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Abstract. We build a global bankruptcy prediction model 

using a support vector machine trained only on firms' 

endogenous information in the form of financial ratios. The 

model is tested not only on entirely random unseen data but 

on samples taken from specific global regions and 

industries to test for prediction bias, achieving satisfactory 

prediction performance in all cases. While support vector 

machines are not easily interpretable, we explore variable 

importance and find it consistent with economic intuition. 
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1 Introduction 
 

Several attempts have been made to create bankruptcy prediction models with a good measure of success. Accuracy ranges from 

73% to 99% [1]. However, most of these models were based on data from a specific country or region. As Alaminos [2] reports, 

world financial crises leading to increasing bankruptcies in several countries have brought attention to the study of bankruptcy in 

an increasingly international context. Naturally, this beckons for models that are more global, or less country specific.  

 

Following Alaminos’ analysis of the State of the Art, an increasingly international financial and economic cultures has come to 

imply an increasingly homogenous financial behavior [1][2]. Although the natural response to these observations would be the 

development of explicitly global models of bankruptcy, much of the literature and study has ultimately focused on companies 

within a single country [3][4][5][6]. Working towards a more truly global approach, Alaminos [7] proposed a global model using 

logistic regression with data from three global regions (America, Europe, and Asia), reporting a test accuracy of 84.86% for his 

global model and 90.11% after adding dummy variables to account for regions. This approach is sensible given that the available 

feature space might not carry complete information, so the region variable acts as a control. However, by doing so, the model 

becomes, again, geography dependent. 

 

An ideal global model should be independent of geography and rely solely on the company's endogenous information. As 

discussed, the nature of globalization would make it reasonable to expect a somewhat homogeneous global environment and 

financial practices, at least for publicly traded companies, making feasible and valuable an endogenous model. A characteristic of 

the models in the literature is the diversity in the predictive variables used, calling for a theoretical foundation of bankruptcy as 

an economic phenomenon. Endogenous model development informs theory by focusing on the firm's behavior rather than its 

environment. 

 

 In this paper, we build a prediction model that uses only internal data in the form of financial ratios and test its performance in 

specific regions and industries, aiming for high out-of-sample prediction accuracy. We are interested not only in observed accuracy 

on a general random test set but also in the same region or industry's subsamples.  To do this, we rely on the same dataset used by 

[7], containing information of 468 companies in three continents. 

 

 

 

 



Zazueta et al.  / International Journal of Combinatorial Optimization Problems and Informatics 13(2), 2022, 88–97 

89 

 

2 Support Vector Machines 
 

SVMs are highly flexible and robust classifiers. Although generally regarded as hard to interpret, variable importance can be 

measured by running ROC curve analysis on each predictor [8]. SVMs were first introduced in the computer science field by 

Vapnik [9] during the 1990s at AT&T Bell Laboratories. Generally speaking, the SVM can be thought of as a linear classifier in 

a high-dimensional feature space that is non-linearly related to input space and can thus be applied to linear and non-linear 

classification and regression problems.  

 

The underlying idea behind the algorithm is that, given a training data set where every point belongs to one of two categories, we 

want to create a hyperplane that separates the data set, maximizing the width of the gap between both categories (See Figure 1). 

This is: in a 2-dimensional space, we want to be able to draw a line that clearly separates the data into two different sections. The 

hyperplane equation can classify new examples by assuming the same distribution as the original training, input, and data sets. 

When we can find a hyperplane that completely classifies the points in a data set, we say that the data is linearly separable. 

However, in many practical problems, finding such a hyperplane might not be feasible or possible. To deal with non-linearly 

separable sets (See Figure 2), we introduce the kernel trick, which implicitly maps the data into a feature space of higher dimension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Maximal Margin Classifier and Support Vector Classifiers 
 

Given the data set ( )   
1

 , a| 1, 1nd 
n

p

ii i i iD x y yx
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=   − ,D = {(xi, yi)|xi ∈ Rpandyi ∈ {1, -1}}
i=1

n
, our objective is to 

know if we can separate its points with a (p − 1)-dimensional hyperplane. This is what we call a linear classifier. Among the 

multiple hyperplanes that may classify the data, a natural choice is the separating hyperplane that is farthest from the training 

observations; this natural choice is known as the maximal margin hyperplane or optimal separating hyperplane. We can then 

classify a test observation based on which side of the maximal margin hyperplane it lies. This is known as a maximal margin 

classifier.  

 

In practice, linearly separable sets are rare. Support vector classifiers (SVCs) generalize the maximal margin classifier by allowing 

some points to be incorrectly classified, on the wrong side of the margin (See Figure 3). This is achieved by introducing slack 

variables in the underlying optimization problem. For this reason, SVCs are sometimes referred to as soft margin classifiers. By 

relaxing perfect separation, we obtain a more robust model that typically performs better at classifying out-of-sample points. Note 

that the hyperplane depends only on those data points that lie on the margin, called support vectors, making the classifier robust 

to new data that lies outside the margin. 

 

Fig. 1. A 1-hyperplane classifying two types     

of data in a 2-dimensional space 

 

Fig. 2. A data set that a hyperplane cannot 

classify 
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Fig. 3. A Support Vector Classifier allows for  

some points to cross the margin 

 

2.2 Dealing with Non-Linearity 

 
When a linear classification boundary is appropriate, SVC is a natural approach. However, it is common in practice to come across 

instances in which a non-linear boundary is necessary, as illustrated in Figure 2.  The support vector machine (SVM) is an extension 

of the support vector classifier that results from mapping the input data into a high dimensional feature space via a non-linear 

transformation in order to perform the linear algorithm in the enlarged space, resulting in a non-linear boundary when projected 

back onto the original space. 

 

Without delving into the details of the calculation, finding the maximal margin hyperplane is a quadratic programming problem 

that depends only on inner products between points in the feature space, as does the final decision function:  

  

 ( )( )  s i i

i

bf ign 
 

=  
 

+x x x  (1) 

 

As we are working on the enlarged feature space, we substitute the inner product in Equation 2 by the function 

( , )  ( ) ( )K  = x y x y . Where   is a (typically) non-linear function that maps the input space into the enlarged feature space. 

Due to the high dimensionality of the feature space, evaluating all the inner products can be computationally challenging. 

However, there are simple kernels that can be evaluated efficiently by performing operations directly on the input space.  

 

In this paper, we will utilize a kernel commonly used by practitioners, the radial basis function (RBF) kernel: 

 

 ( )2
( , ) expK = − −x y x y  (2) 

Our specific decision function takes 

 

 ( )( )2
( ) expi

i

if sign b 
 

= − − + 
 
x x x  (3) 

 

The parameters i and b are computed via the quadratic programming problem, and   is a hyperparameter that needs to be 

tuned by the practitioner, along with a regularization cost hyperparameter C that is part of the optimization problem. We can see 

that when the Euclidean distance between a new observation and a training point becomes large, its corresponding component 
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becomes very small, implying that the radial kernel has local behavior in the sense that only nearby training observations affect 

the class label. A detailed discussion of the algorithm can be found in [10][11] and [12]. 

 

2.3 Software and Tools  

 
All our calculations are performed in R [13], with a heavy reliance on the caret package [14]. Tables were handled by flextable 

[15] and Graphs were created using ggplot2 [16] and Mathcha [17]. 

 

3 Model Development 

 
3.1 The Data 

 
Table 1. Company distribution by country and region 

Country Asia Europe America Total Bankrupt 

Japan 112   112 56 

Korea 8   8 4 

Singapore 2   2 1 

Taiwan 2   2 1 

Austria  6  6 3 

Bermuda  2  2 1 

Denmark  20  20 10 

France  32  32 16 

Germany  22  22 11 

Ireland  2  2 1 

Italy  8  8 4 

Luxembourg  2  2 1 

Netherlands  8  8 4 

Norway  10  10 5 

Poland  8  8 4 

Portugal  2  2 1 

Spain  2  2 1 

Sweden  22  22 11 

Switzerland  2  2 1 

United Kingdom  26  26 13 

United States of America   154 154 77 

Canada   16 16 8 

Total 124 174 170 468 234 

 

In his paper, Alaminos [7] shared a global dataset including data from 468 publicly traded companies in 22 countries across Asia, 

Europe, and America from the period 1990-2013. Features include country, financial ratios (See Table 1), and industry code. Two 

hundred thirty-four of the companies in the sample legally declared bankruptcy. The rest of the sample was selected randomly 

from active companies following a match criterion by country, industry, and year. Financial ratios for each company correspond 
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to the year prior to bankruptcy.  The distribution of companies in the sample is summarized in Table 1. We will rely on this data 

to build and test our model. The overall methodology is depicted in Figure 4. 

 

3.2 Data Preparation 

 

Our dataset has a total of 73 missing values, distributed by feature as of Table 2. Note that the variables are categorical. On 

the other hand, we assume that the missing data are Missing at Random (MAR), which means that the probability that 

a value is missing depends only on the observed values and can be predicted using the latter. Subsequently, since the 

proportion of missing values is insignificant and we assume they are MAR, we impute the missing values using 

Multivariate Imputation by Chain Equations as implemented by the MICE package in R [18]. For numerical data, MICE uses 

predictive mean matching to impute each incomplete variable with a separate model. 

 

Table 2. Number of missing data by feature 

Ratio Missing 

Earnings/Total Assets 9 

Current Assets/Current Liabilities 9 

Working Capital/Total Assets 7 

Retained Earnings/Total Assets 10 

EBIT/Total Assets 6 

Sales/Total Assets 2 

(Current Assets + Cash Flow)/Current Liabilities 8 

Total Debt/Total Assets 7 

Current Assets/Total Assets 3 

Earnings/Net Worth  12 

 

From our imputed data, we generate a test set by randomly selecting 25% of the data and training a Support Vector Machine with 

a radial basis kernel with the remaining 75%. The training set is stripped from region and industry information to develop a model 

based solely on the ten financial ratios available and subsets of the test data by region and industry to assess model performance 

on specialized subsamples (i.e., only Asian countries or Consumer Discretionary focused companies). 

 

3.3 Model Fitting 
 

We recall, from [12] and [19], that the k-fold cross validation predictive method involves splitting the dataset into k-subsets. For 

each subset is held out while the model is trained on all other subsets. This process is completed until accuracy is determined for 

each instance in the dataset, and overall accuracy estimate is provided. In the case of the repeated k-fold cross validation, the 

process of splitting the data into k-folds can be repeated a number of times, therefore the name of “repeated”. Thus, the final 

model accuracy is taken as the mean from the number of repeats. For example, five repeats of 7-fold cross validation would give 

35 total resamples that are averaged, but this is not the same as 35-fold cv. 

 

To fit our SVM we use repeated 10-fold cross validation with ROC's AUC as a selection metric. For hyperparameter tuning we 

resort to the empirical observation that the optimal values of the parameter σ in RBF kernel lie between the .10 and .90 quantiles 

of the
2

i−x x statistics [14]. The sigest function from kernlab uses a sample to estimate the quantiles and returns a vector with 

the .10, .50 and .90 quantiles. We run a grid search with these three values and cost, C, ranging from 2 to 200 in steps of 0.5. with 

scaled and centered data. Our results are shown in Figure 5. With the best model's hyperparameters being C = 9.5 and σ = 0.1497. 
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Fig. 4. Model development methodology 

 

 
Fig. 5. Cost hyperparameter tuning 
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4 Results 
 

4.1 Performance Metrics 
 

The final model has an average cross validated accuracy of 0.842 and a percentual average confusion matrix shown in Table 3. 

 

Table 3. Final Model Cross Validated Confusion Matrix 

 

   Reference 

  Yes No 

P
re

d
ic

ti
o

n
 

Yes 87.87% 12.13% 

No 22.82% 98.56% 

 

Overall prediction performance on the test set is summarized in Table 4.  Where the first four reported performance indicators are 

defined in terms of the confusion matrix elements as follows: 

 

 
 of true positives + numer of true negatives

 of positvies + number of negatives

number
Accuracy

number
=  (4) 

 

 
number of true positives

 
 of true positives + number of false negatives

Sensitivity
number

=  (5) 

 

 
number of true negatives

 
number of true negatives + number of false positives

Specificity =  (6) 

 

 
Accuracy - Expected Accuracy

 
1  Accuracy

Kappa
Expected

=
−

 (7) 

 

And AUC is the area under the Receiver Operator Characteristic curve. Performance on the overall testing set is quite satisfactory, 

with accuracy of 0.88 and an AUC of 0.93. 

 

Table 4. Overall, out-of-sample model performance 

 

 

 

 

 

 

 

The model also performs well on specific region, with similar performance (see Table 5). 

 

From the training sample, we focused on industry subsets with more than ten elements, recovering Industrials, Consumer 

Discretionary and Information Technology. Model performance remains stable with similar scores (see Table 6). 

 

 

 

 

 

n Accuracy Sensitivity Specificity Kappa AUC 

116 0.888 0.879 0.897 0.776 0.934 
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Table 5. Model performance metrics by region 

Region n Accuracy Sensitivity Specificity Kappa AUC 

Asia 34 0.853 0.875 0.833 0.706 0.924 

America 41 0.878 0.857 0.900 0.756 0.902 

Europe 41 0.927 0.905 0.950 0.854 0.957 

 

Table 6. Model performance by industry 

Industry n Accuracy Sensitivity Specificity Kappa AUC 

Industrials 28 0.893 0.933 0.846 0.784 0.974 

Consumer 

Discretionary 
40 0.900 0.857 0.947 0.800 0.937 

Information 

Technology 
26 0.885 0.933 0.818 0.761 0.927 

 

4.2 Interpretability 
 

Feature importance was calculated with the caret package and is depicted in Figure 6. It is interesting to note that, according to 

the model, the most relevant variables belong to the profitability and liquidity categories, followed closely by debt. It is also 

noteworthy that efficiency, as represented by sales/(total assets) does not play a significant role in bankruptcy prediction. This 

structure is reasonable from an economic and financial standpoint, suggesting that a purposeful exploration of larger feature sets 

might shed some light on a theoretical formulation of the bankruptcy phenomena. 

 

 
Fig. 6. Feature importance by ratio type 
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5 Study Limitations and Future Research 
 

As any numerical exploration, our results are limited by the characteristics of the sample. A serious limitation is the availability 

of features. Replicating this exercise on a feature-rich sample will help us better understand the relationship between endogenous 

company information and bankruptcy.  Our modelling effort was limited—by design—to one period in advance prediction. 

Developing earlier warnings is a topic of interest in the literature that might be improved by incorporating time series-based 

models as well as a theoretical foundation. 

 

It is perhaps also important to note again, for clarity’s sake, that calculations were largely carried out using the caret package for 

R. Technical aspects such as the specific AUC formula(s) used, the justification for certain imputation methods, the method used 

for feature importance, and similar details are simply consequences of the specific package implementation. It can and should be 

useful to explore these same results with different specifications, be it within the same caret package or otherwise.  
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