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Abstract. Dendrite neurons are an alternative for 

classification tasks, providing competitive results when 

compared to typical classification methods. Dendrite 

networks allow each dendrite to build a close boundary to 

assign each incoming pattern xi  =  (x1, x2, . . . , xn)T to its 

respective class. Hyperboxes, hyperellipsoids and 

hyperspheres are novel ways for dendrite computing. In this 

research we test these models and some hybrid variances 

trained by stochastic gradient descent. Results show that 

hyperellipsoidal neurons work well as classifiers with low-

dimensional tasks, while hyperspherical neurons score 

better than the others in the case of image processing. 

However, when hybridizing, hyperboxes show poor results 

but hyperellipsoid and hyperspheres obtain even better 

results than two layer prerceptrons for many datasets. 
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1 Introduction 

 
Many techniques for solving classification problems have been reported in literature. Among them are: 

classification trees, logistic regression, discriminant analysis, neural networks, random forests, nearest 

neighbors, support vector machines, and so on. The main goal is to associate an input pattern xi =
 (x1, x2, … , xn)T  to their corresponding class  𝐶𝑖 =  {C1, C2, … , Cn} by means of a mathematical function 𝑓: 𝑥𝑖 →
𝐶𝑖.  

 

Different kinds of artificial neural networks (ANN) have been used for  classification problems. The perceptron 

[1, 30] is used since many years ago to classify patterns by dividing the feature space into hyperplanes. Stacking 

perceptrons, layer after layer, known as a multi-layer perceptron (MLP) can be used to approximate any function 

[2]. Training of this kind of machines is often based on gradient descent and back-propagation [3].  

 

Dendrite neural networks [4, 18, 17] are an alternative approach to separate input data by employing closed 

boundaries such as hyperboxes, hyperellipsoids, and hyperspheres. These specialized ANN tend to solve non-

convex problems without hidden layers [7].  
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The main purpose of this research is to evaluate the performance of three different dendrite neurons: Dendrite 

Morphological Neurons (DMN), Dendrite Ellipsoidal Neurons (DEN), and Dendrite Spherical Neurons (DSN) 

as classifiers trained by stochastic gradient descent (SGD) with random initialization.  

 

The rest of the paper is organized as follows. Section 2 provides a summary of the works that use these dendrite 

neural networks. Section 3 describes the architectures of DMN, DEN and DSN chronologically. Section 4 

discusses the experimental results. Finally, in Section 5, we present our conclusions and provide  

recommendations. 

 

2 Related Work 

 
In this section, we present different neural networks with max, min operation and closed decision boundaries 

like: stand alone DMN, DEN and DSN; hybrid architectures morphological/rank/neural network, linear 

morphological neural network and morphological linear neural network, that have been proposed in the 

literature over the last years and some of their applications.  

 
Among ANN architectures, we focus on those that make use of dendritic processing such as morphological 

neurons [4,5] and [8] models that are based on lattice algebra [6] as an alternative to the classical perceptron.  

 

Lattice-based models combine operations such as max, min, addition, and subtraction. Furthermore, there are 

many hybrid architectures that merge morphological neurons with linear units as described in [19] by Hernandez 

et al.. In this paper, authors first use a layer of a DMN as a middle layer connected to an MLP, they then invert 

the order. Moreover, Pessoas and Margos [15] present a morphological/rank/linear network, while Araújo 

proposes a hybrid morphological-linear perceptron [16].  

 

As an alternative to DMN, Arce et al. [18] proposed changing the form of the hyperbox to obtain a smoother 

decision boundary by using the hyperellipsoid, authors use well-known Mahalanobis distance to determine if 

an input pattern belongs to a certain class or not. Each hyperellipsoid is generated by one dendrite that uses a 

centroid and covariance matrix. Arce et al. performed some tests for solving different classification problems, 

their results reported competitive when compared to other state-of-the-art classifiers [29] and [18].  

 

Inspired by DEN, in [17], authors simplified the hyperellipsoid to attain a hypersphere to create a model called 

Dendrite Spherical Neuron (DSN). In this case, the covariance matrix is replaced by a radius with which the 

number of the parameters for dendrites can be reduced. Apart from an MLP, dendritic neurons present 

competitive results in pattern classification in different applications, some of which are used for motor task 

recognition from electroencephalographic signals [31], 3D object recognition [32], retinal vessel extraction 

[34], and Parkinson detection of speech signals [35] and as a facial detector for determine asymmetry level in 

cleft lip children [33]. Other applications can be found in [12,13,16,15]. Formerly, dendrite neurons were 

initialized by different methods such as HpC, dHpC, D&C, k-means, hill-climbing algorithm, simulated 

annealing, among others [17,20,21,22,24,10,11] and various other training methods [20,21,11,23].  

 

In this paper, neurons are trained by SGD with random initialization for evaluating which of these neurons 

perform better under these conditions; thus, it can be also used in future research works. 

 

3 Neural Models and Methods 

 
In this section, we present a brief description of the three dendritic neural models and their decision boundaries: 

Dendrite Morphological Neuron (DMN) which classifies an input pattern by enclosing patterns inside of a 

hyperbox, Dendrite Ellipsoidal Neuron (DEN) which classifies an input pattern by enclosing patterns inside of 

a hyperellipsoid and Dendrite Spherical Neuron (DSN) which classifies an input pattern by enclosing patterns 

inside of a hypersphere. Additionaly, we describe a multi-layer perceptron. 
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3.1 Dendrite Morphological Neuron 

 
Dendrite Morphological Neuron (DMN) segments the input space into hyperboxes of 𝑁 dimensions where 𝑁 ∈
𝐼+. After processing the data, the output 𝑑𝑐(𝑥) is given by the following equations: 

 

𝑑𝑐(𝑥) = argmax
𝑐

(ℎ𝑘,𝑐 (𝑥)) 

 

(1) 

ℎ𝑘,𝑐(𝑥) = min
2

(min
𝑁

(𝑥𝑖 − 𝑤𝑚𝑖𝑛
  , 𝑤𝑚𝑎𝑥

  − 𝑥𝑖)  ) , 𝑖 = {0,1,2, … 𝑛} 
(2) 

 

Here, ℎ𝑘,𝑐(𝑥) is the output of a dendrite, 𝑘 indicates a specific dendrite and 𝑘 ∈ 𝐼+, 𝑐 represents the class and 

𝑐 ∈ 𝐼+ , 𝑥 is an input vector and 𝑥 ∈ 𝑁 , 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥  are the weight vectors that represent the opposite 

vertices of the hyperbox, both 𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 ∈ 𝑁 . The inner  min operator in Equation (2) gets the minimum 

value of the  vectors of 𝑥 − 𝑤𝑚𝑖𝑛 and  gets the minimum value of the  vectors of 𝑤𝑚𝑎𝑥 − 𝑥;   the outer min gets 

the minimum value of the pair values gets from de inner min. Whether an input 𝑥 belongs to the class or not, If 

ℎ𝑘,𝑐  >  0, then the input is inside the hyperbox. If  ℎ𝑘,𝑐  =  0, it is over the hyperbox boundary, otherwise, it 

does not belong to the class as it shows Figure 1. 

 

 
Figure 1. (a) Architecture of Dendrite Morphological Neuron. (b) Example of an hyperbox in 2D. 

 

 

3.2 Dendrite Ellipsoidal Neuron 

 
DEN architecture helps classifying patterns by enclosing the data into a close decision boundary, it differs from 

DMN, hyperboxes are substituted by hyperellipsoids. This neuron uses the Mahalanobis distance to determine 

if the output τj belongs to a class or not. For this, refer to the following equations: 

 

𝜏𝑗  =  𝑎𝑟𝑔𝑚𝑖𝑛𝑘(𝜏𝑗
𝑘) (3) 

 

τ𝑘
𝑗

= (𝑥𝑖 − μ𝑘)𝑇 ∑ (𝑥𝑖 − μ𝑘)

               −1

𝑘

 

 

(4) 

 

Here, 𝜏𝑗
𝑘 is the output of a dendrite, µk is a mean vector, and ∑  𝑘  is a covariance matrix and ∑  −1

𝑘 is the inverse 

of the covariance matrix associated with the 𝑘-th cluster, 𝐾 =  1, . . . , 𝑘, and xi is the input pattern. Dendrites in 

DEN, in this case, measure the distance between patterns to hyperellipsoids. A pattern is assigned to the class 

(a) (b) 
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whose dendrite output outputs the minimum value. If ℎ𝑘,𝑐  <  0, then the input is inside the hyperbox; if ℎ𝑘,𝑐  =
 0, it is over the hyperbox boundary. Otherwise, it is declared to be outside of the class as it shows Figure 2. 

 

          
Figure 2. (a) Architecture of Dendrite Ellipsoidal Neuron. (b) Example of an hyperellipsoid in 2D 

 

3.3 Dendrite Spherical Neuron 

 
DSN is a simplification of DEN with respect to the decision boundary generated. In this case, a DSN forms 

hyperspheres for data classification. To do so, it compares the distance of every input data to the center of the 

hypersphere against its radius, by means of the following equations: 

 

𝑑𝑗(𝑥) =  𝑚𝑎𝑥 (ℎ𝑖,𝑗(𝑥)) , 𝑖 =  1, . . . 𝑙𝑗   (5) 

 

ℎ𝑖,𝑗(𝑥) =  𝑟𝑖,𝑗  − ‖𝑥 − 𝑐𝑖,𝑗‖
2

 
(6)  

 

Here, ||∗|| is the Euclidean norm. 𝑐𝑖,𝑗 ∈ ℝD is the centroid of the dendrite, and 𝑟 is the radius. ℎ𝑖,𝑗(𝑥) represents 

the response of the dendrite. If  ℎ𝑖,𝑗(𝑥)  <  0 we say that the input does not belong to the class. However, a 

number greater than zero is obtained, it means that the pattern is inside the hypersphere; thus, we say that this 

patterns belongs to the class. In the third scenario is when the pattern is on the boundary, thus ℎ𝑖,𝑗(𝑥)  =  0. 

Moreover, ℎ𝑖,𝑗(𝑥) is the output of the 𝑖-th dendrite for the 𝑗-th class; this value goes into a max function to get 

dj that is the output of the 𝑗-th dendrite cluster as it shows Figure 3. 

 

  
Figure 3. (a) Architecture of Dendrite Spherical Neuron. (b) Example of an hyperspheres in 2D 

(a) (b) 

(a) 

(b) 
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3.4 Multi-Layer Perceptron 

 
An MLP is a widely studied model for solving multiple classification problems. The MLP architecture is 

composed by an input layer, with one or more neurons in parallel, followed by one or more hidden layers in the 

middle composed of perceptrons, and an output layer. The output of each layer ym is computed as follows: 

 

𝑦𝑚 = 𝑓(𝑊𝑚𝑦𝑚−1 + 𝑏𝑚) (7) 

 

Here, 𝑦𝑚 is the output vector of the 𝑚 layer for 𝑚 =  1,2,3. . . 𝑀, 𝑊𝑚 is the weight matrix, 𝑏𝑚 is the bias vector, 

and 𝑓 is an activation function that could be a sigmoid, a tanh, a ReLU, among other functions. 

 

4 Experimental Results 

 
In this section, we present different experiments to test the performance of dendrite neurons with random 

initialization and SGD training instead of the different training methods proposed in literature like HpC, DHpC, 

D&C, and k-means, we tested both stand alone units and hybrid units for low dimensionality problems with a 

short training dataset (UCI real problem datasets) and high dimensionality problems with large training dataset 

(Image datasets: Fashion-Mnist, CIFAR10 and CIFAR100). 

 
Four classification experiments have been used. The first two were taken from the UCI datasets; the other two 

are the sets of images used by ResNet50 architecture for feature extraction. The aim of the experiments is to 

evaluate the performance of the described dendrite neurons as classifiers and the hybrid architecture with a 

hidden dendrite layer and a perceptron layer as output.  

 

The experiments were performed on a low-dimensionality problem and image datasets. Each neuron was 

implemented as a layer with Keras library [27] in Python. Every architecture was trained by means of gradient 

descent with a randomized initialization of the weights. Also as a reference, all proposals were compared with 

a two-layer perceptron (TLP) and a single layer perceptron (P) as benchmarks to maintain the same depth of 

the classifier. The hyper-parameters and a set of learning parameters that have been used to perform the test 

and reported in this paper were the ones to present better results among different chosen manual configurations. 

 

We performed manual and iterative tuning for each hyperparameter for every model and every dataset. The 

activation function was chosen from: tanh, ReLU and Sigmoid; the learning rate was chosen from: 0.008, 0.005 

and 0.001 and the number of dendrites varies from five to five to reach a hundred.  We fixed the values of epoch 

in 100, with an adam optimizer and alternate between binary cross-entropy and categorical cross-entropy. 

 

4.1 Datasets 

 
In order to test and measure the classification performance of the three different dendrite neurons, besides the 

TLP and a simple perceptron layer (all of them have been described in section 3), a total of 10 real-world 

datasets obtained from the Machine Learning Repository of the UCI [28] were considered for the first and 

second experiments. The characteristics of these 10 databases are listed in Table 1. Besides, three image datasets 

for image classification: Fashion-MNIST [25] -contains 60,000 training images and 10,000 test images of 

fashion and clothing items, taken from 10 classes. Each image is a standardized 28×28 size in grayscale-, 

CIFAR10 -contains 60,000 training images and 10,000 test images of 10 different classes Each images  is 

standardized 32x32 in color.- and CIFAR100 [26] CIFAR10 -contains 50,000 training images and 10,000 test 

images of 100 different classes Each images  is standardized 32x32 in color.-  were used in experiments number 

three and four were also used. 
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Table 1. Real-world datasets with distinct number of classes (𝐶) and dimensionality (𝐷). The number of patterns 

is 𝑁. 

 

Dataset N C D 

Breast cancer Wisconsin  569 2 30 

Glass identification 214 6 10 

Heart disease Cleveland 297 2 13 

Hepatitis 112 2 18 

Iris data 150 3 4 

Page blocks  5409 5 10 

Pima Indians diabetes  768 2 8 

Seeds  199 3 7 

Thyroid gland data  215 3 5 

Wine recognition data  178 3 13 

 

4.2 Experiment 1 

 
The proposed architecture for the first experiment is a two-layer network composed by a TLP, two-layer DMN 

(TLDMN), two-layer DEN (TLDEN) and two-layer DSN (TLDSN). Due to the low number of data the  

accuracy percentage reported in Table 2 was calculated by appliying ten-fold cross validation, leaving one 

different fold out for testing while 9 folds are used to train. Finally, we calculate an average of the ten different 

test segments. As can be seen, the TLP architecture outperforms the other morphological units in every dataset, 

except for one where TLDEN overcomes it by almost three percentage points. However, when comparing both, 

it seems that TLDEN shows a better classification performance when SGD is used training. According to the 

mean of each model, TLP persists as the better-performing model by more than 20 percentage points with 

respect to TLDEN. Besides, either TLP or TLDEN shows good consistency with almost five percent of standard 

deviation. As stated by the data in Table 2, none of the morphological units trained by SGD is comparable with 

TLP in terms of accuracy, except DEN at page block dataset experiment where the latter was superior by two 

percentage points. Besides, as can be appreciated, (DEN) provided the best performance among dendritic-based 

neurons. We performed a t-test to validate the statistical significance of results obtained in each dataset. In most 

of the cases TLP and TLDEN shows p-values<0.05 with respect to the other classifiers, while TLDMN and 

TLDSN shows p-values>0.05. Table 2 (c) shows the results for the Breast Cancer Wisconsin dataset.  

 

Table 2. (a)Accuracy of experimental results for TLP, TLDMN, TLDEN TLDSN classifier with cross 

validation 𝑘 = 10. The best results are highlighted in bold. (b) Number of dendrites for each model. (c) T-tes 

results for the Breast Cancer Wisconsin dataset. 

 

(a) 

Dataset 

 

TLP % TLDMN % TLDEN % TLDSN % 

Breast cancer Wisconsin 96.66    ±2.27 74.80    ±8. 70 79.08    ±3.70 62.76     ±7.31 

Glass identification 79.43   ±5.78 35.58     ±6.02 44.44   ± 8. 36 35.52   ±12.10 

Heart disease Cleveland 88.13   ±4.67 54.50     ±5.97 76.88    ± 4.09 54.51     ±8.84 

Hepatitis 90.95   ±8.60 81.82     ±8.40 95.07   ±3.62 81.82   ±11.43 

Iris data 98.00   ±3.00 58.60   ±11.80 62.66    ± 8.00 96.66     ±3.33 

Page blocks 93.45   ±2.34 89.76    ±1.11 95.66    ± 1.08 89.76     ±1.04 

Pima Indians diabetes 76.29   ±4.78 65.10    ±3.70 67.05    ± 3.93 65.11     ±5.88 

Seeds 91.42   ±4.10 22.85    ±6.31 30.00    ± 5.23 29.04     ±6.88 

Thyroid gland data 98.59   ±2.14 69.84   ±10.73 84.69    ± 2.71 70.00   ±12.45 

Wine recognition data 91.47   ±9.90 33.00   ±11.72 51.07    ±7.69 40.09   ±12.81 

Mean 90.43   ±4.75 58.57     ±7.36 68.66    ±4.84 62.52     ±8.20 
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(b) 

 MLP MNN DEN DSN 

Breast cancer Wisconsin 64 30 80 40 

Glass identification 100 5 95 50 

Heart disease Cleveland 15 90 95 90 

Hepatitis 100 75 95 80 

Iris data 10 80 35 80 

Page blocks 25 40 85 40 

Pima Indians diabetes 50 10 100 95 

Seeds 60 40 95 35 

Thyroid gland data 30 100 30 35 

Wine recognition data 20 20 95 35 

 
(c) 

 MLP MNN DEN DSN 

MLP 1 
4.56e-09 

 

5.87e-15 

 

1.07e-07 

 

MNN 
4.56e-09 

 
1 

3.29e-07 

 

0.996 

 

DEN 
5.87e-15 

 

3.29e-07 

 
1 

2.98e-06 

 

DSN 
1.07e-07 

 

0.99 

 

2.98e-06 

 
1 

 

4.3 Experiment 2 

 
For the second experiment reported in Tables 3 and 4, we introduce and evaluate three hybrid models with two 

layers. First in Table 3 the hidden layer of morphological with DMN, DEN, and DSN architectures for each 

model, and as output layer a classical perceptron layer for classification. In the other hand, in Table 4 the hidden 

layer has perceptrons while the morphological units form the output layer. As in the first experiment, 

performance of the different proposals were measured by ten-fold cross-validation leaving one different 

segment out for testing while 9 segmets are used to train, finally we calculate an average of the ten different 

test segments. The same data were used to evaluate the hybrid architectures We performed a t-test to validate 

the statistical significance of results obtained in each dataset. In most of the results of the t-test does not shows 

significant statistical difference according to the values of  p-value>0.05.  Table 3 (c)  shows the results for the 

Pima Indians diabetes dataset. 

 

Table 3. Accuracy of experimental results for hybrid classifiers with DMN, DEN and DSN as middle layer and 

perceptron P as output layer with cross validation 𝑘 = 10. The best results are highlighted in bold. (b) Number 

of dendrites for each model. (c) T-tes results for the Pima Indians diabetes dataset. 

(a) 

Dataset  DMN-P %  DEN-P %  DSN-P % 

Breast cancer Wisconsin  94.90      ±3.88  90.68      ±4.00  62.72      ±4.96 

Glass identification  36.50      ±6.37  41.11      ±5.77  35.99      ±3.85 

Heart disease Cleveland  57.40      ±3.39  69.64      ±5.79  54.43      ±9.71 

Hepatitis  81.79      ±7.17  91.55   ±1.70  81.84      ±10.44 

Iris data  96.00      ±7.99  65.33     ±9.79  97.33      ±3.26 

Page blocks  91.60      ±1.44  95.19     ±1.20  89.76      ±0.92 

Pima Indians diabetes  65.11      ±5.96  62.23     ±5.01  65.11      ±3.62 

Seeds  30.42    ±10.44  26.66     ±7.73  26.19      ±6.19 

Thyroid gland data  69.71     ±9.20  80.40     ±6.90  69.82     ±13.39 

Wine recognition data  39.80     ±8.50  62.32   ±13.90  39.90     ±10.40 

Mean  66.32     ±6.43 68.51    ±6.17 62.30       ±6.67 
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(b) 

 DNN_P DEN_P DSN_P 

Breast cancer Wisconsin  10 85 70 

Glass identification  85 65 60 

Heart disease Cleveland  20 100 45 

Hepatitis  45 95 20 

Iris data  45 10 90 

Page blocks  40 75 75 

Pima Indians diabetes  70 75 45 

Seeds  30 75 60 

Thyroid gland data  15 30 5 

Wine recognition data  60 65 50 

 

(c) 

 MNN_P DEN_P DSN_P 

MNN_P 1 0.08 0.99 

DEN_P 0.08 1 0.08 

DSN_P 0.99 0.08 1 

 

Table 3 shows an increment in some of the accuracy percentages. Besides, it seems that they have a competitive 

score between them but still below the percentage of TLP. Again, DEN overcomes DMN and DSN in six of the 

datasets, the performance is close for every dataset with slightly better performance score. As can be 

appreciated, when using morphological units in the output layers, the classifiers reach competitive results whit 

some scores better than a TLP. 

 

On the other hand, as can seen from Table 4, the best result was obtained with a layer of perceptrons is used as 

a hiden layer and DEN is used as the output. We performed a t-test to validate the statistical significance of 

results obtained in each dataset. In most of the results of the t-test shows significant statistical difference 

according to the values of  p-value<0.05.  Table 3 (c)  shows the results for the Glass identification dataset. 

 

Table 4. Accuracy of experimental results for hybrid classifiers with a layer of perceptrons P in the middle 

layer and  DMN, DEN or DSN as output layer with cross validation 𝑘 = 10. The best results are highlighted in 

bold. (b) Number of dendrites for each model. (c) T-tes results for the Glass identification dataset. 

(a) 

Dataset  P-DMN %  P- DEN %  P- DSN % 

Breast cancer Wisconsin  97.01     ±1.76 98.42     ±1.65 97.32     ±2.74 

Glass identification  73.36     ±7.28 70.56     ±4.97 87.87     ±3.01 

Heart disease Cleveland  86.79     ±5.58 89.10     ±2.31  89.44     ±4.08 

Hepatitis  88.71     ±4.76 95.73     ±2.67 96.50     ±2.18 

Iris data  97.99     ±2.66 98.66     ±1.63 97.26     ±1.13 

Page blocks  94.60     ±0.32 95.06     ±0.86 96.12     ±0.30 

Pima Indians diabetes  76.04     ±3.80 97.13     ±1.39 83.33     ±2.36 

Seeds  92.85     ±3.01 95.71     ±0.95 93.33     ±3.15 

Thyroid gland data     98.13     ±0.93 100.00   ±0.00 99.06     ±1.13 

Wine recognition data  71.36     ±5.87 97.19     ± 3.04 94.93     ±2.13 

Mean  87.68     ±3.59     93.75     ±1.94 93.65     ±2.27 
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(b) 

 P-MNN P-DEN P-DSN 

Breast cancer Wisconsin  60 70 35 

Glass identification  95 70 85 

Heart disease Cleveland  90 85 90 

Hepatitis  90 40 20 

Iris data  20 5 5 

Page blocks  30 95 100 

Pima Indians diabetes  70 85 95 

Seeds  35 5 35 

Thyroid gland data  80 10 40 

Wine recognition data  95 85 60 

 

 

 

(c) 

 P_MNN P_DEN P_DSN 

P_MNN 1 6.87e-08 0.01 

P_DEN 6.87e-08 1 1.27e-10 

P_DSN 0.01 1.27e-10 1 

 

 

 

4.4 Experiment 3 

 
The third experiment consisted of a feature extraction stage, which is performed by a ResNet-50 plus a dendrite 

classifier, whereas, in the first experiments, the TLP model was clearly dominant, this time, the best 

classification score was reached by DSN with a 91.49%, 75.22% and 41.47% for Fashion-MNIST, CIFAR10, 

and CIFAR100 datasets, respectively as depicted in Table 5.  

 

It is worth mentioning that for the DEN classifier, it was necessary to reduce the dimensionality of the feature 

vector due to the requirement of a high number of parameters. Thus, we proposed two different options: firstly, 

by using an extra convolutional layer, and secondly, by using a perceptron layer. In the both cases, the accuracy 

was competitive for Fashion-MNIST and CIFAR10, but not for CIFAR100, where the score is far below the 

results reported for DSN. 

 

Table 5. Accuracy of experimental results over image datasets with ResNet-50 as feature extraction and 

perceptron (P), morphological neuron (DMN), ellipsoidal neuron (DEN) and spherical neuron (DSN) as 

classifier. The best results are highlighted in bold. 

 

 

  Fashion-

MNIST % 

CIFAR-10 

% 

CIFAR-100 

% 

Mean % 

ResNet-50 + P  90.90 73.19 37.43 67.17 

ResNet-50 + DMN  90.71 72.04 30.18 64.31 

ResNet-50 + conv + DEN  90.89 72.74 27.21 63.61 

ResNet-50 + P + DEN  91.43 72.32 36.48 66.74 

ResNet-50 + DSN  91.49 75.22 41.47 69.39 
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4.5 Experiment 4 

 
The last experiment uses the same datasets: Fashion-MNIST, CIFAR10 and CIFAR100. In this experiment, 

feature extraction is performed again with ResNet-50 and then the same hybrid architecture used in experiment 

2. The results depicted in Table 6 show that DEN and DSN perform poorly when classifying images, whereas 

DMN outperforms by far them by obtaining an accuracy scored of 91.13% for Fashion-MNIST, 71.39% for 

CIFAR10, and the lowest score for CIFAR100 at nearly 23.45%. The first two of these results are competitive 

with the other accuracy scores reported in this paper; nonetheless, for CIFAR100, the score is more than 10 

points below most of the scores, as shown in Table 5. In general when using morphological units as final layer 

for image classification shows better performance than its hybrid counter part, with the unit formed by 

perceptron and dendritic spherical neuron with the better scores for this datasets.  

 

Finally, Table 7 the results obtained when ResNet-50 is combined with layer of perceptrons and either DMN, 

DEN or DSN. As can be appreciated from this table, ResNet-50+P+DSN provides the best performance. 

 

Table 6. Accuracy of experimental results over image datasets with ResNet-50 as feature extraction and hybrid 

architecture using morphological neuron (DMN), ellipsoidal neuron (DEN) and spherical neuron (DSN) as 

middle layer and perceptron (P) as output layer. The best results are highlighted in bold. 

 

 Fashion-

MNIST %  

CIFAR-10 

%  

CIFAR-100 

%  

Mean % 

ResNet-50+DMN+P  91.13  71.39  23.45  61.99 

ResNet-50+DEN+P  28.43  18.00  2.40  16.27 

ResNet-50+DSN+P  10.00  10.00  1.00  7.00 

      

Table 7. Accuracy of experimental results over image datasets with ResNet-50 as feature extraction and hybrid 

architecture using morphological neuron (DMN), ellipsoidal neuron (DEN) and spherical neuron (DSN) as final 

layer and perceptron (P) as hidden layer. The best results are highlighted in bold. 

 

 Fashion-

MNIST %  

CIFAR-10 

%  

CIFAR-100 

%  

Mean % 

ResNet-50+P+DMN  89.10 69.88 33.46 64.14 

ResNet-50+P+DEN  84.81 72.25 35.91 64.32 

ResNet-50+P+DSN  91.29 75.22 41.04 69.18 

 

5 Conclusions and Directions for Further Research 

 
We presented an experimental study where different dendritic processing based ANN such as DMN, DEN, and 

DSN for pattern classification, when trained by means of SGD. Furthermore, we proposed and tested four hybrid 

configurations plus others two described in [16] using real-world datasets and images. Standalone dendrite 

neurons trained by SGD seem to perform poorly on low dimensional data, although DSN obtained the best 

scores for image classification. On the other hand, hybrid architectures tend to provide competitive results with 

MLP-based architectures when morphological neurons are at the final layer.  

 

DEN based architectures tend to showcase a reasonably good performance in solving low dimensionality 

problems due to the smooth edges, unlike DMN, and has two axes of different measures, unlike DSN.  

 

Notably, this is not true when tested for images where feature extraction is performed by a deep model such as 

ResNet-50 where dendritic neurons are in the hidden layer and do not generate competitive results. On the other 

hand, when using morphological units as output layer, hybrid units provide competitive scores for image 

classification. In conclusion,  hybrid neurons seem to be an alternative for classification task with morphological 

neurons as output layer, but not when they are used as the hidden layer. The difference in the performance could 

be because of the characteristics of the input data on the classifier stage, even though the first two experiments 

have lower dimensionality, ResNet-50 have proved to obtain better input data for the classifiers. 
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Future works should involve an extended study of dendrite ANN with different initialization algorithms, also 

experiments as a feature extractor on deep models to understand what kind of visual features can be acquired 

from the images. Moreover, the study must be extended with other new architectures such as DMN, as proposed 

in [36], and hybrid morphological/linear perceptron trained by extreme learning machine, as described in [9]. 

Both mentioned that SGD training is feasible. 
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