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Abstract. Here, an interactive method is proposed to incorporate the preferences of the Decision Maker 

(DM) into the optimization process and lead the search towards the Region of Interest (ROI). The DM’s 

preferences are expressed in a reference set and are reflected by an outranking model. This information is 

used by a multi-criteria sorting method to create selective pressure towards solutions that are satisfactory 

to the DM. Our method obtains a better characterization of the ROI when compared with the well known 

NSGA-II and A2-NSGA-III in simple and complex project portfolio problems. 
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1. Introduction 

 
A wide variety of problems in the real world involves several conflicting objectives to be optimized simultaneously under 

certain constraints [1]. As a consequence of the conflicting nature of the criteria, there is no single solution that simultaneously 

optimizes each objective, so most approaches look for a set of trade-off solutions. This type of problem is known in the 

literature as the Multi-objective Optimization Problem (MOP). Solving MOPs means finding the compromise solution that best 

satisfies the preferences of the Decision Maker (DM) [2]. 

 

Multi-objective Evolutionary Algorithms (MOEAs) have been widely used for solving MOPs (e.g. [3, 4]) because they are able 

to provide, as output, an approximation of the Pareto frontier (the non-dominated solutions) in a single run of the algorithm. 

However, as stated by Deb [5] and Fernandez et al. [2], one aspect that is often disregarded in the literature on MOEAs is the 

fact that the solution of a problem involves not only the search but also the decision-making process. That is, finding the Pareto 

frontier does not completely solve the problem; the DM still has to choose the best compromise solution out of that set. This is 

not a difficult task when dealing with problems having two or three objectives. However, as the number of criteria increases, the 

size of the Pareto frontier increases exponentially. Thus, it becomes harder or even impossible for the DM to establish valid 

judgments in order to compare many solutions with several conflicting criteria. Besides, the methods from the field of multi-

criteria decision analysis do not perform well on such large decision problems, making it difficult to obtain a single solution [2].  

 

As was stated by Miller in [6], the capacity of the human mind is restricted to handling a small amount of information at one 

time. This is a very serious obstacle when the DM has to compare a subset of non-dominated solutions to identify the best 

compromise solution in problems with many objectives. Hence, the DM’s cognitive effort would be greatly reduced if the 

MOEA were able to identify the Region of Interest (ROI), the privileged zone of the Pareto frontier that best matches the DM’s 

preferences. The ROI is defined by Deb et al. [7] and Adra et al. [8] as the set of non-dominated solutions that are preferred by 

the DM over the other solutions. In similar terms, the ROI may be defined as a subset of the Pareto front whose elements are 

considered satisfactory by the DM. In order to guide the search towards the ROI, the DM must agree to incorporate his/her 

multi-criteria preferences into the search process.  
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In this paper we propose a method, called the Interactive Multi-Criteria Sorting Genetic Algorithm (I-MCSGA), for 

incorporating the DM’s preferences interactively during the optimization process; the main contributions are summarized below. 

We propose to integrate the DM’s preferences with an MOEA in such a way that they can be incorporated implicitly and 

interactively in the evolutionary optimization algorithm. The preferences are modelled by an outranking paradigm, and also 

embedded in a reference set. A multi-criteria sorting method is used to identify new satisfactory solutions among those 

generated by the evolutionary search. These solutions are used i) to create selective pressure towards the ROI; and ii) to enhance 

the reference set in order to increase its assignment capacity. From time to time, the current satisfactory solutions are shown to 

the DM, who updates the reference set with them. In this way, the DM ‘learns’ progressively about the optimization problem, 

adjusts his/her (initially poorly defined) preferences, and then drives the search towards the ROI. 

 

The rest of the paper is organized as follows. In Section 2 we give an overview of preference-based evolutionary methods, and 

we also describe a multi-criteria sorting method (the THESEUS method). With this background, an interactive approach for 

incorporating preference information, and the implementation of this approach, called I-MCSGA, are detailed in Section 3. In 

Section 4, we present computer experiments used to confirm the advantages of the proposed approach. Finally, some 

conclusions are discussed in Section 5. 

 

2. Background 

 
2.1 A brief outline of preference-based evolutionary approaches    

 
Multi-objective metaheuristic approaches have by now demonstrated their ability to approximate the whole Pareto front; 

however, the number of efficient solutions found is often too large. The selection of one solution (the final preferred alternative) 

from a huge set is evidently a difficult task for the DM, especially when the number of objectives increases [9]. As was 

mentioned above, because of humans’ cognitive limitations, as described by Miller [6], it is essential to provide the DM with a 

reduced number of satisfactory alternatives. The DM is only interested in discovering the zone of the Pareto front corresponding 

to his/her preferences (the ROI), rather than the whole Pareto front. Therefore, information about the DM’s preferences should 

be reflected by a representative model. The modelling of the preferences plays a key role in decision-making [10], since it will 

define the nature and organization of the information. The information about the DM’s preferences can be expressed in diverse 

ways. Bechikh [9] states that the preference information structures most commonly used are the following: weights (e.g. [11, 

12]), ranking solutions (e.g. [13, 14]), ranking objectives (e.g. [15, 16]), reference point (e.g. [7, 17]), reservation point (e.g. 

[18]), trade-off between objectives (e.g. [19]), desirability thresholds (e.g. [20]) and outranking parameters (e.g. [2, 21]). 

 

The method in the recent paper of Oliveira et al. [22] lies in the last of these classes, because the preferences are expressed by an 

outranking relation and preference parameters. Oliveira et al. [22] use the ELECTRE TRI multi-criteria sorting method 

combined with an evolutionary algorithm. In ELECTRE TRI a reference profile is introduced to establish the boundary between 

two consecutive ordered categories. A critical aspect of ELECTRE TRI is defining the reference profiles because frequently is a 

very hard task for the DM, particularly when (s)he has just a vague conception regarding the boundary between adjacent 

categories. The existence of such boundaries is doubtful in many real-world problems (cf. [23, 24]). Besides, one can question 

whether a reference profile is sufficient for an acceptable characterization of the category related to it. If the object to be sorted 

were to be incomparable with several reference profiles, ELECTRE TRI would suggest inappropriate assignments. 

 

The above approaches in evolutionary computation are grouped according to the different information structures used to 

incorporate the DM’s preferences. Another way of classifying these approaches depends on the stage at which the preference 

information is articulated by the DM. According to Hwang and Masud [25], preferences can be requested in several ways: a 

priori, a posteriori and interactively. A brief description of these is given below. 

 

In an a priori approach, the DM’s preferences are articulated before the start of the method; the optimization process is then 

carried out by following the preference information. Afterwards, the optimization method finds the most-preferred point without 

additional interaction with the DM. However, the procedure is highly prone to error, since, unfortunately, the DM does not 

know how good is the best possible solution for the problem and how practical his/her aspirations are. Therefore, the DM may 

be dissatisfied with the outcome obtained. Some efforts in this direction can be found in [11, 26]. 

 

In an a posteriori method, the decision-making phase is initially ignored, and a representative portion of the Pareto-optimal 

frontier is generated before incorporating the DM’s preferences. The idea is to define a subset of the complete set of non-

dominated solutions and present it to the DM so that (s)he selects the most satisfactory solution as the final one. This approach 
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performs well in problems with few objectives, but the results deteriorate with an increase in the number of objective functions, 

as was discussed in the introduction to this paper. Some examples of a posteriori approaches are given in [27, 28]. 

 

The interactive approach depends on the progressive definition of the DM’s preferences, together with the exploration of the 

objective space. Articulation of preferences is performed during the optimization process, so that progress towards a particular 

region of the Pareto-optimal frontier is made. The DM must be willing to participate in the solution process and direct it 

according to his/her preferences. As the interactive process advances in identifying better solutions, the DM not only specifies 

his/her preferences, but also learns about the problem and can thus adjust his/her level of aspiration. Considering that the DM is 

part of the solution method, any solution in the set obtained has a high possibility of being accepted as the final solution. As 

stated by Hwang and Masud [25], some disadvantages of interactive methods are: (1) the solutions rely on the precision of the 

local preference that can be shown by the DM; (2) for several approaches there is no assurance that the most preferred solution 

can be achieved within a finite number of interactive steps; and (3) more effort is required of the DM than with the other 

methods presented above. There is a large variety of works in evolutionary multi-objective optimization that address the 

interactive approach (e.g. [29, 30]).  

 

According to Miettinen et al. [31], interactive methods lessen the disadvantages of a priori and a posteriori methods because the 

DM can progressively refine his/her initial preferences, and only solutions that are interesting to the DM are generated. For this 

reason, we propose an interactive approach for obtaining a reduced set of efficient solutions adapted to the DM’s preferences. 

 

In addition, the approach of Fernandez et al. [2], the so-called NOSGA2, is an important precedent for our work. The a priori 

way of incorporating preferences in NOSGA2 has recently been used by Cruz et al. [32] to optimize interdependent project 

portfolios with many objectives. In that paper, the authors proposed the Non Outranked Ant Colony Optimization (NO-ACO) 

method that is briefly described below. 

 
2.2 Description of the NO-ACO model 

 
The NO-ACO algorithm uses a set of agents called ants, and a local search, to perform its optimization process. This approach 

incorporates the DM’s preferences following the model of preferences by Fernandez et al. [2] that is based on outranking 

relations proposed by Roy in [33]. It uses the degree of truth of the statement ‘x is at least as good as y’, which is represented by 

σ (x, y), and can be calculated using outranking methods such as ELECTRE [34] and PROMETHEE [35]. Let us consider a 

threshold of acceptable credibility λ, an asymmetry parameter β to ensure the strict preference or k-preference, and a symmetry 

parameter ε for the indifference relation. For each pair of solutions (x, y), the model identifies one of the preference relations 

given in Table 1. Given a set of feasible solutions O, the preferential system of NO-ACO establishes the sets shown in Table 2. 

 

Table 1. The preference relations between each pair of solutions. 
Preference relation Definition Conditionsa  

Strict preference  

(xPy) 

The DM has clear and well-defined reasons 

justifying the choice of x over y    
   
   

 dominates ( ,  ,   0.5)

( ,  0.5 ,  

,  ,  ).

x y x y y x

x y y x

x y y x

  

   

  

    

      
   

 (1) 

Indifference  

(xIy) 

 

The DM has clear and positive reasons that 

justify an equivalence between the two options        ,  ,   | ,  , |  .x y y x x y y x             (2) 

Weak preference  

(xQy) 

 

The DM hesitates between xPy and xIy 
     ,  ,  , .x y x y y x xPy xIy         (3) 

Incomparability  

(xRy) 

 

 

The DM perceives a high degree of 

heterogeneity between the two alternatives, so 

(s)he cannot express a preference 

   ,   0.5 ,   0.5.x y y x     (4) 

k-preference  

(xKy) 

The DM hesitates between xPy and xRy 
   

   
0.5 ,  ,   0.5

,  ,  / 2.

x y y x

x y y x

  
  

    

 
 (5) 

aConsidering (0 ≤ ε ≤ β ≤ λ and λ > 0.5). 
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Table 2. Sets defined by NO-ACO. 
Set / Measure Definition Conditions  

S 

 

 

This is composed of the alternatives that strictly 

outrank x 
 ,   { | }.S O x y O yPx   (6) 

NS 

 

This is known as the non-strictly-outranked frontier 
     { | ,   }.NS O x O S O x Ø    (7) 

W 

 

 

This is composed of the non-strictly-outranked 

solutions that are weakly preferred to x    ,   {  | }.W O x y NS O yQx yKx    (8) 

NW 

 

This is known as the non-weakly-outranked 

frontier.      { ( ) | ,   }.NW O x NS O W O x Ø    (9) 

Net  

Flow 

 

 

This is the measure used to identify the preferred 

solutions by the DM on the non-strictly-outranked 

frontier 
( )\{ }

( ) [ ( , ) ( , )].n

y NS O x

F x x y y x


 
 

where Fn(x) > Fn(y) denotes a certain preference of x over y  

 

(10) 

F 

 

 

This is composed of non-strictly-outranked 

solutions that are greater in net flow than x        ,   {  |  }.n nF O x y NS O F y F x    (11) 

NF This is known as the net-flow non-outranked 

frontier.         {  | ,   }.NF O x NS O F O x Ø    (12) 

 

The problem that NO-ACO solves is 

 min ( , ) , ( , ) , ( , ) .
x O

S O x W O x F O x
                                                          (13) 

The best compromise solution is found through a lexicographic search, with pre-emptive priority favouring |S(O, x)|. 

 
2.3 An outline of the THESEUS method 

 
Let us recall, following [36], some basic aspects of the THESEUS method. THESEUS employs outranking relations to solve 

multi-criteria sorting problems, where sorting refers to problems in which the categories have been defined in an ordinal way 

[37]. The aim of the THESEUS method is to assign multi-criteria objects to preference-ordered categories. THESEUS rests on 

the following premises (cf. [36, 38]): 
 

i. There is a finite set of ordered categories Ct = {C1, …, CM}, (M ≥ 2); CM is assumed to be the preferred category.  

ii. U is the universe of objects x described by a coherent set of N real-valued criteria, denoted G = {g1, g2, . . . , gj, . . . , gN}, 

with N ≥ 3. 

iii. There is a set of reference objects T (also called a reference set or training set), which is composed of elements bkh ∈ U 

assigned to category Ck, (k = 1,..., M). 

iv. The DM agrees with a fuzzy outranking relation σ (x, y) defined on U×U (see Section 2.2). Its value models the degree of 

credibility of the statement ‘x is at least as good as y’ from the DM’s perspective. 

 

The THESEUS method is based on comparing a new object to be assigned with reference objects through models of preference 

and indifference relations (cf. [36]). The assignment is not a consequence of the object’s intrinsic properties: rather, it is the 

result of comparisons with other objects whose assignments are known. In the following, C(x) denotes a potential category for 

the assignment of object x. According to THESEUS, C(x) should satisfy some consistency rules: 

 

, khx U b T   
 

 

 

,

.                                                                                                  (14.a)

kh k

kh k

xPb C x C

b Px C C x





·

·
 

 

 

,

.                                                                                                 (14.b)

kh k

kh k

xQb C x C

b Qx C C x





·

·
 

   

 

( ) ( )

 .                                                                                                          (14.c)

kh k k

k

xIb C x C C C x

C x C

 

 

· ·
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The relations P, I, and Q were defined in Eqs. (1–3). The symbol ≿ denotes the statement ‘is at least as good as’ on the set of 

categories, which is related to the decision-making context. THESEUS uses the inconsistencies with Eqs. (14.a–c) to compare 

the possible assignments of x; more specifically: 

 

 The set of P-inconsistencies for x and C(x) is defined as DP = {(x,bkh), (bkh,x), bkh ∈ T such that (14.a) is 

FALSE};  

 The set of Q-inconsistencies for x and C(x) is defined as DQ = {(x,bkh), (bkh,x), bkh ∈ T such that (14.b) is 

FALSE}; 

 The set of I-inconsistencies for x and C(x) is defined as DI = {(x,bkh), (bkh,x), bkh ∈ T such that (14.c) is 

FALSE}. 

 

Suppose that C(x) = Ck and consider bjh ∈ T. Some cases in which x and bjh belong to adjacent categories and nevertheless xIbjh 

may be explained by ‘discontinuity’ of the description; x may be close to the upper (lower) boundary of Ck and bjh may be close 

to the lower (upper) boundary of Cj. These are called second-order I-inconsistencies and are grouped in the set D2I. The set D1I = 

DI – D2I contains the so-called first-order I-inconsistencies, which are not consequences of the discontinuity effect described 

above. nP, nQ, n1I, and n2I denote the cardinalities of the inconsistency sets defined above. Let N1= nP + nQ + n1I, and N2 = n2I.  

 

THESEUS suggests an assignment that minimizes the above inconsistencies with lexicographic priority favouring N1, which is 

considered the most important criterion [36]. The basic assignment rule is: 

 

For each x ∈ U and given a minimum credibility level λ > 0.5 

 

i. Starting with k =1 (k =1,…,M) and considering each bkh ∈ T, calculate N1 (Ck); 

ii. Identify the set {Cj} whose elements hold Cj = argmin N1 (Ck) 

iii. Select Ck* = argmin N2(Ci); 

       {Cj} 

iv. Assign x to Ck*. 

 

The suggestion may be a single category or a sequence of categories. The first case is called a ‘precise assignment’. Otherwise, 

the multi-category solution obtained highlights the highest category (CH) and the lowest category (CL); each category in this 

interval may be acceptable for the assignment of the object, but THESEUS fails to determine the most appropriate. A solution of 

this type is called an ‘imprecise assignment’.  

 

According to recent studies by Fernandez et al. [38, 39], the capacity of THESEUS for suggesting appropriate assignments 

increases with the cardinality of the reference set. Fernandez et al. [38] proved that this capacity is improved with an automatic 

enhancement of the reference set, that is, when new objects are assigned by THESEUS and incorporated into the reference set 

without requiring acceptance by the DM. 

 

 

3. Our proposal 

 
In this section, an interactive approach to search the ROI, and a possible implementation of thereof will be presented. In our 

work, the DM’s preferences are expressed in a reference set and an outranking model. The preference information is exploited 

by a multi-criteria sorting method to detect new satisfactory solutions generated by an evolutionary approach, and that way it 

drives the search towards the ROI. The DM’s preferences will be updated at some stage during the optimization process. A 

general vision of this approach is shown in Fig. 1. 
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Fig. 1. The general scheme of the proposed approach to search the ROI. 

 
3.1 An interactive approach to search the ROI based on a multi-criteria sorting method  

 

The proposal suggests using two reference sets, each one is divided into two categories: satisfactory and unsatisfactory. The first 

set, called Tupd, reflects the DM’s preferences that were obtained in the last interaction with him/her; the second one, called Tenh, 

accumulates new solutions through an automatic process. The two sets are identical at the beginning of the approach. The use of 

these sets and the description of the processes of our interactive approach are detailed below; Figure 2 illustrates these 

processes.  

 

i. Interact with the DM to update preference information. This process aims to model the current DM’s preference 

information, from his/her local knowledge. This information is represented by a set of solutions that the DM considers 

satisfactory or unsatisfactory, that is, a reference set (Tupd) that implicitly reflects his/her multi-criteria preferences. The 

interaction with the DM is performed at two points in time: a) at the beginning of the process, when Tupd is created with 

the first definition of the DM’s preferences; and b) during the search process, when Tupd is updated by the DM. The 

number of interactions will be limited by a given input parameter. The update can take place of the second interaction 

onwards and it is performed as set out below. First, the set Tenh is shown to the DM; Tenh contains new solutions 

categorized as satisfactory that is the result of an automatic enhancement process, which is described in (iii). The DM 

selects the solutions in that set that (s)he really considers satisfactory. Once the DM has performed this validation, the 

solutions in Tupd and Tenh must be replaced by the chosen solutions by the DM. The interaction allows the DM to learn, 

as new solutions are shown to him/her, and in this way (s)he adjusts his/her notion of what a satisfactory solution is. 

The update also allows the DM to correct possible errors of assignment that could be generated during the automatic 

enhancement procedure of Tenh. After each interaction, the reference set Tupd will contain the latest expression of the 

DM’s preferences. The validation of the preference information can be performed by a real DM or by an algorithm able 

to behave in a way that is similar to a real DM. It is important to highlight that the updating process is the essential part 

of this proposal, because by incorporating the DM into the solution approach, any of the solutions obtained at the end 

of the optimization process can be the solution to be implemented.  

ii. Progressively explore the solution space. This process aims to create selective pressure towards the ROI, through an 

exploration method that identifies, at least locally, new non-dominated solutions that would probably be considered as 

satisfactory by the DM. To perform this process two things are required: a) a procedure to guide the search towards 

efficient solutions in the sense of Pareto optimality; and b) an approach to capture the notion of a satisfactory solution. 

For the second of these, we consider it ideal to use a multi-criteria sorting method. This method will assign to 

predefined categories the new non-dominated solutions derived from the search process, using the preference 

information embedded in Tenh. This evaluation will help to direct selective pressure towards solutions assigned as 

satisfactory. 

iii. Improve the capacity of the sorting method for making category assignments. This procedure aims to incorporate 

automatically new solutions into the reference set Tenh as the search progresses. Tenh will accumulate new solutions that 

have been assigned as satisfactory by the sorting method that uses Tupd as the reference set. Although the incorporated 

solutions have not been validated by the DM, the use of a more populated reference set will help the sorting method to 

make more appropriate assignments [38]. 
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Fig. 2. An interactive approach to search the ROI.  

 
3.2 One way to specify the proposed approach: The Interactive Multi-Criteria Sorting Genetic Algorithm 

 

Here, we present a way to implement the approach proposed in Section 3.1. This method, called the Interactive Multi-Criteria 

Sorting Genetic Algorithm (I-MCSGA), is based on the following points: 

 

 The DM’s preferences are reflected by an outranking model  (x,y) built using ELECTRE III; this model 

contains a set of preference parameters (weights and thresholds of indifference, preference and veto). The 

DM’s preferences are also embedded in the reference set Tupd in which a set of solutions (actual or potential 

ones) are assigned by the DM as satisfactory and unsatisfactory. The set Tupd therefore contains the updated 

information about the DM’s preferences. The preference parameters in  should be compatible with the 

preference information in Tupd. Such compatibility may be guaranteed (although this is not mandatory) by an 

indirect parameter elicitation method (e.g. [40]). 

 Since the ROI may be defined as a subset of the Pareto front whose elements are considered satisfactory by 

the DM, our method privileges (in a current population) solutions that are non-dominated and are considered 

satisfactory by a multi-criteria sorting method; in this work we use the THESEUS method. The way of 

creating selective pressure towards non-dominated solutions is inspired by the Non-dominated Sorting 

Genetic Algorithm-II (NSGA-II) [27], and is strengthened with the sorting of solutions. 

 The THESEUS method is used to make decisions on whether a particular solution in a current population is 

satisfactory or not. For making assignments, THESEUS uses the enhanced reference set Tenh. Before any 

enhancement Tenh  Tupd. Tenh is automatically enhanced with new generated solutions that have been assigned 

to the satisfactory category by THESEUS using Tupd as reference set. 

 After a certain number of iterations, the satisfactory category of Tenh is presented to the DM, who updates Tupd 

with those solutions. The preference parameters may be updated from the current Tupd. 

 

Remarks: 

 

- As stated above, Tupd contains the most updated preferences from the real DM. Such an updating process is necessary 

for two main reasons: i) to correct the imprecise assignments made by the automatic enhancement of Tenh; and ii) 

because the DM ‘learns’ as (s)he ‘discovers’ new solutions and (s)he adjust his/her notion of what a satisfactory 

solution is. 

- The cardinality enhancement of Tenh should improve its capacity to make appropriate assignments [38, 39], thus 

improving the selective pressure towards the ROI. Besides, cardinality (Tenh)  cardinality (Tupd) should be ensured. 
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- At the end of the search process, the satisfactory solutions of Tenh will be presented to the DM so that (s)he chooses the 

final solution from that set. 

 

The general method of the I-MCSGA is shown in Algorithm 1. Note that it is composed of two main phases that will be 

described in the following subsections. 

 

Algorithm 1. Procedure I-MCSGA  

Input: L, num_iterations, enh_number, enh_interval, upd_number, upd_interval 

Output: satisfactory category of Tenh 

Phase 1:  

1. Construct an initial reference set Tupd //Section 3.2.1 

2. Initialize Tenh with Tupd  

Phase 2:  

3. Set σ-parameters agreeing with Tupd (using, for example, an indirect parameter 

   elicitation method) 

4. Initialize parent population P with Tupd and complement it with random individuals 

   until a size L is achieved 

5. Generate non-dominated fronts on P (based on objective function values)  

6. Give to these fronts a rank (level) Fi according to non-domination level 

7. Categorize the solutions in F1 using the THESEUS sorting method (σ)           //Section 3.2.2 

8. Generate a child population Q of size L by applying selection, recombination, and 

   mutation operators on P 

9. FOR I=1 to num_iterations DO  

10.  P’ = P ∪ Q  

11. Generate non-dominated fronts on P’ (based on objective function values) 

12. Give to these fronts a rank (level) Fi according to non-domination level 

13. Categorize the solutions in F1 using the THESEUS sorting method (σ)  //Section 3.2.2 

14. Create from P’ a new parent population P of size L by using a 

      diversity operator              

//Section 3.2.3 

15. Generate a child population Q of size L by applying selection, recombination, 

      and mutation operators on P 

16. Enhance Tenh a certain number of times (enh_number) every certain 

      number of iterations (enh_interval) 

//Section 3.2.4 

17.  Update Tupd (by interacting with the DM) a certain number of times 

 (upd_number) every certain number of iterations (upd_interval) 

//Section 3.2.5 

18. End FOR  

19. Repeat steps 10−13 and 16  

20. Give the DM the satisfactory solutions of Tenh  

21. End PROCEDURE  

 

3.2.1 A method to construct an initial reference set 

 

In the first phase of the I-MCSGA, the DM is prompted to provide a reference set, which we call Tupd. The categories in that set 

are satisfactory and unsatisfactory. In order to create the reference set, the DM has the following two choices: 

 

 Provide a set of solutions in the objective space and, according to their objective values, indicate which of them are 

considered satisfactory, by using his/her current (limited) knowledge about the problem. These solutions do not 

necessarily have to be feasible, since they will only be used as a reference to start the search process. The DM may 

refine his/her aspiration levels during his/her interaction with the optimization process. 

 Run a multi-objective metaheuristic that matches the characteristics of the problem to be addressed. This approach will 

be used to obtain an approximation to the Pareto frontier. These solutions will be sorted by the DM into the set of 

categories to form the initial reference set. When this option is used to create the reference set, the method becomes a 

hybrid approach. 

 

Whichever option is used, the DM’s preferences will be reflected in the reference set Tupd. In this phase, the reference set Tenh is 

initialized with Tupd, that is, at the beginning of the optimization process the two sets are identical. On the other hand, according 
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to Fernandez et al. [38], reference sets of large size should supply more knowledge about the assignment policy, leading to more 

appropriate assignments. Hence, in cases where the satisfactory category of the reference set is poorly populated, we 

recommend increasing the cardinality of this category. Therefore, we propose an approach for adding fictitious solutions 

(derived from an existing solution) to extend and intensify this category. The procedure to generate these solutions is as follows: 

 

i. Identify a pair of objectives with nearly equal weights, called similar weight objectives; 

ii. Create a replica of an existing solution; and 

iii. Modify the similar weight objectives of the replicated solution, adding to one of them and subtracting from the other 

one the same predefined value. 

 

We do this in order to make a slight variation in the objectives of the existing solution, in the sense of improvement and 

compensation. An example of this procedure is given in Table 3. 

 

Table 3. Real and fictitious solutions. 

Reference element Objective values/weights  Category 

N1/0.27 N2/0.15 N3/0.26 N4/0.32   

2 67655 53740 3145 3580  Satisfactory (real) 

3 68155 53740 2645 3580  Satisfactory (fictitious) 

Absolute difference 500 0 500 0   

 

3.2.2 A way to create selective pressure towards the ROI 

 

The second phase of the I-MCSGA is a variant of the NSGA-II [27] where the main change is the incorporation of the 

THESEUS method (Section 2.3) which uses the current reference set Tenh to identify satisfactory solutions in the search process. 

THESEUS is used in the present paper as an assignment tool in order to characterize the ROI. We chose THESEUS because it 

has given good results with artificial and real-world data (cf. [36]). In comparison with other multi-criteria sorting methods, 

THESEUS can handle more general and larger reference sets, thus providing more suitable assignments (cf. [41]). Our approach 

works like the NSGA-II but with the following additional steps: 

 

i. Calculate σ on F1×Tenh, where F1 is the non-dominated front of NSGA-II (the first front); 

ii. Each solution x ∈ F1 is assigned by THESEUS to one category Ck of the set {satisfactory, unsatisfactory} by using Tenh 

as reference set; 

iii. F1 is divided into two sub-fronts; the first ranked sub-front contains the solutions that were assigned to the most 

preferred category (satisfactory); 

iv. The remaining fronts of the current NSGA-II population are re-ordered by considering each sub-front of the original F1 

as a new front; the NSGA-II’s elitism involves the new F1, which is now constituted by the non-dominated solutions 

belonging to the most preferred category. 

 

The above steps are illustrated in Fig. 3. In a MOP, the ROI should be composed of solutions that belong to the most preferred 

category. Hence, the solutions in the ROI are characterized by the fact that they are i) non-dominated, and ii) considered 

satisfactory solutions by the DM. Therefore, our approach creates a selective pressure towards solutions that have both features. 

In addition to incorporating the THESEUS method to search the ROI, our approach: a) uses diversity metrics according to the 

problem size; b) automatically enhances the reference set Tenh; and c) allows interaction with the DM to update his/her 

preferences. These processes are described in the following sections. 

 

 
 

Fig. 3.  Multi-criteria sorting by I-MCSGA. 
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3.2.3 Diversity-preservation operators 

 

As with any other genetic procedure, our method uses a diversity-preservation operator that is adapted according to the number 

of objective functions of the problem. In problems with three and four objectives, it is considered acceptable to use the well-

known crowding distance based operator, where the density of solutions in the neighbourhood is measured [27]. However, as 

was stated in [42], the crowded-comparison operator is not suitable for many-objective optimization problems. For this reason, 

when dealing with many-objective problems (problems with five or more objectives), we use the reference point based operator 

of the recent proposal called Adaptive NSGA-III (A2-NSGA-III) [43], where the maintenance of diversity between population 

members is aided by generating and adaptively updating a set of well-distributed reference points. This new operator 

incorporates the following operations: i) normalization of the values of the objective functions and the reference points in order 

to keep the ranges similar; ii) association of every population member with a specific reference point; iii) a niching procedure in 

order to ensure a diverse set of solutions; and iv) an update process that identifies those reference points that are not associated 

with a population member, allowing those points to be relocated by using addition and deletion strategies. These same actions 

are implemented in our method, with a slight adjustment in the normalization operation as recommended in [42]. 

 

3.2.4 An automatic procedure for enhancing the reference set 

 

The reference set Tenh is automatically enhanced by the addition of some new solutions created during the search process. Each 

solution x  F1, where F1 is the first sub-divided front (see Section 3.2.2 step iv), is considered in order to perform the automatic 

enhancement of Tenh. A solution x belongs to the satisfactory category of Tenh if and only if the following two conditions are 

fulfilled: 

 

i. x is assigned to the satisfactory category by THESEUS using Tupd as the reference set; 

ii. There is no solution b  Tenh such that b dominates x. 

 

These two conditions (called valid_assignation) are used in the enhancement process of Tenh that is described in Algorithm 2. 

 

Algorithm 2. Automatic enhancement procedure 
Input: F1, Tenh 

Output: Tenh enriched 

1. FOR each x  F1 DO 
2. IF x fulfils the conditions valid_assignation THEN 

3.  FOR each y  satisfactory DO 

4.   IF x dominates y THEN 

5.    Remove y from satisfactory and incorporate it into 

                       unsatisfactory 

6.  End FOR 

7.  Add x to satisfactory 

8. ELSE 

9.  Add x to unsatisfactory 

10. End FOR 

11. Return Tenh enriched 

12. End PROCEDURE 

 

Thus, the procedure itself decides which new solutions should be incorporated into the reference set Tenh. According to 

Fernandez et al. [38], THESEUS suggests more appropriate assignments when the cardinality of its reference set is increased, 

that is, when it works with larger reference sets. Therefore, the capacity of THESEUS to suggest appropriate assignments 

increases when Tenh is automatically enhanced; and consequently the selective pressure towards the ROI is improved. Another 

important aspect stated by Fernandez et al. [39] is the fact that THESEUS tends to perform better with a uniform distribution of 

reference objects per category. Based on this observation, we try to maintain approximately the same number of elements in the 

two categories of Tenh. In the absence of balance between the categories, the oldest solutions are removed from the category with 

more elements until both categories have nearly the same cardinality. Likewise, oldest solutions are also removed when one or 

both of the categories exceed an upper limit of elements ( 100). The enhancement process can be carried out once in every 

certain number of iterations; this interval is set as input at the start of the method. 
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3.2.5 An interactive method for updating preferences 

 

Our method takes advantage of the fact that the DM can progressively learn about the problem, thereby adjusting his/her 

preferences interactively, to drive the search towards the preferred zone of the Pareto optimal frontier (the ROI). For this,  it is 

necessary to reflect the DM’s modified preferences by updating the current reference set. As was stated before, the DM’s 

preferences are reflected in Tupd, and therefore it is necessary to update this set. The updating is carried out as follows: 

 

i. The satisfactory category of Tenh is presented to the DM who selects, from that set, the solutions that (s)he considers 

satisfactory according to his/her preferences. 

ii. The solutions selected as satisfactory by the DM now form the new satisfactory category of Tupd. 

iii. The remaining solutions of Tenh now form the new unsatisfactory category of Tupd. 

iv. After updating the DM’s preferences, do Tenh  Tupd. 

 

The updating of Tupd can be performed once in every certain number of iterations; this parameter is introduced as input at the 

beginning of the method. The number of updates depends on the time and effort that the DM is willing to spend. On the other 

hand, updating the DM’s preferences will help to eliminate possible inappropriate assignments suggested by THESEUS, since 

possible inconsistencies between the reference set and the preference model parameters can cause wrong assignments, as 

demonstrated in the study by Fernandez et al. [39]. Once the DM updates his/her preferences in Tupd, the same procedure as is 

described in Section 3.2.4 is applied to maintain the balance between the cardinality of the categories, if necessary. 

 

4. Some computer experiments 
 

Let us consider two experiments that use the I-MCSGA to address the Public Project Portfolio Problem, which will be 

described in Section 4.3. In both experiments, we want to verify that our method leads to a good characterization of the ROI. We 

conduct the first experiment to determine whether the I-MCSGA is capable of obtaining better solutions than those obtained by 

the NSGA-II method in problems with three and four objectives; the second experiment explores whether our method 

outperforms A2-NSGA-III in many-objective problems (nine and sixteen objectives). 

 

The configurations used in both experiments are outlined below. 

 

 In the first phase of the I-MCSGA, the NO-ACO algorithm (Section 2.2) is used to obtain an approximation to the 

Pareto frontier. This set of solutions is employed to construct the initial reference set Tupd. The NO-ACO parameters are 

the same as those reported in [32]. 

 The parameters of the outranking model are set to the values suggested by Fernandez et al. in [2]. 

 To ensure relatively fair conditions, the parameters for NSGA-II, A2-NSGA-III and the second phase of the I-MCSGA 

are the same: crossover probability = 1; mutation probability = 0.01; the number of iterations = 500.  

 The data for the projects (e.g., cost, area, and region) are different for each instance.  

 The algorithms are programmed in the Java language, using the JDK 1.7 compiler, and NetBeans 7.1 as IDE, and they 

are run 30 times for each instance on a Mac Pro with an Intel Quad-Core 2.8 GHz processor and 3 GB of RAM. 

 In the absence of a real DM, we simulate him/her using the relational system of preferences proposed by Fernandez et 

al. [2] (Section 2.2). As a result, the creation of the initial reference set Tupd and its interactive updating is done by the 

preference model. These procedures are described below. 

 

4.1 Constructing an initial reference set without a real DM 

 

To construct the initial reference set Tupd, the solutions obtained by NO-ACO are categorized using the preference model. The 

categories considered to create the reference set are satisfactory and unsatisfactory. The reference set is constructed according to 

the following steps: 

 

i. Run NO-ACO to find a set A of solutions containing a subset of the approximate Pareto frontier. 

ii. Create the satisfactory category with those solutions belonging to the known Pareto frontier that satisfy |S(A, x)| = 0 

(Eq. (6)), that is, that belong to the non-strictly-outranked frontier, and that also each of them fulfil one of the following 

conditions: 

a. Satisfies |W(A, x)| = 0 (Eq. (8)) and |F(A, x)| = 0 (Eq. (11)), that is, the solution belongs to the non-weakly and 

net-flow non-outranked frontier in A. The set of these solutions is known as the Best Solutions (BS). 
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b. Is solution indifferent (Eq. (2)) to any solution in BS. 

c. Is a non-dominated solution (minimization) with respect to the objectives |W(A, x) | and |F(A, x) | in A. 

d. Has positive net flow score (Eq. (10)). 

iii. Create the unsatisfactory category with the remaining solutions generated by NO-ACO in step i. 

 

4.2 Updating the reference set without a real DM 

 

To perform the updating of Tupd, the following steps are performed automatically: 

 

i. Re-assign the solutions of the satisfactory category of Tenh using the simulated DM (Section 4.1 step ii). 

ii. Create the new satisfactory category of Tupd with the solutions re-assigned by the simulated DM as satisfactory in Tenh. 

iii. Create the new unsatisfactory category of Tupd with the remaining solutions of Tenh. 

iv. Apply the procedure described in Section 3.2.4 to maintain approximately the same number of reference elements in 

the two categories of Tupd. 

v. Do Tenh  Tupd. 

 

4.3 Case study: A public project portfolio problem 

 

Let us consider a decision-making situation in which the DM is in charge of selecting a group of projects (a portfolio) that will 

be implemented by his/her organization. The aim of this decision problem is to choose the ‘best’ portfolio that satisfies some 

budget constraints. Formalizing these concepts, let us consider a set of N projects, where the ith project is represented by a p-

dimensional vector f(i) = ⟨f1(i), f2(i), f3(i), ... , fp(i)⟩, where each fj(i) indicates the contribution of project i to the jth objective. 

Each objective denotes the benefit target; that is, people belonging to a social category (e.g., Extreme Poverty, Poverty, Middle), 

who receive a benefit level (e.g., High Impact, Middle Impact, Low Impact) from the ith project. 

 

On the other hand, a portfolio x is a subset of these projects, which is usually modelled as a binary vector x = ⟨x1, x2,..., xN⟩. In 

this vector, xi is a binary variable where xi = 1 if the ith project is supported and xi = 0 otherwise.  

 

There is a total budget that the organization is willing to invest, which is denoted as B; each project has an associated cost ci. 

Portfolios are subject to the budget constraint: 

1
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The ith project corresponds to an area (e.g., health, education) denoted by ai. Each area has budgetary limits defined by the DM 

or another competent authority. Let us consider, for each area k, a lower and an upper limit, Lk and Uk respectively. Based on 

this, the constraint for each area k is 
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Besides, each project corresponds to a geographical region that will benefit from the project. In the same way as for the areas, 

each region has lower and upper limits as another constraint that must be fulfilled by a feasible portfolio. 

 

The quality of a portfolio x is determined by the union of the benefits of each of the projects that compose it. This can be 

expressed as 

1 2 3( ) ( ), ( ), ( ),..., ( ) .pz x z x z x z x z x
                                            (18) 

where zj(x), in its simplest form, is calculated as 
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If we denote by RF the region of feasible portfolios, the problem of the project portfolio is to identify one or more portfolios that 

solve 

max{ ( )}.
Fx R

z x
                                                                     (20) 

In this problem, the only accepted solutions are those portfolios that satisfy the following constraints: the total budget constraint 

(Eq. (15)), the area constraints (Eq. (16)), and the region constraints (similar to Eq. (16)). 

 

4.4 First experiment: NSGA-II vs I-MCSGA 

 

The first experiment consists of comparing the quality of the solutions provided by NSGA-II against those obtained from I-

MCSGA in addressing problems with three and four objectives. We test six random instances whose basic information is shown 

in Table 4. In both algorithms, the population size is 100. The number of iterations to carry out the automatic enhancement is set 

to one. This means that the automatic enhancement process is performed at each iteration, namely 500 times. The number of 

iterations to execute the updating of the reference set Tupd is set to 200. That is to say, the updating is carried out only twice 

throughout the whole optimization process.  

 

Table 4. Information about instances used in the first experiment. 

Instance Instance Description 

Objectives Projects 

1 3 100 

2 3 100 

3 3 100 

4 4 25 

5 4 25 

6 4 25 

 

In Table 5, we present the average results of the 30 runs carried out for each instance. Instances 1–3 correspond to problems 

with three objectives. Although in this dimension NSGA-II is very competitive, the results reveal that on average our approach 

dominates between 1% and 7% of the solutions suggested by NSGA-II (Column 5). Conversely, in only one instance was there 

a solution of I-MCSGA that was dominated by a solution found by NSGA-II. No NSGA-II solution belongs to the satisfactory 

category, whereas almost all I-MCSGA solutions were satisfactory (Column 7). Instances 4–6 correspond to problems with four 

objectives. We can see that the solutions from our method dominate, on average, between 1% and 9% of the solutions suggested 

by NSGA-II, whereas no I-MCSGA solution is dominated by any solution generated by NSGA-II (Column 5). Besides, NSGA-

II has very few solutions belonging to the satisfactory category, while all solutions of our method belong to the satisfactory 

category (Column 7). 

Analysing the information contained in Table 5, we can observe that even though NSGA-II generates a larger number of 

solutions than I-MCSGA (Column 3), it fails to characterize the ROI, while our method always finds solutions belonging to the 

ROI. 

Table 5. Comparative results between NSGA-II and I-MCSGA. 

Instance Algorithm  Average from 30 runs  

Size of the 

solution set 

Non-dominated 

solutions in (A ∪ B)a 

% Non-dominated 

solutions in (A ∪ B)a 

Solutions in  

the ROI* 

% Solutions in 

the ROI* 

1 NSGA-II 103 96 93% 0 0% 

I-MCSGA 50 50 100% 50 100% 

2 NSGA-II 103 102 99% 0 0% 

I-MCSGA 10 10 100% 10 100% 

3 NSGA-II 103 96 93% 0 0% 

I-MCSGA 54 53 98% 53 98% 

4 NSGA-II 105 102 97% 1 1% 

I-MCSGA 5 5 100% 5 100% 

5 NSGA-II 102 93 91% 5 5% 

I-MCSGA 10 10 100% 10 100% 

6 NSGA-II 103 102 99% 2 2% 

I-MCSGA 4 4 100% 4 100% 
aA and B are the solution sets generated by NSGA-II and I-MCSGA, respectively. 
*Solutions belonging to the approximated ROI (non-dominated and satisfactory) 
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4.5 Second experiment: A2-NSGA-III vs I-MCSGA 

 

The second experiment compares the quality of the solutions of A2-NSGA-III against those obtained from I-MCSGA, for 

problems with nine and sixteen objectives. We test for four random instances, three of which are problems with nine objectives 

and the last of which is a problem with sixteen objectives. The basic information of these instances is shown in Table 6. The 

number of reference points in A2-NSGA-III is taken from the recommendations of Deb and Jain in [44]. The population size and 

number of reference points used in both algorithms are shown in Table 7. The parameters used for automatic enhancement and 

for updating the reference set Tupd are set as described in Section 4.4.  

 

Table 6. Information about instances used in the second experiment. 

Instance Instance Description 

Objectives Projects 
1 9 100 

2 9 100 

3 9 100 

4 16 500 

 

Table 7. Population size and number of reference points used by both algorithms. 

No. of objectives Population size No. of ref. points 

9 174 174 

16 136 136 

 

The comparative results are summarized in Table 8. Instances 1–3 correspond to problems with nine objectives. It can be seen 

that our method on average dominates between 7% and 37% of the solutions suggested by A2-NSGA-III, while the solutions 

from I-MCSGA always remain as non-dominated (Column 5). There are no A2-NSGA-III solutions belonging to the satisfactory 

category, while our method always finds non-dominated solutions belonging to the satisfactory category (Column 7). Instance 4 

concerns a problem with sixteen objective functions. We can see that the solutions from our method dominate all of the 

solutions suggested by A2-NSGA-III, whereas no I-MCSGA solution is dominated by any solution generated by A2-NSGA-III 

(Column 5). It is not surprising that no A2-NSGA-III solution belongs to the ROI, while our approach always finds satisfactory 

solutions (Column 7). These results give some evidence that our approach is effective in many-objective problems, providing a 

good characterization of the ROI. 

 

Table 8. Comparative results between A2-NSGA-III and I-MCSGA. 

Instance Algorithm  Average from 30 runs  

Size of the 

solution set 

Non-dominated 

solutions in (A ∪ B)a 

% Non-dominated 

solutions in (A ∪ B)a 

Solutions in  

the ROI* 

% Solutions in 

the ROI* 

1 A2-NSGA-III 198 124 63% 0 0% 
I-MCSGA 111 111 100% 111 100% 

2 A2-NSGA-III 200 186 93% 0 0% 
I-MCSGA 11 11 100% 11 100% 

3 A2-NSGA-III 199 154 77% 0 0% 
I-MCSGA 12 12 100% 12 100% 

4 A2-NSGA-III 164 0 0% 0 0% 
I-MCSGA 192 192 100% 192 100% 

aA and B are the solution sets generated by A2-NSGA-III and I-MCSGA, respectively. 
*Solutions belonging to the approximated ROI (non-dominated and satisfactory) 

 

 

5. Conclusions and future work 

 
We have presented an approach for incorporating the DM’s preferences in an implicit and interactive way in solving 

optimization problems with few and many objectives. The interactive approach allows the DM to learn progressively about the 

problem and refines his/her preferences, leading the search towards a specific region of the solution space, known as the Region 

of Interest (ROI), instead of the whole Pareto front. Here, the solutions in the ROI are non-dominated and are considered 

satisfactory by the DM.  
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The approach was verified through a method that we named I-MCSGA. We simulated the DM by using a preference model, 

with the parameters for the model remaining unchanged during the optimization process. The DM’s preferences are reflected by 

an outranking model and a reference set that is used by a multi-criteria sorting method (THESEUS) to assign new solutions to 

ordered categories. At a certain time, the solutions that were assigned as satisfactory by THESEUS during the search process are 

validated by a simulated DM to carry out the updating process of the preferences. 

 

I-MCSGA was evaluated on project portfolio optimization problems, and we compared it with two methods from the literature. 

It was compared in relatively simple problems (three and four objectives) with NSGA-II and in many-objective problems (nine 

and sixteen objectives) with A2-NSGA-III. Our method showed better results than these methods with respect to Pareto-

dominance and also with respect to its capacity to reach the ROI.  

 

The experimental results reveal that the elitism based on Pareto dominance combined with the category assignments performed 

by THESEUS help I-MCSGA to create selective pressure towards the ROI. The proposed automatic enhancement process is 

effective to incorporate new solutions into the reference set, helping THESEUS to suggest more appropriate assignments. 

Moreover, the suggested process of the interactive updating of preferences is effective in validating the solutions of the 

enhanced reference set, even when the real DM was replaced by a preference model. Therefore, the I-MCSGA, based on the 

proposed method, has shown its ability to characterize the ROI and to handle optimization problems with a few and many 

objectives efficiently. 

 

Future research directions include extending the experimentation to problems where the true Pareto frontier is known, with the 

aim of validating the outcomes of our approach with greater certainty. 
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