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Abstract. We present the design and implementation of a 

vision-assisted pick and place robotic machine for 

laboratory activities. The robotic device can automatically 

locate and pick small electronic components placed in 

containers in scattered order and put them in their final 

assembly position, indicated by pre-located visual marks on 

a printed circuit board. The execution of these tasks is 

supported by the design of two main systems. The first one 

consists of an image processing algorithm, fastly and 

precisely, capable of recognizing objects of interest 

arranged in containers. The second system involves the 

design and implementation of a Cartesian robot with four 

degrees of freedom. The robot's electromechanical 

assembly design involved implementing a PID controller 

and a power and sense electronics module. The resulting 

robotic machine solved the surface-mount capacitors 

manipulation problem, rendering an accuracy with a 

maximum deviation angle of ±15, during the components 

placement tasks. 
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1. Introduction 
 

Within Industry 4.0, pick and place robotic machines are widely used for manufacturing of today's Surface-

Mount Technology (SMT) to assembly tinny electronic components on printed circuit boards (PCB) [1], [2], 

[3], and [4]. Using these machines, it is possible to accurately pick and place large numbers of small electronic 

components quickly and accurately onto large PCB batches for commercial production. However, most of the 

time, these machines, when used at an academic environment, focus mainly on producing experimental test 

benches to conduct single circuit prototypes' electrical measurements. Therefore, under these circumstances, 

high-volume production of PCB is not required. The pick and place workstation MPP-21 [5] is an example of 

a hand-assembly operation system designed to allow an operator to manually place surface-mount devices 

(SMD) onto a PCB, manually utilizing a vacuum tip during the component pick-up and placement tasks. This 

system was also conceived to dispense and deposit solder paste, adhesives, and various potting compounds. 

The MPP-21 workstation has optional tape and sticks feeders with a feeder rack for component handling. For 

an operator, working under these conditions is tedious, and it frequently leads to make mistakes during a work 

session. Taking this into account, we were motivated to use, as starting components, some spare parts of an 

MPP-21 workstation to design, implement and test an automatic pick and place robotic machine suitable for 

use in academic and research environments. We designed and implemented a Cartesian robot, jointly with an 

image analysis module involved with picking, driving, and placing the SMD components onto a PCB. We tested 

the robotic machine with ceramic capacitors SMD-type, sized (3.6 mm×1.6 mm×0.9 mm).  
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The organization of the paper is as follows. The general description of the system and the main components 

used in the project are addressed in Section II. The system's design is discussed in Section III; the experimental 

test results are addressed in Section IV. The system's performance is discussed in Section V. The conclusions 

are presented in Section VI and, finally, the future work outlined in Section VII. 

 

2 General Description of the System 
 

Considering that this project's primary motivation was to design and implement a pick and place robotic 

machine, we begin by describing its general structure and dimensions. A Cartesian robot with 4 degrees of 

freedom (DoF) was selected; see Figure 1. Each DoF corresponding to the x, y, and z-axis produces linear 

movements, while the w axis produces rotatory movements. 

 

 
 

Figure 1. Implementation of a x,y,z Cartesian robot in the modified work area of a MPP-21 manual 

workstation. 

 

The DoF configuration for the Cartesian robot is implemented by a screw-nut and parallel guide system, with 

a gear reducer and an encoder adapted in each case, which corresponds to the x and y-axis. The movements 

performed at each DoF are produced by permanent magnet DC motors (PMDC). At the z-axis, there is also an 

encoder mechanically coupled to the PMDC motor structure. The x, y, and z-axis encoders have a resolution of 

512 pulses per revolution (part number HEDS-5645-I13). Meanwhile, the PMDC motor used for the w-axis is 

coupled to the pneumatic suction cup's rotation axis by a gear reduction mechanism. This motor has connected 

an encoder with a resolution of 16 pulses per revolution. The resulting workspace for the Cartesian robot defines 

a volume of approximately 25cm×25cm×6cm, see [23].  
 

The control strategy used for the PMDC motors was materialized through designing and implementing a 

customized power and electronic control module (PECU), which is part of the designed subsystem for the 

Cartesian robot's automation. The PECU subsystem relies on a general-purpose ATAVRMC300 processor 

board linked to four microcontroller units (MCU) ATxmega128A1. Figure 2 shows a picture of the PECU 

casing designed for this project. The MCU ATxmega128A1, was used to generate the necessary command 

signals to drive each of the four PMDC motors, and at the same time, to execute specific real-time processing 

tasks to transfer information from and to a personal computer (PC), concerning the angular position and the 

angular velocity of each PMDC motor, which is used by the position control algorithm. 

 

Regarding the image processing algorithm, the original MPP-21 camera was reused by fixing it to the Cartesian 

robot on one side of the pneumatic suction cup (Figure 3), this camera is a SENSORAY 2250s model, which 

allows a 720×480 pixels resolution in MPEG 1/2/4 and JPEG format video, this camera was used as a part of 

the vision system. Thereby, the distance between the camera and the work area remains constant. As depicted 

in Figure 3, the camera takes pictures of the SMD components from the top. To the left, we can see the 

pneumatic suction cup. Also, Figure 3 shows the camera framework of the vision system. An algorithm coded 
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in C++ was developed in a Qt Creator environment into Ubuntu Linux to accomplish this task. Concerning the 

image analysis, the OpenCV library was used [6]. Figure 4 shows the block diagram of the system components 

of the designed robotic machine showed in Figure 2.  

 

 
 

Figure 2. Power and electronic control module (PECU) cabinet, completely designed for the automation of 

the Cartesian robot. 

 

 
 

Figure 3. Workspace and camera installed in the Cartesian robot. 

 

 
 

Figure 4. Pick and place robotic machine's blocks diagram. 
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3 System Design 
 

3.1 PMDC control subsystem design 

 

We propose a distributed control model for the PMDC motor set that combines a PID and a PI for each PMDC 

motor (Figure 5). According to [7], their design and characterization are developed. Table 1 shows the 

parameters obtained for each of the four motors, specifying the characteristics of each motor according to [7], 

see also [23]. The meaning of the listed parameters is as follows: Ka is the motor torque constant, Kb is the 

constant counter-electromotive, Ra and La are the resistance and inductance associated with the motor winding. 

Parameter b is the viscous friction constant, and J is the rotor moment of inertia, being these last parameters 

characterized by the system load's presence. 

 

 
 

Figure 5. Blocks diagram of the control system for the PMDC motors. 

 

Table 1. Extracted parameters of the Cartesian robot's motors according to [7] 

 

Parameters x y z w 

Ka (N⋅m/A) 0.0935 0.0923 0.0306 0.0054 

Kb (V⋅s/rad) 0.107 0.112 0.0611 0.0059 

Ra (Ω) 3.812 3.918 4.481 7.527 

L(H) 0.00416 0.00392 0.00413 0.001719 

b(N⋅m⋅s/rad) 0.00049 0.00082 0.00006 0.000044 

J(kg⋅m^2) 0.00032 0.00039 0.00028 0.000106 

 

 

The PMDC motor model is represented by the equivalent motor schematic diagram depicted in Figure 6, where 

ea is the applied voltage to the armature, the voltage eb is due to the counter-electromotive force, ia is the electric 

current of the mesh, associated with the motor winding, θ represents the angular displacement, Te the torque 

developed by the engine and, if  is the field current. Current if  is considered to be constant and proportional to 

the magnetic force produced by the permanent magnet. 

 

 
 

Figure 6. Electrical equivalent schematic diagram of the PMDC. 
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As it well-known, the following two equations can be derived from the above schematic diagram representing 

the time domain's engine dynamics. 

𝑒𝑎 = 𝐿𝑎
𝑑𝑖𝑎
𝑑𝑡

+ 𝑅𝑎𝑖𝑎 + 𝑒𝑏 
(1) 

 

 

𝐾𝑎𝑖𝑎 = 𝐽
𝑑2𝜃

𝑑𝑡2
+𝑏

𝑑𝜃

𝑑𝑡
 

(2) 

 

 

We obtain the plant's transfer function by applying the Laplace transformation to solve the system of differential 

equations; see Equations (1) and (2). Then, for the system shown in Figure 5, we obtain the following 

expression: 

 

𝜃(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑎
𝐿𝑎𝐽𝑠

3 + 𝑠2(𝑅𝑎𝐽 + 𝐿𝑎𝑏) + 𝑠(𝑅𝑎𝑏 + 𝐾𝑎𝐾𝑏)
 

(3) 

 

 

A variant of the well-known PID control [8] has been proposed for each motor's positioning control strategy. 

As illustrated in Figure 5, the controller is split into two parts. The first part evaluates the angular error position 

eθ and outputs a control signal uθ. The second part evaluates the angular velocity error eω and outputs a control 

signal uω. The final objective is to reach a specific θ value by modifying the angular velocity ω at each time 

step. The input parameter θd represents the controller setpoint in radians. The input parameter ωd represents the 

instantaneous magnitude of the signal generator's angular velocity that precedes it. This parameter will set the 

following Equation for the controller in the domain of s. 

 

𝑢(𝑠) = 𝐾𝑝𝜃𝑒𝜃(𝑠) +
𝐾𝑖𝜃
𝑠
𝑒𝜃(𝑠) + 𝐾𝑑𝜃𝑠𝑒𝜃(𝑠) + 𝐾𝑝𝜔𝑒𝜔(𝑠) +

𝐾𝑖𝜔
𝑠

𝑒𝜔(𝑠) 
(4) 

 

 

Where Kpθ, Kiθ, Kdθ are the proportional, integer and derivative constants of the PID controller and Kpω and Kiω 

are the proportional and integral constants of the PI controller. Note that these constants should have the units 

required for the controllers uθ and uω to give voltage units. Then, they can be added. In this way, u(s) can be 

substituted in Ea(s) of Equation (3) to simulate the system. System tuning was conducted empirically, based on 

the system response behavior analysis. The resulting values for the PID and PI constants are summarized in 

Table 2. Concerning the w-axis PMDC motor, we only applied a PI controller. 

 

Table 2. Parameter values of the PID and PI controllers 

 

Parameter x Y Z w 

Kpθ 5 6.36 9.09 65 

Kiθ 0.00091 0.0045 0.0045 0.013 

Kdθ 0.00091 0.00091 0.00045 131.5 

Kpω 1.09 1.09 0.91 -  

Kiω 0.18 0.18 0.181 -  
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Some implementation details of the designed control algorithm, embedded in each MCU, are next exposed. For 

instance, an anti-Windup condition was added [9]. It consisted of eliminating the integration constant only when 

saturation is present. The Pulse Width Modulation (PWM) technique was used to drive each PMDC motor [10]. 

In this particular case, the frequency generated by each MCU is established in fPWM= 18KHz. The PWM 

resolution was 10 bits. Whereas the PWM range is from 0 to 1023; then a value of PWM = 512 is equivalent to 

a 50% work cycle. It is possible to establish an empirical proportional relationship between the PWM work 

cycle and the equivalent applied voltage to the motor. To achieve this voltage ratio, speed tests were conducted, 

and the results are depicted in Table 3. These functions are used to obtain a numerical PWM value to be applied 

to each PMDC, employing the PECU power circuitry.  

 

Table 3. Functions for the relation between PWM and voltage of each motor 

 

Motor  Function 

X PWM=11.68 Ea+512.49 

Y PWM=11.05 Ea +513.27 

Z PWM=11.15 Ea +518.05 

W PWM=38.21 Ea +510.91 

 

 

In the following subsection, we explain the image analysis algorithm. 

 

3.2 Image analysis algorithm 

 

Machine vision technology is nowadays widely used instead of human vision to detect interest objects. Some 

previous works reported visual location technology to pick and place at high speed, and precision electronic 

components can be found in [1], [4], [11], and [12]. In this work, the primary purpose of implementing an image 

analysis algorithm is to automatically locate the SMD capacitors placed in containers accurately, in scattered 

order, as shown in Figure 7(a). To achieve this task, we applied a combination of imaging techniques that allows 

segmenting interest objects. As a result, the robotic system was able to segment and tag the objects successfully. 

 
 

Figure 7. Analysis of the SMD components images inside the containers, a) Colored image, b) Grayscale 

image, c) Binarized version, and d) Filtered and labeled desired objects. 
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The images shown in Figure 7, 8, and 9 explain the proposed image analysis algorithm. Figure 7(a) shows the 

camera's original photograph, Figure 7(b) shows the gray scaled version of this image. Next, Figure 7(c) shows 

the results of applying the adaptive thresholding method, well described in [13] and [14] to the previous image. 

If we group the neighboring regions by a connected component algorithm and apply a minimum area filter, 

together with an elimination filter of the areas touching the image bounds, Figure 7(d) is obtained.  

 

We can summarize the proposed image processing algorithm as follows: 

 

1. Image capture and grayscale conversion 

2. Image adaptive thresholding 

3. Image filtering 

4. Connected component labelling 

5. For each object found in the image 

6. { 

7.    Apply segmented pyramid binarization 

8. } 

9.   Add objects 

10.   Apply connected component labelling 

11. For each object found  

12. { 

13.   Apply filter 

14.   Calculate Hu moments 

15. } 

 

 
 

Figure 8. Labelled objects from the SMD components' analysis inside the containers, a) Mask, b) Segmented 

pyramid, c) Binarized image and d) Eroded regions. 
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Once the complete list of tagged (labelled) objects is obtained, we proceed to generate a mask for all the objects, 

as shown in Figure 8(a), to extract each region of interest. After the image is masked with the grayscale image, 

an operation of pyramid segmentation as well described in [24] and [25] is applied, as shown in (Figure 8(b)). 

This operation is used to reduce the number of gray image levels, in this case, to three gray levels. Then, the 

region of the image, whose area is more significant, is selected and binarized (Figure 8(c)). Next, a 

morphological erosion step is conducted [14] to separate the elements and obtain a tractable image of the 

capacitor, as illustrated in Figure 8(d). The localized objects are registered, and a second connected component 

labeling algorithm step is applied next, as illustrated in (Figure 9(a)). Finally, first and second order Hu moments 

are calculated [14] to obtain the center locations and (𝑥
¯
, 𝑦
¯
) orientations,𝜃, of the capacitors, are obtained, 

(Figure 9(b)), [14], by means of the very-well known equations: 

 

𝑥
¯
=
𝑚10

𝑚00
, 𝑦
¯
=
𝑚01

𝑚00
 

(5) 

 

 

where, in the binary case: 𝑚00 is the area of the interest region and 𝑚10 and 𝑚01 are its first order moments 

[14, pages 141-142]. 

 

𝜙 =
1

2
𝑡𝑎𝑛−1 (

2𝜇11
𝜇20 − 𝜇02

) 
(6) 

 

 

where 𝜙 is the orientation of the object's main axis and the central moments are defined by: 𝜇11 = 𝑚11 − 𝑦𝑚10,  

𝜇20 = 𝑚20 − 𝑥𝑚10,  𝜇02 = 𝑚02 − 𝑦𝑚01,  see [14, pages 142-143]). 

 
 

Figure 9. Results from the analysis of the SMD components images inside the containers. a) Labeled 

capacitors and b) Center locations. 

 

4 Experimental Results 
 

To verify the resulting precision movements of the Cartesian robot supported by the image analysis algorithm, 

we conducted some experimental tests. We provide a link to appreciate a short video demonstration of one of 

the test's movements performed by our designed pick and place robotic machines; see [22] and [23]. 

 

4.1 PMDC controller movement test results 

 

Figure 10(a) shows the result of one movement test conducted over the x-axis. Starting from an initial x-position 

of 100 mm, the Cartesian robot moves to a final position of 130 mm with a maximum linear speed of 35 mm/s. 

The elapsed time for this test approximates 1.2s. Figure 10(b) depicts the angular PMDC motor speed, ω. 

Finally, Figure 10 (c) illustrates the resulting PWM units, u, sent to the PMDC motor. Figures 11(a), (b), and 

(c) show the result of one movement test conducted over the w-axis. The initial position is 0 rad, the final 
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position is π rad. In this case, the elapsed time approximates 1.073s. An overshoot in the dynamical response is 

observed. The average set of errors are summarized in Table 4. As can be appreciated, these errors are tolerable. 

 

 
 

Figure 10. Motor of axis x response to a setpoint with a top speed of 35 rad/s. 

 
 

Figure 11. Displacement from 0 to π-rad, angular speed, and controller response in w-axis. 

 

Table 4. The resulting average set of errors. 

 

DoF Error  Units 

x ±0.022 mm 

y ±0.012 mm 

z ±0.004 mm 

w ±0.0087 rad 

 

 

4.2 Image analysis algorithm test results 

 

The results of the application of the image analysis algorithm are next described. We employed a capacitor 

container with eight randomly dispersed SMD capacitors (no occlusions) for these tests, as depicted in Figure 

12(a). The image analysis algorithm sets a cross mark representing the object's geometric center and the 

container's inclination angle. With this information, each capacitor is chosen, picked up, and placed in a 

predefined experimental circular pattern, as depicted in Figures 12 (b) and (c). 100 tests were conducted. In 20 

of them, the robot failed to place some of the components accurately.  
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Figure 12. a) Localization, b) Object Tag and c) Placement of component in a circular pattern. 

 

 
Figure 13. a) Localization, b) Object Tag and c) Placement of component in a vertical pattern. 

 

Despite the system failing in 20 of the experiments to place the 8 capacitors, the robotic machine managed to 

properly place at least six of the eight elements. These test results provide an effective operation of around 95%. 

By using another predefined experimental vertical pattern, the second set of tests was conducted. See, Figure 

13(a), (b), and (c), where similar results were obtained (also around 95% efficiency). RGB led lamps were 

employed as the light source to illuminate the working area. Blue light allowed better machine performance in 

comparison with other colors. 

 

5 Performance Conditions 
 

Here we delimit the performance of the working conditions obtained. As it was mentioned in the Abstract 

Section, a design and implementation of an algorithm for image analysis was successfully achieved. To identify, 

locate and manipulate the SMD capacitors used for testing the system, we consider that they are randomly 

dispersed in a container within the robot work area. The SMD components should not be stacked, so it is 

possible to recognize them from a top view using a video camera when the Cartesian robot approaches the 

capacitor container. Under this scenario, the algorithm for image analysis identifies and locates each capacitor 

in the container, registering its location. Then, the robot takes each capacitor with its pneumatic suction cup. 

Next, the robot approaches the capacitor to the PCB to locate a rectangular predefined vision mark of 3.2mm × 

1.6mm. Lastly, the robot automatically places the capacitor firmly over the mark defined on the PCB. A limit 

sensor helps to accomplish this last action. 

 

We evaluated the effectiveness of the SMD capacitors placing tasks by measuring the obtained area from the 

pixels pattern between the rectangular mark in the PCB and the mounted capacitor to be set correctly, with 

100% of the pixels matching. 

 

6 Conclusions 
 

The design and implementation of this automatic pick and place robotic machine solved the SMD manipulation 

problem that originated from using hand-assembly pick and place machines, achieving an overall accuracy of 

±0.035 mm in linear positioning, representing an integration error of 2.2%.  

 

The performance related to the rotary movements at the suction cup is not satisfactory enough, providing 

precision in terms of degrees of the order of ±5. Despite these deficiencies, it was possible to control the 
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motors' speed according to the different setpoint values without excessive forces that would damage the 

components.  

 

As for the image analysis algorithm, it was possible to effectively locate the SMD capacitor components' center 

of mass and orientation. The error that results in the mark orientation calculation reached an overall value was 

of ±2.5, approximately. Then, by integrating the error that provides the mechanical precision associated with 

the Cartesian robot and the error from the image analysis algorithm, this could deviate to a maximum of ±15 

the SMD components' placement over the predefined marks in the component destination place.  

 

One of the main contributions of this work, compared to other reported research [2], [3], [4], [12], [15], [16], 

[17], [18], [19], [20], and [21], is that our system operates with components arranged in containers instead of 

parts set in supply reels, enabling low volume and cost production of PCB prototypes with isolated SMD 

components. 

 

7 Future Work 
 

In this work, type 1206 SMD capacitors were used as test elements. Therefore, we propose improving the image 

analysis algorithms to recognize many SMD components, including diodes, resistors, and integrated circuits 

with different dimensions as [1]. Additionally, it is necessary to improve the mechanical design, incorporating 

a planetary reduction system to the motor that drives the rotary movement for the w-axis to achieve a finer 

positioning control.  

 

It is intended to continue this work but now adding artificial intelligence (AI) to recognize the PCB components, 

with a large number of experiments in order to reduce errors. With these results, it is necessary to make a 

detailed analysis of the efficiency by the use of other kind of methods reported in the literature to place SMD 

components in PCB prototypes, using automatic Pick & Place machines. 

 

Finally, given that the main motivation of the system is to automatically pick up dispersed components in a 

container, through the image analysis system, a next step will also involve the development of the necessary 

software modules that allow to read CSV coordinate files to determine the position and rotation of each SMD 

components in the desired location within the working space of the Cartesian robot, without the need to use the 

vision system and guides predisposed on the PCB board.  
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