributes in gelification prediction models [9], 

[10], [11]. The HSP are matter cohesion energy parameters; they can represent the physical interactions that maintain gelator 

molecules self-assembled in a gel. Diehn [12] recently reported the products formed with 1,3: 2,4-dibenzylidene sorbitol (DBS) 

in a set of solvents, linking the solvents HSP with particular moieties of the gelator. The energy cohesion is decomposed 

according to three contributions: dispersive interactions, polar interactions, and H-bonds [7]. Every interaction contribution of 

solvent and gelator HSP values can be related to molecular behavior and products obtained in the gelification test. 

 

2. Design of a predictive model 
 

In computational intelligence, classification is an area that searches patterns in data corpora [13]. One of the challenges of 

creating classification or predictive models is defining the appropriate tool and its configuration to produce a precise assignation 

of a given target. Predictive analytics take databases through data mining and Machine Learning to search and modulate the 

specific characteristics needed in an optimal model [14]. Machine Learning includes artificial intelligence algorithms with the 

necessary skills to identify qualitative and quantitative data patterns and model the representative phenomena, in this case, a 

chemical nature phenomenon the gelification. 

 

The supervised algorithms in machine learning consist in making predictions based on stored data in training sets. These 

algorithms can make predictions based on labeled data characterized by a series of specific attributes. A dataset trains the 

algorithm with input information that teaches it to search for patterns in the values given and correlate them to a specific label 

[15][16]. 

 

The chosen algorithm for this study case was kNN. This nonparametric classification algorithm estimates an element X to 

belong to a class C from the prototype set. Training instances build vectors in a multidimensional space; p attributes describe 

every instance considering q classes. The attribute values of the ith example (where 1≤ i ≤ n) are represented by the p-

dimensional vector Xi = (X1i, X2i,..., Xpi). The multidimensional space is partitioned into regions by locations and labels of the 

training instances; if a point in the space belongs to the closest most frequent class among the k neighbors in the training 

instances, it is assigned with the class C. kNN assumes that the closest neighbors select the best class for every instance using 

all the attributes. However, this assumption does not take into account the possibility of having irrelevant attributes dominating 

the ranking, causing a misclassification because the relevant attributes could lose weight among a set of irrelevant attributes. 

 

To correct a possible slant, the attributes are assigned by weight in two different types: by the distances of each attribute, 

preselecting attributes, or by uniform weight, where all attributes have equal relevance [17].  

 

An optimal k selection depends on the type and quantity of instances. Large k values could produce noise in classification but 

are beneficial in establishing limits between similar classes. Commonly, the adequate k values are selected by optimization in 

the model. 

 

Evaluation methods are used to corroborate that the algorithm is working correctly concerning the data sets designed and 

applied in kNN. The evaluation method has to demonstrate adequate prediction capability; to accomplish this, learning 

algorithms are evaluated and compared by cross-validation dividing data into segments named folds, one used to train and the 

others to test. The training and test sets cross over in successive rounds, so each data point has a chance of being validated [14]. 

Cross-validation gives representative results about the models' ability and the suitable configurations to classify new instances 

unknown to the algorithm. 

 

The present work evaluates a series of alkoxybenzoate derivates and their aggregation behavior. Uni-dimensional (moieties of 

the alkoxybenzoates structure) and bi-dimensional (Hansen solubility parameters of solvents and alkoxybenzoates) properties to 
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characterize gelification components were defined for the study. The contribution of the properties is evaluated by designing a 

series of corpora and validating them on the kNN algorithm, trying different configurations to fit the optimum model 

combination. 
 

3. Experimental procedures 
 

3.1 Corpora design 
 

The studied alkoxybenzoates were previously synthesized and submitted to gelification tests to define the aggregation state 

produced with every tested solvent. The studied moieties of the Alkoxybenzoates derivatives consist of a 12 carbon ether alkyl 

tail and a variable ester chain of one (1-12), three (3-12), and four (4-12) carbons attached to a p-substituted aromatic ring. The 

produced aggregation states were gel (G), solution (S), and precipitate (P); these were the defined target classes for every 

instance.  

    

The attributes used to characterize the data sets were alkoxybenzoates moieties, ether carbon number (12), and ester carbon 

number (1, 3, 4), the HSP of all species of both solvents and derivatives (H-bond interactions, polar interactions, and dispersive 

interactions). Three different corpora structures were designed, changing the attributes in each one. Table 1 shows the corpora 

created and their attribute content. 

 

Table 1. Corpora designed and their attributes 

Corpus 
Attributes 

Alkoxybenzoates Solvents 

A 
Ether carbon number 

Ester carbons number 

Dispersive I. 

H-bond 

Polar I. 

B 

Dispersive I. 

H-bond 

Polar I. 

C 

Dispersive I. 

H-bond 

Polar I.  

Ether carbons 

Ester carbons 

 

Every corpus is composed of 45 instances. The number of instances distributed according to their class is gel (G)-16, solution 

(S)-27, and precipitate (P)-2. 

 

3.1. Configuration hyperparameter values 
 

The corpora assessment was cross-validation with three stratified folds. The test sets consist of 15 and 30 instances in the 

training sets.  

 

Table 2. Configuration hyperparameters values tested in the kNN algorithm by cross-validation 

Corpus k Metric 
Attribute 

weight 

A 

3 

5 

Euclidean 

Chebyshev 

Uniform 

By distance 
B 

C 

 

The chosen metrics for the neighbor distance estimation were Euclidean and Chebyshev. To evaluate the suitable assignation of 

attributes weight, two types were estimated: uniform and by distance. The values of k neighbors appointed were 3 and 5. Every 

variable in this configuration was tested for each corpus, see Table 2. 
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4. Results 

 

4.1 Configuration evaluation 
 

The performance results of configurations in kNN are presented in %CA (classification accuracy percent). This value represents 

the ratio of predicted and actual classes. The corpora were evaluated in kNN according to the proposed configurations changing 

k value, attribute weight, and metric. The results are shown in Table  

Table 3. 

 

Table 3. % Classification Accuracy achieved in kNN with the proposed configurations 

Metric 
Attribute  

weight 
k 

%CA  

A B C 

Euclidean 

Distance 
3 80 80 80 

5 82 80 85 

Uniform 
3 82 85 82 

5 87 87 87 

Chebyshev 

Distance 
3 80 76 80 

5 87 76 87 

Uniform 
3 82 80 82 

5 85 82 85 

 

The highest values of %CA were obtained when applying the Euclidean metric with a uniform weight assigned for the 

attributes, a k = 5 value, and no influence of the type of corpus; this can be observed in Table 3. 

 

According to the weight attribute, establishing a uniform relevance for all attributes offers a higher %CA in all cases rather than 

applying the distance attribute to preselect features. A comparison of the k values tested and their performance on the 

classification accuracy is shown in Figure 1. 

Fig. 1. Comparison of the performance of k neighbors in the precision of the classification for each corpus 

 

The performance in Figure 1 indicates that a value of k=5 neighbors is required to obtain the higher classification values with 

every corpus, and this applies to all configurations. This effect was observed when no attributes were discriminated against, and 

more neighbors were selected. The algorithm was not affected by wrong value noise, which causes misclassification of the 

instances; it was observed that the algorithm could choose the correct class in a range of neighbors broader than 3, which is 

more notable in corpus A and C results. 

 

Statistically, the characterization of corpus C produces a higher classification compared to the other two corpora. C is the corpus 

that possesses the total attributes tested, suggesting that the composition of C is the adequate studied corpora for classification 

purposes. 

 

Concerning the metric, the Chebyshev equation application shows the same %CA values in all cases for configurations using A 

and C corpora.  The lower performance of kNN is due to corpus B. This corpus lacks ether and ester attributes in its 
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composition; therefore, its low performance can be associated with this absence, suggesting that these attributes raise 

classification accuracy.  

It was observed that classification performance according to the weight for attributes is influenced by the value of k and the 

corpus structure. This effect was detected by comparing configurations with the maximum CA values of each metric, observing 

a fluctuation according to A, B, and C corpora, and k values. 

 

Also, the Euclidean metric produces higher classification values assigning uniform weight according to the metrics 

development in conjunction with attributes weight. Lower values in the corpus B results were obtained for the Chebyshev 

metric, contrasting with those obtained by the Euclidean metric. Although the classification with corpora A and C produces the 

same results, except for a value increase when k=5. To assess which attribute has a significant contribution effect on the 

classification, an ANOVA  was performed for every corpus. 

 

4.2 One-way variance analysis (ANOVA) 
 

Table 4 shows the difference between average values of the attributes in different classes, represented by the ANOVA. The 

results provided by the ANOVA are F-value; these were used to rank the other attributes. The evaluation makes it possible to 

estimate whether any of the characteristics affect the accuracy of the classification. 

 

Table 4. One-way ANOVA for corpora A, B and C according to the significance of the attributes over the classification 
Corpus A Corpus B Corpus C 

Attribute ANOVA Attribute ANOVA Attribute ANOVA 

Solvent H-bond 5.798 Solvent H-bond 5.798 Solvent H-bond 5.798 

Solvent Polar I. 5.325 Solvent Polar I. 5.325 Solvent Polar I. 5.325 

Ester 4.128 Alcoxy H-bond 4.103 Ester 4.128 

Solvent Dispersive I. 0.625 Alcoxy dispersive I. 4.094 Alcoxy H-bond 4.103 

Ether NA Alcoxy polar I. 4.091 Alcoxy dispersive I. 4.094 

  Solvent Dispersive I. 0.625 Alcoxy polar I. 4.091 

    Solvent Dispersive I. 0.625 

    Ether NA 

 

According to observations in Table 4, a significant difference in the average values of all attributes exists, except the Ether one. 

Two facts can be concluded: in the corpus with the studied structure; the Ether feature is not relevant for classification due to its 

constant value of 12; furthermore, the other attributes present evidence of affecting differentiating class type. The attributes that 

contribute significantly to the classification, coinciding for the three corpora, are the H-bond and polar interactions, both from 

the solvent characterization. 

 

The corresponding feature to the carbons in the alkoxybenzoates ester group, with values of 1, 3, and 4, occupies third place in 

the corpora containing it. This attribute distinguishes each of the three studied molecules 1-12, 3-12, and 4-12, indicating that 

features with significant differences in numeric values promote the correct classes assignation. The attributes characterizing 

alkoxybenzoates: dispersive, H-bond, and polar interactions, are located in the same position inside the corpus. While solvent 

interactions are found in the three corpora, dispersive interactions present the lowest contribution due to its ANOVA F value, 

putting it in the last place. 

 

As noted above, two of the solvents' HSP properties and one of the alkoxybenzoates, the number of carbons in the ester group, 

present the higher significance as attributes for classification. Confusion Matrixes were developed to identify which instances 

were correctly classified by each class. 

 

4.3 Confusion Matrixes 
 

Figure 2 shows the confusion matrixes of the highest classification values (87%). First of all, a coincidence in the configuration 

of the three maximum CA can be observed. This configuration applies the Euclidean metric, five neighbors, and uniform weight 

to all attributes. Corpora B and C produce more actual instances of class G than corpus A.  These results show an influence of 

the alkoxybenzoates HSP as attributes over the classification accuracy because corpus A lacks the presence of these attributes 

and produces more classification fails of class G.  
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Fig. 2. Confusion matrixes for experiments with the highest classification accuracy (87%) and their configuration 

 

Meanwhile, the number of instances correctly classified as S is the same for the three corpora. However, instances with class P 

could not be classified accurately; this can be attributed to a minority number of cases within this class, the same ones that the 

model misclassified as S, as the predominant class in the training set. 

 

5. Conclusions 
 

Data corpora based on structural properties and HSP of gelators and solvents demonstrate a classification capability in 

gelification prediction models. From the tested configurations, the impact of the different variable values was identified: k 

neighbors, the metric, the corpus structures, and the attributes. 

 

The most advisable configuration identified for its classification results is composed as follows. The Euclidean metric presented 

superior performance than the Chebyshev metric by producing higher values of %CA (Table 1). The assignation of 5 neighbors 

and uniform weight for the attributes applied to this equation showed the best performance. For the corpora composition, 

alkoxybenzoates HSP and ester feature presented an influence raising instance classification with the Gel target. For the case of 

solvents characterization, H-bond and polar interactions showed higher contributions over classification accuracy. The less 

significant attributes for classification were: alkoxybenzoates polar interactions and solvents dispersive interactions. The 

attribute ether with a constant value does not show relevance for classifying the instances. Based on the previous observation, it 

is demonstrated that using the same value to characterize an instance is not advisable for a classification corpus.  

 

However, less relevant attributes in these corpora are not dismissed for future studies with different alkoxybenzoate families 

because they were not analyzed as a corpus applied variable of distinct composition. Similarly, the number of instances 

according to their class in the data sets will be analyzed as a possible factor affecting the classificatory skills of the corpus. 

 

The cross-validation results obtained in this study show advisable configurations of data corpora and algorithm parameters to be 

applied in a test with data sets composed of new alkoxybenzoate molecules or solvents and achieve high accuracy predictions. 
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