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Abstract. So-called Vertex Chain Codes have been widely 

used to describe the shape of the objects. From these codes, 

several describing features can be obtained, e.g., the Euler 

characteristic. In this research, we show how Vertex Chain 

Codes can be used to train an Artificial Neural Network to 

compute the Euler characteristic of a 2-D binary image. We 

experimentally demonstrate how a simple linear neuron is 

enough to attain the goal. We present results with sets of 2-

D binary images and objects of different complexity and 

size. 
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1 Introduction 
 

Object classification is one of the main problems in computer vision. Many methods and techniques have been 

proposed by the scientific community. The interested reader may refer, for example, to [1]. 

 

A digital binary image is a 2-D array that has been obtained from a gray-level image which has been discretized 

at two levels, 0 and 1. An image like this is composed of all connected regions representing projections of 

perceived objects onto the discrete plan. Pixels or cells that compose regions are labelled with level 1, whereas 

the background is labelled with level 0. As an example, Figure 1 shows an 8 ×  8 image with three objects in 

gray: one of them with a hole and two with no holes. 

 

The Euler number 𝐸 of a binary image 𝐼(𝑥, 𝑦) can be globally computed as follows: 
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𝐸 = 𝑂 − 𝐻 (1) 

with 𝑂, the number of 4(8)-connected components or objects and 𝐻, the number of holes or background 

connected regions inside the 𝑂 objects contained in 𝐼(𝑥, 𝑦). 

 

 
Figure 1. 8 ×  8 image with three objects, one with one hole and two with no holes. 

 

 

1.1 Related Work 

 
Multiple methods to compute the Euler number of a binary image 𝐼(𝑥, 𝑦) have been reported in the literature. 

Probably the first proposal was introduced by Gray in 1971 [2]. Here, the Euler number is computed in terms 

of so-called bit-quads. In [3], the Euler characteristic is obtained through a quad-tree representation of the image 

under scrutiny. Linear quad-trees are used to perform the same task in [4], while in [5] employed a bin-tree 

representation. On the other hand, the Euler number is considered as the value of a certain additive function 

that belongs to the so-called Quermass-integrals family in [6]. The Euler number can be also defined in terms 

of vertices, basic square faces and edges from a binary image represented as a graph [7]. In [8] the Euler number 

is computed using the connectivity of the image graph. An integral geometric approach for the Euler feature is 

computed upon spatial images in [9] while a full proof about the Euler number equation can be found in [10]. 

In [11], authors use the notion of algebraic topology to compute the Euler number of a given object and the 

mathematical morphology operations and the additive property of this feature are adopted to calculate the Euler 

number of binary objects in [12]. 

 

The Euler characteristic of a discrete object and a discrete quasi-object is computed in [13] in terms of so-called 

vertex angles of the discrete surfaces. 

 

In [14] the number of connected components, first planar Betti number, and the number of holes, second planar 

Betti number, are estimated by approximating the digital image by polygonal sets derived from its digitalization. 

Contrarily, in [15], the authors describe a method that combines image processing techniques and graph theory 

to compute the Euler number with connected components and holes in the binary image. In [16] the Euler 

characteristics of a digital image composed of 𝑘-connected shapes are computed in terms of so-called Morse 

operators. 

 

Authors define the Euler number of a bipartite graph composed of 𝑛-vertices as the number of labellings of the 

vertices with 1, . . . , 𝑛 in [17]. However, in [18], the authors compute the Euler number of a binary image in 

terms of the terminal and three-edged points. 

 

In [19], the authors propose computing the Euler number in terms of a run-based algorithm. For this, they 

calculate 8-neighbor runs, unlike the conventional run-based algorithms, which need to record the start and 

endpoints of all runs. Nonetheless, in [20], the authors describe a different run-based algorithm to do the same 

task. They do in two phases. In the first phase, they process odd rows alternately to find runs and only record 
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its end location. In the second phase, they process each of the remaining even rows to find runs and calculate 

neighbouring runs between the current row and the rows immediately above and below using the recorded run 

data. 

 

The contact perimeter for “unit-with” shapes is used in Bribiesca [21] to compute the Euler number. Two 

variants of such proposal for the case of region-based shapes are described in [22], [23] for the cases of shapes 

composed of square and hexagonal cells, respectively. In [24], the authors propose two equations based on the 

pixel geometry and connectivity properties to compute the Euler number of a binary digital image with either 

thick or thin boundaries. Both equations are specialized only for 4-connectivity cases. In short, in [25], the 

authors introduce a method to compute the Euler number of a binary image based on a codification of contour 

pixels of the objects in the image. 

 

An improvement on the Euler number computing algorithm used in MATLAB is well described in [26]. A 

graph-theory-based Euler number computing algorithm is introduced in [19], [27]. A novel bit-quad-based 

Euler number computing algorithm is also presented in [28]. In [29], authors also use bit-quads to compute the 

Euler number of a 2-D binary image. They present two variations, one useful for the case of images containing 

only 4-connected objects and one useful in the case of 8-connected objects. 

 

Lastly, in [30], [31], [32], authors propose using so-called 16 bit-quads to train a kind of learning machine for 

estimating the Euler number of a 2-D binary image, such as a multilayered perceptron, and a morphological 

neural network, and a support vector machine, respectively. 

 

1.2 Applications 
 

The Euler number has been successfully applied in many applications. It has been employed, for example, in 

industrial part recognition as reported in [33]. In [34], the same topological feature has been used in real-time 

image thresholding. In [35], the Euler number has been utilized to analyse textural and topological features of 

benchmark images. It has been also harnessed to describe structural defects upon binary images that have been 

affected by noise in [36], and to extract lung regions from grey-level chest x-ray images in [37]. In [38], it has 

been also applied in object number counting. In [39], on the other hand, it has been used in real-time Malayan 

license plate recognition. It has been also employed in digit recognition from pressure sensor data as described 

in Paul et al. [40]. In [41], it has been utilized in a gender recognition system from offline handwritten signature, 

and in image description as explained in [42]. Another interesting application of the Euler number for gender 

discrimination from offline Hindi signature can be found in [43]. In [44], the Euler number, has been harnessed 

in character recognition. In short, in [45], authors incorporate several algebraic-geometric tools, namely 𝛼-

Shapes, Betti numbers, and the Euler characteristic, into the topological analyses of cellular networks. 

 

1.3 Hardware Implementations and Patents 
 

To begin this section, it is convenient to say that a fast algorithm for computing the Euler number of an image 

and its Very Large-Scale Integration (VLSI) implementation is introduced in [46]. On the other hand, an on-

chip computation of a binary image Euler number with applications to efficient database searching is well 

described in [47]. A novel pipeline architecture to compute this important topological feature is 

comprehensively described in [48]. A modification of the algorithm introduced in [39] allocated in a Field 

Programmable Gate Array (FPGA) with a pipelined architecture applied also to image binarization can be found 

in [49]. To end up this section, it is worth mentioning that one of the first patents about the Euler number 

computation for binary images is described by Acharya et al. [50]. 

 

1.4 Contributions 
 

The rest of the paper is organized as follows. In the second section, we provide the background and definitions 

necessary to follow the lecture of the rest of the document. In the third section, we explain how an ANN can be 

trained to calculate the Euler number of a 4-connected binary image, based on its VCC representation. Section 

fourth and fifth test the performance of the trained neuron to estimate the Euler number of 2-D images with 
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images of different sizes and complexities. Section sixth, finally concludes and states the directions for future 

work. 

 

1.5 Organization of the Paper 
 

The rest of the paper is organized as follows. In the second section, we provide the background and definitions 

necessary to follow the lecture of the rest of the document. In the third section, we explain how an ANN can be 

trained to calculate the Euler number of a 4-connected binary image, based on its VCC representation. Section 

fourth and fifth test the performance of the trained neuron to estimate the Euler number of 2-D images with 

images of different sizes and complexities. Section sixth, finally concludes and states the directions for future 

work. 

 

2 Background and definitions 
 

In this section, we present a set of definitions necessary to understand the rest of the paper. In the content of 

this work, we assume objects are composed of only square pixels. 

 

Definition 1 [25]. A binary shape 𝑆𝑛 is a 𝑘-connected region composed of n square cells. In the case of square 

cells, Sn can be 4-connected or 8-connected. 

 

As an example, the image shown in Figure 1 has three 4-connected objects, one with a hole and composed of 

eight pixels, one formed by nine pixels, and one integrated of four pixels. 

 

There are two ways of connecting pixels: 4-connected, Figure 2a, and 8-connected, Figure 2b. In the content of 

this paper, four connectivity is considered. In other words, if 𝑝 and 𝑞 are any two pixels belonging to the shape 

𝑆𝑛, then 𝑝 and 𝑞 will appear connected by one of their sides. 

 

 
Figure 2. (a) 4-connectivity between pixels 𝑝 and 𝑞. (b) 8-connectivity between pixels 𝑝 and 𝑞. 

 

In this paper, shapes with and without holes will be considered, refer to Figure 1. The contour of a shape is built 

by the exterior contour plus the interior contours derived from holes, if present. According to [51], each exterior 

corner of a contour cell (when it is in direct contact with the background of the shape) can be coded by the 

number of cells it touches at that position. As an example, let us consider Figure 3(a) that depicts a shape 

composed of 10 pixels. Figure 3(b) shows the labelled corners of the shape of Figure 3(a) with the number of 

faces they touch. As shown in Figure 3(b), in the case of contour vertices 𝑉𝐶, only three different corner codes 

can be found: 1, 2 and 3. In this paper, such corners are coded as 𝑉𝐶1, 𝑉𝐶2 and 𝑉𝐶3 , respectively. 

 

Definition 2 [25]. Let 𝑉𝐶 depict the contour of cells of an object and this is equal to 𝑣𝑐 = {𝑁1, 𝑁2, 𝑁3}𝑇; 

where 𝑁1, 𝑁2 and 𝑁3 represent the number of times that 𝑉𝐶1, 𝑉𝐶2 and 𝑉𝐶3 appear in an object, respectively. 

 

As an example, for the shape shown in Figure 3(b): 𝑁1 = 5, 𝑁2 = 8 and 𝑁3 = 1, severally. 

 

It is worth mentioning that if more pixels are appended or deleted from a given shape, numbers 𝑁1, 𝑁2 and 𝑁3 

will change. To appreciate this, let's consider the three examples illustrated in Figures 3(c), 3(d) and 3(e). As 

shown in Figure 3(c) a pixel is deleted. In this case 𝑁1 = 6, 𝑁2 = 6 and 𝑁3 = 3. Now, suppose that the interior 

pixel is deleted as shown in Figure 3(d). If this is the case, as depicted a hole emerges, with 𝑁1 = 5, 𝑁2 = 8 

and 𝑁3 = 5. In short, a pixel is added to the same shape as shown by Figure 3(e), 𝑁1 = 6, 𝑁2 = 8 and 𝑁3 =
2. 
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Figure 3. (a) A shape composed of 10 Pixels. (b) Vertex codes of the contour corners of the shape. (c) Vertex 

codes of the contour vertices when a pixel is removed from the contour of the shape. (d) Vertex codes when a 

hole is generated by removing an interior pixel from the shape. (e) Vertex codes of the contour vertices when 

a pixel is 4-connected to the exterior contour of the shape. 

 

To end up this section, the equation that allows computing the Euler number of a 2-D binary image in terms of 

variables 𝑁1 and 𝑁3, reported in [25], is stated as follows: 

 

Theorem 1 [25]. The Euler number 𝐸 of a 2-D a binary image composed of 𝑂 shapes and 𝐻 holes is always 

given as follows: 

𝐸 =
𝑁1 − 𝑁3

4
 

(2) 

 

3 The Proposal 
 

In this section, we describe the proposed methodology for training an ANN to accurately estimate the Euler 

number of a 2-D binary image. The methodology comprises three phases as follows: 

 

1. Image encoding. Given a set of 2-D binary images 𝐼 = {𝐼1, 𝐼2, . . . , 𝐼𝑝} and their corresponding Euler 

numbers 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑝}, map the set of images 𝐼 into their corresponding Vertex Chain Codes 

𝑉 = {𝑣𝑐1, 𝑣𝑐2, . . . , 𝑣𝑐𝑝}, where 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇. 

2. ANN training. Train a linear neural using 𝑘 pairs: {𝑣𝑐𝑖 , 𝐸𝑖} with 𝑖 = 1,2, . . . , 𝑘. 

3. Euler number computation. Take any binary image 𝐼𝑖 of size 𝑚 ×  𝑛, transform it into its vector 

𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇 and obtain its corresponding Euler number 𝐸 through the trained ANN. 

 

Next, each of these steps are explained in detail. 

 

3.1 Image encoding 

 

Taking into account the material provided in Section 2, and as explained before, any 2-D binary image 𝐼(𝑥, 𝑦) 

of size 𝑚 ×  𝑛 and composed of 𝑂 objects and 𝐻 holes, can be represented as a vector 𝑣𝑐 integrated by three 

components. As an example, let's consider the 8 × 8 image with three objects shown in Figure 4. For this image, 

𝑣𝑐 = {14,21,6}𝑇 . According to Equation (2), for this image, 𝐸 =
14−6

4
= 2, as desired. 

 

To map a binary image 𝐼𝑖(𝑥, 𝑦) into its corresponding code 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇, we apply the set of rules 

shown in Table 1. As illustrated in Figure 5(a), pixel 𝑝(𝑥, 𝑦) is taken as reference, then pixels 𝑝(𝑥 − 1, 𝑦), 𝑝(𝑥 −
1, 𝑦 − 1) and 𝑝(𝑥, 𝑦 − 1) are considered to form the 16 rules to map an image into its corresponding codes. As 

an example, consider the configurations shown in Figure 5(b) and Figure 5(c), respectively. For the example 
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shown in Figure 5(b), 𝑝(𝑥, 𝑦) = 1, 𝑝(𝑥 − 1, 𝑦) = 0, 𝑝(𝑥 − 1, 𝑦 − 1) = 0 and 𝑝(𝑥, 𝑦 − 1) = 0, thus, 

according to Table 1. 

 

 
Figure 4. An 8 × 8 binary image with three 4-connected shapes, one of them with a hole. 

 

 
Figure 5. (a) Pixel values 𝑝(𝑥, 𝑦), 𝑝(𝑥 − 1, 𝑦), 𝑝(𝑥 − 1, 𝑦 − 1) and 𝑝(𝑥, 𝑦 − 1) to establish the set of rules 

to map image 𝐼𝑖(𝑥, 𝑦) into its code 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇. (b) Example where rule 9 is applied for 

incrementing variable 𝑁1. (c) An example where rule 8 is applied for incrementing variable 𝑁3. 

 
Rule number Rule 

1 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then do nothing 

2 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁1 = 𝑁1 + 1 

3 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁1 = 𝑁1 + 1 

4 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁2 = 𝑁2 + 1 

5 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁1 = 𝑁1 + 1 

6 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then do nothing 

7 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁2 = 𝑁2 + 1 

8 𝐼𝑓 𝑝(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁3 = 𝑁3 + 1 

9 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁1 = 𝑁1 + 1 

10 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁2 = 𝑁2 + 1 

11 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then do nothing 

12 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 0 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁3 = 𝑁3 + 1 

13 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁2 = 𝑁2 + 1 

14 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 0 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then 𝑁3 = 𝑁3 + 1 

15 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 0 then 𝑁3 = 𝑁3 + 1 

16 𝐼𝑓 𝑝(𝑥, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦) = 1 𝑎𝑛𝑑 𝑝(𝑥 − 1, 𝑦 − 1) = 1 𝑎𝑛𝑑 𝑝(𝑥, 𝑦 − 1) = 1 then do nothing 

 

Table 1. Set of rules to map binary image 𝐼𝑖(𝑥, 𝑦) into its corresponding code 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇. 
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Number 

of images 

Number of 

epochs 
𝑤1 𝑤2 𝑤3 Error 

20 697 0.2517 0.0014 -0.2441 0.0171 

40 156 0.2417 -0.0107 -0.2618 0.0613 

60 122 0.2537 0.0040 -0.2463 0.0315 

80 92 0.2554 0.0042 -0.2472 0.0257 

100 76 0.2551 0.0039 -0.2468 0.0230 

300 48 0.2495 1.0E-06 -0.2499 0.0065 

 

Table 2. Estimated weight values by the linear neuron in estimating the Euler of a 2-D binary image with 20, 

40, 60, 80, 100 and 300 images. 

 

 

3.2 ANN training 

 

We automatically generated 300 7 ×  7 4-connected images with a different number of objects with and 

without holes. These 300 images were next transformed into their corresponding codes 𝑉 = {𝑣𝑐1, 𝑣𝑐2, . . . , 𝑣𝑐𝑝}, 

where 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇 and 𝑖 = 1,2, . . . ,300 with their corresponding Euler number. After this, we trained 

a linear perceptron with three inputs as depicted in Figure 6(a). Surprisingly, this very simple ANN sufficed to 

solve the problem. We first, trained the linear perceptron with 20 images selected at random. We repeated the 

training process with 40 images, 60, 80, 100 and 300. In all cases, an Adam optimizer was used. Table 2 depicts 

the results.  

 

As can be appreciated in all 6 cases, the linear neuron tends to the same three values: 0.25 for weight 𝑤1, 0.0 

for weight 𝑤2 and −0.25 for weight 𝑤3. Also note that as the number of samples increases, the number of 

iterations diminishes. In all five cases, the processing time maintains almost the same. Row 7 demonstrates that 

if the number of samples is increased, the approximation to the desired weights is closer. 

 

Now take Equation (2) and express it as follows: 

 

𝐸 = 0.25𝑁1 − 0.25𝑁3 (3) 

 

 
Figure 6. (a) Artificial Neural Network trained to estimate the Euler number of a 2-D binary image. 

 

3.3 Euler number estimation 

 

Given an image 𝐼𝑖(𝑥, 𝑦), transform it to its corresponding code 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇. Take this code and present 

it to the trained neuron to estimate the Euler number. 

 

As a numerical example, let us take the image shown in Figure 4. For this image, we already know that =
{14,21,6}𝑇 . From Table 2, row six, 𝐸 = 0.2551 × 14 + 0.0039 × 21 − 0.2468 × 6 = 2.1725, which is close 

to desired value of 2. 

 

Note how expected, the trained neuron arrived to accurately approximate the desired function to compute the 

Euler number of a 2-D binary image. Furthermore, the ANN weighted and selected the most important weights. 
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4 Results with Images of Different Sizes and Complexities 
 

In this section, we test the performance of the trained neuron to estimate the Euler number of 2-D images. For 

this, we first approximated the three obtained weights to 0.25, 0.0 and −0.25, respectively. We did this because 

the obtained weights tend to these values. 

 

We describe two experiments. In the first experiment, we used the four images shown in Figure 7 with 3, 4, 5 

and 6 shapes, respectively. In the second case, we used three sets of images of the same object under different 

image transformations, Figure 8. The idea, in this case, was to test the invariance of the estimated value of the 

Euler number of an image when applying the neuron under image transformations on the same object. 

 

Tables 3 and 4 summarize the results. As the reader can rapidly appreciate, in all cases the desired Euler number 

for all images have been obtained as desired. 

 

    
 

Figure 7. Binary images of 320 × 240 pixels with a different number of objects were used to test the 

performance of the trained neuron. 

 

    

    

    
 

Figure 8. Binary images of 320 × 240 pixels with one object subjected to different image transformations to 

test the performance of the trained neuron to estimate the Euler number of a 2-D binary image. 

 

In the second experiment, one may wonder why when the trained neuron is applied to each of the three 

sequences of images shown in Figure 8 outputs the same result. This could be explained as follows. Suppose 

we have a binary image 𝐼1 with 𝑂 objects and 𝐻 holes. Then, 𝐼1 is transformed into image 𝐼2 by applying an 

image transformation 𝑇 as follows 𝐼2 = 𝑇(𝐼1). 𝑇 could be any image transformation: translation, rotation, scale 

change, affine or projection, even a combination of several of them. The corresponding representations of these 

two images are 𝑣𝑐1 and 𝑣𝑐2, respectively. Of course, due 𝑇, 𝑣𝑐1 ≠ 𝑣𝑐2. However, as depicted in Table 3, the 

output of the neuron in the three examples shown, is the same. 
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Image 

    
Estimated Euler number -6 +1 -9 -18 

Desired Euler number -6 +1 -9 -18 

 

Table 3. Estimated Euler numbers by the trained neuron over images of Figure 7. 

 

When we feed 𝑣𝑐1 and 𝑣𝑐2 to the trained neuron, we obtain 𝐸1 = 𝑤1𝑥11 + 𝑤2𝑥12 + 𝑤3𝑥13 + 𝑤4 and 𝐸2 =
𝑤1𝑥21 + 𝑤2𝑥22 + 𝑤3𝑥23 + 𝑤4, respectively. If we take out the elements that do not contribute the computations 

as suggested in Table 2, we have that 𝐸1 = 0.25𝑥11 − 0.25𝑥13 and 𝐸2 = 0.25𝑥21 − 0.25𝑥23, respectively. So, 

it is necessary that 0.25𝑥11 − 0.25𝑥13 = 0.25𝑥21 − 0.25𝑥23, that coincides with Equation (3). 

 

As an example, let us take the third sequence of four images shown in Figure 3, with the two more 

representatives VCs. For these four images we have that: 

 

𝑣𝑐1 = (564,486,588)𝑇 , 𝑣𝑐2 = (127,1132,151)𝑇 , 𝑣𝑐3 = (940,250,964)𝑇 , 𝑣𝑐4 = (48,516,72)𝑇  
 

With 𝑣𝑐𝑖 = {𝑁1, 𝑁2, 𝑁3}𝑇. This discussion can be formally stated as follows: 

 

Proposition 1. The Euler number calculated by the trained neuron in terms of the 𝑉𝐶 of any transformed binary 

image 𝐼2 = 𝑇(𝐼1) is the same, this is 𝐸2 = 𝐸1.  

 

Proof: 

 

Basis: For the first and fourth image of the third row of Table 4, 𝐸 = −6 in both cases. The corresponding 𝑉𝐶s 

from each of these two images are 𝑣𝑐1 = (564,486,588)𝑇 and 𝑣𝑐2 = (127,1132,151)𝑇, respectively. By using 

the trained neuron, we obtain that 0.25 × 564 + 0 − 0.25 × 588 = 0.25 × 127 + 0 − 0.25 × 151, which is 

true because both images have the same Euler number of −6. 

 

Induction step: Let 𝐼1 be a binary 4-connected object with 𝑂 objects and 𝐻 holes and 𝐼2 = 𝑇(𝐼1) its transformed 

version trough image transformation 𝑇, 𝑉𝐶1 and 𝑉𝐶2 their two corresponding 𝑉𝐶 representations. So 𝐸1 =
𝑤1𝑥11 + 𝑤2𝑥12 + 𝑤3𝑥13 + 𝑤4 and 𝐸2 = 𝑤1𝑥21 + 𝑤2𝑥22 + 𝑤3𝑥23 + 𝑤4 the output of the trained neuron. If 

𝐸1 = 𝐸2, then 𝑥11 − 𝑥13 = 𝑥21 − 𝑥23. 

 
Image 

    
Estimated Euler number +1 +1 +1 +1 

Desired Euler number +1 +1 +1 +1 

Image 

    
Estimated Euler number -4 -4 -4 -4 

Desired Euler number -4 -4 -4 -4 

Image 

    
Estimated Euler number -6 -6 -6 -6 

Desired Euler number -6 -6 -6 -6 

 

Table 4. Estimated Euler numbers by the trained neuron over images of Figure 8. 
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5 Results with Real Objects 
 

In this section, we present results with real objects. For this, we use the six images depicted in Table 5. We 

applied the trained neuron shown in Figure 6(a) with the weights obtained when using 300 images 

{0.2495,0.0, −0.2499} to these six images and obtained the Euler numbers shown in rows 4 and 8 of Table 5. 

Note that estimated values approach the theoretical values obtained using Equations (2) or (3). 

 
 

   
Name Cell 01 Cell 02 Cell 03 

𝑁1, 𝑁2, 𝑁3 2168, 4002, 2084 2964, 6448, 2852 5828, 10436, 5408 

Calculated 𝐸 

by the linear 
perceptron 

21 28 105 

 

   
Name Bone 01 Osteoporosis 01 Cheese 01 

𝑁1, 𝑁2, 𝑁3 1963, 2970, 1691 2585, 5290, 2473 847, 1628, 819 

Calculated 𝐸 
by the linear 

perceptron 

68 28 7 

 

Table 5. Real images of 640 ×  480 pixels were used to test the performance of the trained neuron. 

 

6 Conclusions and Future Work 
 

In this section, we present the conclusions to which we have arrived at the end of this research. We also talk 

about future trends that emanate from this investigation: 

 

1. We have shown that a very simple machine, a linear perceptron, can be used to approximate with 

precision the function to estimate the Euler number of a 2-D image and the number of holes of an object. 

In both cases, the 𝑉𝐶 of the 2-D image, object, is used. This is so important because the described 

procedure, training a linear perceptron to find the most relevant features, could be used to solve other 

combinatorial problems with possibly hundreds of variables. 

2. The estimated value obtained by the trained machines is very precise, regardless of the number of objects 

and holes in the image. 

3. As future work, we propose training an artificial neural network to estimate the Euler number of a binary 

image but in the 3-D case. In this case, we will use 𝑉𝐶 for voxels. 
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