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Abstract. This paper presents the simplified and generalized 

equations to estimate the optimal design based in the concept of 
minimum cost for the reinforced concrete corner combined 

footings under axial load and biaxial moments in each column that 

considers the linear pressure of the soil acting on the footing 
contact surface. This work is presented in two stages: in the first 

stage the minimum contact surface on the footing is obtained, and 

in the second stage the minimum cost for design is obtained. The 
formulation was developed under the condition that the derivative 

of the moment is the shear force. Four examples are shown to 

obtain the minimum cost for the complete design. The solution is 
obtained with the help of Maple-15 software that solves these 

types of problems. The results show that there is no direct 

relationship between the optimal area and the minimum cost 

design. 
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1 Introduction 
 

Foundations or footings are the main elements for the construction of buildings and bridges, which serve to transmit the loads of 

the superstructure to the supporting ground. 

 

Foundations can be classified as:  

1. Shallow foundations (strip footing, isolated footing, combined footing, strap or cantilever footing, raft or slab 

foundations) lightweight structures and/or high load capacity of the soil. 

2. Deep foundations (foundation piles, foundation pits or caissons) heavy constructions and/or shallow soils with low load 

capacity. 

 

Structural engineers usually use trial and error approaches to address with design problems when they need to obtain the most 

economical design of a structural element in terms of its material cost, meeting all the safety requirements imposed by the 

design codes. 

 

The optimal design of structures has been the subject of many studies in the field of structural design. The goal of a designer is 

to develop a “best solution” for structural design under certain considerations. An optimal solution usually involves the most 

economical structure without impairing the functional purposes of the structure. 

 

The main contributions of various researchers on the subject of optimization and mathematical models for the design for 

reinforced concrete foundations are: Algin formulated a practical algebraically solution to obtain the minimum area of a 

rectangular isolated footing subjected to a vertical load and moments in both axes (biaxial bending) [1]. Wang proposed a design 

approach that integrates economic design optimization with reliability-based methodologies to assess the ultimate and 

serviceability limit state requirements to rationally account for geotechnical-related uncertainties [2]. Smith-Pardo developed 

some design aids by graphics to obtain the restriction effect in the bases of columns and walls supported on shallow foundations 

[3]. Basudhar et al. investigated the optimal cost analysis and design for a circular footing subjected to generalized loads 

employing the sequential unconstrained minimization technique in conjunction with Powell’s conjugate direction method for 
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multidimensional search and quadratic interpolation method for a dimensional minimization [4]. Al-Ansari proposed an 

analytical model to obtain the cost of an optimal design of reinforced concrete isolated footings with yield strength of 

reinforcing steel bars and compression strength of concrete based in shear and flexural capacity of the footing [5]. Imanzadeh et 

al. studied two approaches for the design of continuous spread footings, the first design using a one-dimensional finite element 

model and the second design using a three-dimensional finite element model [6]. Ukritchon and Keawsawasvong presented a 

practical model for the optimal design of a continuous footing under to vertical and horizontal loads, to obtain the minimum 

footing size and the minimum reinforcement steel, and it is formulated in a non-linear minimization form [7]. López-Chavarría 

et al. studied the optimal dimensioning for the corner combined footings to obtain the most economical contact surface with the 

ground (optimal area), which supports an axial load, and two orthogonal moments around of the X and Y axes by each column 

[8]. Luévanos-Rojas et al. developed an optimal design for rectangular isolated footings using the linear soil pressure, also 

numerical examples are presented to estimate the minimum cost design of the materials used for the building of the footings 

supporting an axial load, a moment around of the X axis, and other moment around of the Y axis in accordance to the building 

code (ACI 318-13) [9]. Yeh and Huang studied the optimization of reinforced concrete isolated footings using genetic 

algorithms, and also investigated the effects of the yield strength of steel, the compressive strength of concrete, the eccentricity 

of the axial load and the steel bar size [10]. Velázquez-Santillán et al. investigated the optimal design model for reinforced 

concrete rectangular combined footings to obtain the minimum cost design in accordance with the building code (ACI 318-14) 

[11]. Rawat and Mital described a simplified approach for the design of reinforced concrete isolated footings with eccentric load 

that explicitly considers the structural requirements and economics simultaneously, and therefore, results give a foundation with 

minimum cost [12]. Luévanos-Rojas et al. proposed an optimal model to obtain the minimum dimensions (part 1) and a 

mathematical model to obtain the thickness and the reinforcing steel (part 2) for the T-shaped combined footings [13, 14]. Islam 

and Rokonuzzaman introduced an optimal design process (construction cost) for shallow isolated column footing in sands using 

genetic algorithms that include the design parameters and design requirements as constraints [15]. Nigdeli et al. developed a 

methodology based in metaheuristic to obtain the optimal cost of reinforced concrete footings using several classical algorithms 

that are powerful to deal with non-linear optimization problems [16]. Aguilera-Mancilla et al. and Yáñez-Palafox et al. 

developed an optimal model to obtain the minimum dimensions (part 1) and a mathematical model to obtain the thickness and 

the reinforcing steel (part 2) for the strap combined footings, respectively [17, 18]. López-Chavarría et al. investigated the 

optimal design for reinforced concrete circular isolated footings based on a criterion of minimum cost in accordance with the 

building code (ACI 318-14) [19]. Farías-Montemayor et al. investigated an optimized model to obtain the minimum dimensions 

(part 1) and an optimal model to obtain the thickness and the reinforcing steel based on a criterion of minimum cost (part 2) for 

the rectangular pile caps supported on a group of piles [20, 21]. Luévanos-Rojas et al. obtained a mathematical model to obtain 

the thickness and the reinforcing steel for the design of corner combined footings [22]. Solorzano and Plevris presented the 

design of reinforced concrete rectangular-shaped isolated footings using the genetic algorithm in accordance with the American 

Concrete Institute ACI 318-19 [23]. Pane et al. used an approximate numerical model to evaluate the actions in the foundation 

ground and in the tie-beams in terms of foundation size and cost, considering the capacity of tie-beams to absorb part of the 

bending moments, which are generally attributed only to the foundations [24]. Galvis and Smith-Pardo presented design aids, 

experimental verification, and examples for rectangular and circular shallow foundations subjected to axial load and biaxial 

moment [25]. 

 

According to the researched literature, the documents closest to the topic being addressed are: 1) Optimal dimensioning for 

combined corner footings [8], but equations are presented in a very specific way, without showing the different shapes or 

limitations that the footing may have; 2) An analytical model for the design of corner combined footings [22], but they present 

only the equations for the design, without showing the optimal design or minimum cost of the footing.  

 

This paper shows two optimal models for the design of reinforced concrete corner combined footings, the first model presents 

the simplified and generalized equations to obtain the minimum area of contact on the ground and the different shapes or 

limitations that the footing may have, the second model shows the simplified and generalized equations to estimate the optimal 

design or minimum cost with the design parameters and the constraint functions in accordance with the building code 

requirements for structural concrete of the American Concrete Institute. Also, four practical examples for design are presented: 

first - unconstrained sides, second - constraint in the X direction, third - constraint in the Y direction, fourth - constraints in the 

X and Y directions. The solution is obtained with the help of any software that solves these types of problems.   

 

2 Formulation of the optimal model 
 

Fig. 1 shows a corner combined footing that supports three rectangular columns of different dimensions (a corner column and 

two inner columns with an boundary) under an axial load and two orthogonal moments (bidirectional bending) in each column. 
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Fig. 1. Corner combined footing. 

 

Table 1 shows the coordinates of the pressures below footing at each vertex. 

 

Table 1. Coordinates of the pressures below of the corner combined footing. 

Pressures q1 q2 q3 q4 q5 q6 

Coordinates 

x1 x2 x3 x4 x5 x6 

xt xt – a xt – b2 xt – a xt xt – b2 

y1 y2 y3 y4 y5 y6 

yt yt yt – b1 yt – b1 yt – b yt – b 

 

2.1. Model of the minimum contact surface on the ground for the corner combined footings 

 

The objective function to obtain the contact minimum surface on the soil “Amin” is [8]: 

 (1) 

The constraint functions are: 

 
(2) 

 (3) 

 
(4) 

 
(5) 

 
(6) 

 
(7) 

 
(8) 

 
(9) 

 
(10) 

 
(11) 
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(12) 

 (13) 

 (14) 

where: R = Resultant force (kN); MxT = Resultant moment around the X axis (kN-m); MyT = Resultant moment around the Y axis 

(kN-m); xn = Distance in the X direction measured from the Y axis to the fiber under study (m); yn = Distance in the Y direction 

measured from the X axis to the fiber under study (m); Ix = Moment of inertia around the X axis (m4); Iy = Moment of inertia 

around the Y axis (m4), qaa = Available permissible load capacity of the soil (kN/m2). 

 

The constraint functions for the geometric conditions are:  

The equations for the unconstrained sides are: 

 
(15) 

 
The equations for a constraint in the X direction are: 

 
(16) 

 
The equations for a constraint in the Y direction are: 

 
(17) 

 
The equations for two constraints in the X and Y directions are:  

 
(18) 

 
 

2.2. Model of minimum cost for design of corner combined footings 

 

2.2.1. Equations for the bending shear and bending moments 

 

The critical sections for factored moments according to the ACI code are presented on the axes: a, b, c, d, e, f, g, h, i and j (see 

Fig. 2).  
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Fig. 2. Moments 

 

The critical sections for factored bending shear according to the ACI code are presented on the axes: k, l, m, n, o, p, q and r (see 

Fig. 3). 
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Fig. 3. Bending shear 

 

The factored bending shear and the factored moment acting on the footing in the X2 axis for the interval − b1/2 ≤ y2 ≤ b1/2 – c3/2 

[22]: 

 
(19) 

 

(20) 

where: the analysis width on the X2 axis is: w2 = c2 + d/2 for limit column in the X2 direction, and w2 = c2 + d for the column 

without limit. 

 

Now, substituting y2 = b1/2 – c3 – d into Eq. (19) the bending shear Vuk that acts on the k axis is obtained, and substituting y2 = 

b1/2 – c3 into Eq. (20) the moment Mua that acts on the a axis is obtained.  

 

The factored bending shear and factored moment acting on the footing in the X axis for the interval yt – c3/2 ≤ y ≤ yt [22]: 

 
(21) 

 
(22) 

where: the analysis width on the X axis is a for this interval. 

 

The factored bending shear and factored moment acting on the footing in the X axis for the interval yt – b1 ≤ y ≤ yt – c3/2 [22]: 

 
(23) 
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(24) 

where: the analysis width on the X axis is a for this interval. 

 

Now, substituting y = yt – c3 – d into Eq. (23) (if the l axis falls within of this interval) the bending shear Vul is obtained, and 

substituting y = yt – b1 into Eq. (24) the moment Mub that acts on the b axis is obtained.  

 

The factored bending shear and factored moment acting on the footing in the X axis for the interval yt – L2 – c3/2 ≤ y ≤ yt – b1 

[22]: 

 

(25) 

 

(26) 

where: the analysis width on the X axis is b2 for this interval. 

 

Now, substituting y = yt – c3 – d into Eq. (25) (if the l axis falls within of this interval) the bending shear Vul is obtained, and 

substituting y = yt – c3/2 – L2 + c4/2 + d into Eq. (25) the bending shear Vum that acts on the m axis is obtained. Now, substituting 

y = yt – b1 into Eq. (26) the moment Mub that acts on the b axis is obtained, Eq. (25) is set equal to zero to obtain the position of 

the maximum moment ym and later it is substituted into Eq. (26) and the maximum moment Muc is obtained, and substituting y = 

yt – c3/2 – L2 + c4/2 into Eq. (26) the moment Mud that acts on the d axis is obtained. 

 

The factored bending shear and factored moment acting on the footing in the X axis for the interval yt – b ≤ y ≤ yt – L2 – c3/2 

[22]: 

 

(27) 

 

(28) 

where: the analysis width on the X axis is b2 for this interval. 

 

Now, substituting y = yt – c3/2 – L2 – c4/2 – d into Eq. (27) the bending shear Vun that acts on the n axis is obtained. Now, 

substituting y = yt – c3/2 – L2 – c4/2 into Eq. (28) the moment Mue that acts on the e axis is obtained.  

 

The factored bending shear and factored moment acting on the footing in the Y3 axis for the interval – b2/2 ≤ x3 ≤ b2/2 – c1/2 

[22]: 

 
(29) 

 

(30) 

where: the analysis width on the Y3 axis is: w3 = c4 + d/2 for limit column in the Y3 direction, and w3 = c4 + d for the column 

without limit.  
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Now, substituting x3 = b2/2 – c1 – d into Eq. (29) the bending shear Vuo that acts on the o axis is obtained, and substituting x3 = 

b2/2 – c1 into Eq. (30) the moment Muf that acts on the f axis is obtained.  

 

The factored bending shear and factored moment acting on the footing in the Y axis for the interval xt – c1/2 ≤ x ≤ xt [22]: 

 
(31) 

 
(32) 

where: the analysis width on the Y axis is b for this interval. 

 

The factored bending shear and factored moment acting on the footing in the Y axis for the interval xt – b2 ≤ x ≤ xt – c1/2 [22]: 

 
(33) 

 
(34) 

where: the analysis width on the Y axis is b for this interval. 

 

Now, substituting x = xt – c1 – d into Eq. (33) (if the p axis falls within of this interval) the bending shear Vup is obtained, and 

substituting x = xt – b2 into Eq. (34) the moment Mug that acts on the g axis is obtained.  

 

The factored bending shear and factored moment acting on the footing in the Y axis for the interval xt – L1 – c1/2 ≤ x ≤ xt – b2 

[22]: 

 

(35) 

 

(36) 

where: the analysis width on the Y axis is b2 for this interval. 

 

Now, substituting x = xt – c1 – d into Eq. (35) (if the p axis falls within of this interval) the bending shear Vup is obtained, and 

substituting x = xt – c1/2 – L1 + c2/2 + d into Eq. (35) the bending shear Vuq that acts on the q axis is obtained. Now, substituting 

x = xt – b2 into Eq. (36) the moment Mug that acts on the g axis is obtained, Eq. (35) is set equal to zero to obtain the position of 

the maximum moment xm and later it is substituted into Eq. (36) and the maximum moment Muh is obtained, and substituting x = 

xt – c1/2 – L1 + c2/2 into Eq. (36) the moment Mui that acts on the i axis is obtained. 

 

The factored bending shear and factored moment acting on the footing in the Y axis for the interval xt – a ≤ x ≤ xt – L1 – c1/2 

[22]: 

 

(37) 

 

(38) 

where: the analysis width on the Y axis is b2 for this interval. 
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Now, substituting x = xt – c1/2 – L1 – c2/2 – d into Eq. (37) the bending shear Vur that acts on the r axis is obtained. Now, 

substituting x = xt – c1/2 – L1 – c2/2 into Eq. (38) the moment Muj that acts on the j axis is obtained.  

 

2.2.2. Equations for the punching shear 

 

The critical sections for the factored punching shear according to the ACI code are presented on the perimeter formed by points 

1, 7, 8 and 9 in column 1, by points 10, 11, 12 and 13 in column 2, and by points 14, 15, 16 and 17 in column 3 (see Fig. 4).   

 

(39) 

For limit column in the X2 direction:  

 

(40) 

 

 
Fig. 4. Punching shear 

 

For the column without limit:  

 

(41) 

For limit column in the Y3 direction: 
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(42) 

For the column without limit:  

 

(43) 

 

2.3. Objective function to obtain the minimum cost 

 

The total cost CT for the corner combined footing is obtained by the following equation: 

 (44) 

where: Cc = cost of concrete for 1 m3 in dollars, Cs = cost of reinforcing steel for 1 kN of steel in dollars, Vs = volume of 

reinforcing steel, Vc = volume of concrete, and γs = steel density = 76.94 kN/m3.  

 

The volumes for the corner combined footings are: 

 (45) 

 
(46) 

where: t = total thickness of the footing, AsxTL = longitudinal steel area along of the distance “a” at the top with a width “b1” (X 

axis direction), AsxBL = longitudinal steel area along of the distance “a” at the bottom with a width “b1” (X axis direction), AsyTL = 

longitudinal steel area along of the distance “b” at the top with a width “b2” (Y axis direction), AsyBL = longitudinal steel area 

along of the distance “b” at the bottom with a width “b2” (Y axis direction), AsP3 = steel area at the bottom of the column 3 with 

a width w3 (X axis direction), AsxTT = steel area at the top of the surplus b1 with a width b – b1 (X axis direction), AsxBT = steel 

area at the bottom of the surplus b1 and w3 with a width b – b1 – w3 (X axis direction), AsP2 = steel area at the bottom of the 

column 2 with a width w2 (Y axis direction), AsyTT = steel area at the top of the surplus b2 with a width a – b2 (Y axis direction), 

AsyBT = steel area at the bottom of the surplus b2 and w2 with a width a – b2 – w2 (Y axis direction). 

Now, substituting Eqs. (45) and (46) into Eq. (44) is shown as equation follows: 

 

(47) 

Subsequently, substituting α = γsCs/Cc → γsCs = αCc into Eq. (47) is presented by the following equation: 

 
(48) 

 

2.4. Constraint functions for the corner combined footings  

 

The constraint for the moment that acts on each section of the footing is [26]: 

 
(49) 

where: fy = Specified yield strength of reinforcement of steel (MPa); f’c = Specified compressive strength of the concrete at 28 

days (MPa); the analysis widths for moment bw are: for Mua is w2, for Mub, Muc, Mud and Mue is b2, for Muf is w3, for Mug, Muh, Mui 

and Muj is b1; the steel areas for moment As are: for Mua is AsP2, for Mub is AsyTLb, Muc is AsyTLc, Mud is AsyBLd and Mue is AsyBLe, for 

Muf is AsP3, for Mug is AsxTLg, Muh is AsxTLh, Mui is AsxBLi and Muj is AsxBLj. 

 

The constraint for the bending shear that acts on each section of the footing is [26]: 

 (50) 

where: the analysis widths for bending shear bws are: for Vuk is w2, for Vul, Vum and Vun is b2, for Vuo is w3, for Vup, Vuq and Vur is 

b1. 
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The constraint for the punching shear on each section of the footing is [26]: 

 

(51) 

where: the analysis perimeters of the critical section for punching shear b0 are: for Vup1 is c1 + c3 + d (corner column), for Vup2 is 

2c3 + c2 +2d (edge column) and c3 + c2 + d (corner column), for Vup3 is 2c1 + c4 +2d (edge column) and c1 + c4 + d (corner 

column); for βc is ratio of long side to short side of the column; for αs is 40 for interior column, 30 for edge column, and 20 for 

corner column. 

 

For the ratios ρ of As to bwd of the footing are [26]: 

 
(52) 

 

(53) 

where: ρP2 for Mua, ρyTLb for Mub, ρyTLc for Muc, ρyBLd for Mud, ρyBLe for Mue, ρP3 for Muf, ρxTLg for Mug, ρxTLh for Muh, ρxBLi for Mui, 

ρxBLj for Muj. 

 

For the reinforcing steel areas of the footing are: 

 (54) 

 (55) 

 (56) 

 (57) 

 (58) 

 (59) 

 (60) 

 (61) 

 (62) 

 (63) 

 (64) 

 (65) 

 (66) 

 (67) 

 
(68) 

 
(69) 

 
(70) 

 
(71) 

 

3 Practical examples 
 

Design of a corner combined footing that supports three square columns (see Fig. 1), and the following data is given: the three 

columns are of 40x40 cm; L1 = 5.00 m; L2 = 6.00 m; H = Depth of the footing = 2.0 m; PD1 = Dead load of the column 1 = 300 

kN; PL1 = Live load of the column 1 = 400 kN; MDx1 = Moment around the “X” axis of the dead load of column 1 = 100 kN-m; 

MLx1 = Moment around the “X” axis of the live load of column 1 = 120 kN-m; MDy1 = Moment around the “Y” axis of the dead 

load of column 1 = 130 kN-m; MLy1 = Moment around the “Y” axis of the live load of column 1 = 150 kN-m; PD2 = Dead load 
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of the column 2 = 600 kN; PL2 = Live load of the column 2 = 800 kN; MDx2 = Moment around the “X” axis of the dead load of 

column 2 = 120 kN-m; MLx2 = Moment around the “X” axis of the live load of column 2 = 140 kN-m; MDy2 = Moment around 

the “Y” axis of the dead load of column 2 = 140 kN-m; MLy2 = Moment around the “Y” axis of the live load of column 2 = 160 

kN-m; PD3 = Dead load of the column 3 = 800 kN; PL3 = Live load of the column 3 = 1000 kN; MDx3 = Moment around the “X” 

axis of the dead load of column 3 = 160 kN-m; MLx3 = Moment around the “X” axis of the live load of column 3 = 180 kN-m; 

MDy3 = Moment around the “Y” axis of the dead load of column 3 = 180 kN-m; MLy3 = Moment around the “Y” axis of the live 

load of column 3 = 200 kN-m; f’c = 28 MPa; fy = 420 MPa; qa = Allowable load capacity of the soil = 250 kN/m2; γppz = Self-

weight of the footing in a cubic meter = 24 kN/m3; γpps = Self-weight of soil fill in a cubic meter = 15 kN/m3. It is assumed that r 

= Coating concrete = 8 cm, and α = Relationship between the cost of reinforcing steel and the cost of concrete = 90. 

 

The loads and moments applied to the footing are: P1 = 700 kN; Mx1 = 220 kN-m; My1 = 280 kN-m; P2 = 1400 kN; Mx2 = 260 kN-

m; My2 = 300 kN-m; P3 = 1800 kN; Mx3 = 340 kN-m; My3 = 380 kN-m. 

 

The available permissible load capacity of the soil is assumed that is of qaa = 211.00 kN/m2, because to the available load 

capacity of the soil is subtracted the self-weight of the footing and the self-weight of soil fill. 

 

Four examples are shown to obtain the minimum cost for the design of reinforced concrete corner combined footings taking into 

account the same loads and moments applied by each column. Example 1 considers: c1/2 + L1 + c2/2 ≤ a, c3/2 + L2 + c4/2 ≤ b, 

b1 ≥ 0, b2 ≥ 0 (unconstrained sides). Example 2 takes into account: c1/2 + L1 + c2/2 = a, c3/2 + L2 + c4/2 ≤ b, b1 ≥ 0, b2 ≥ 0 

(constraint in the X direction). Example 3 considers: c1/2 + L1 + c2/2 ≤ a, c3/2 + L2 + c4/2 = b, b1 ≥ 0, b2 ≥ 0 (constraint in the Y 

direction). Example 4 takes into account: c1/2 + L1 + c2/2 = a, c3/2 + L2 + c4/2 = b, b1 ≥ 0, b2 ≥ 0 (constraints in the X and Y 

directions).   

 

The solution for the minimum contact surface with the ground by the Maple software is obtained for each example and each 

example presents the theoretical and practical dimensions (see Table 2) [27]. 

 

Table 2. Minimum contact surface with the ground 

Concept 
Example 1 Example 2 Example 3 Example 4 

T P T P T P T P 

Ix (m4) 94.46 99.59 97.39 100.99 73.41 74.55 73.68 74.35 

Iy (m4) 42.37 44.76 41.94 42.92 40.68 32.38 31.44 31.61 

MxT (kN-m) 0 144.49 0 147.79 0 -95.91 -128.83 -91.46 

MyT (kN-m) 0 154.01 0 59.14 0 -42.62 -97.42 -63.87 

R (kN) 3900 3900 3900 3900 3900 3900 3900 3900 

a (m) 5.58 5.60 5.40 5.40 6.87 5.50 5.40 5.40 

b (m) 7.47 7.50 7.69 7.70 6.40 6.40 6.40 6.40 

b1 (m) 1.57 1.65 1.74 1.80 0.64 1.15 1.20 1.20 

b2 (m) 1.66 1.75 1.53 1.60 2.45 2.50 2.46 2.50 

xt (m) 1.75 1.79 1.75 1.76 1.75 1.74 1.72 1.73 

xb (m) 3.83 3.81 3.65 3.64 5.12 3.76 3.68 3.67 

yt (m) 2.76 2.80 2.76 2.80 2.76 2.73 2.73 2.74 

yb (m) 4.71 4.70 4.93 4.90 3.64 3.67 3.67 3.66 

q1 (kN/m2) 211.00 210.44 211.00 210.07 211.00 194.71 192.18 193.34 

q2 (kN/m2) 211.00 191.17 211.00 202.63 211.00 201.95 208.91 204.25 

q3 (kN/m2) 211.00 202.03 211.00 205.23 211.00 199.48 201.90 199.87 

q4 (kN/m2) 211.00 188.78 211.00 200.00 211.00 203.43 211.00 205.73 

q5 (kN/m2) 211.00 199.56 211.00 198.80 211.00 202.94 203.37 201.21 

q6 (kN/m2) 211.00 193.54 211.00 196.60 211.00 206.23 211.00 206.26 

Amin (m2) 18.48 19.48 18.48 19.16 18.48 19.45 19.28 19.48 
                                  where: T = Theoretical, P = Practical 
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The factored loads and the factored moments that act on the corner combined footing due to the columns are: Pu1 = 1000 kN; 

Mux1 = 312 kN-m; Muy1 = 396 kN-m; Pu2 = 2000 kN; Mux2 = 368 kN-m; Muy2 = 424 kN-m; Pu3 = 2560 kN; Mux3 = 480 kN-m; Muy3 = 

536 kN-m.   

 

Now, the practical dimensions of the corner combined footing that supports three square columns are substituted into Eq. (48) to 

obtain the objective function, and into Eqs. (49) to (71) to obtain the constraint functions. 

 

The minimum cost solution for the design of reinforced concrete corner combined footings by the Maple software is obtained 

for each example and each example presents the effective depth, the reinforcing steel areas and the percentage of steel 

(theoretical and practical) (see Table 3) [27]. 

 

Table 3. Minimum cost for the design of reinforced concrete corner combined footings 

Concept 
Example 1 Example 2 Example 3 Example 4 

T P T P T P T P 

d (cm) 86.91 87.00 92.98 97.00 114.96 117.00 114.20 117.00 

ρP2 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρP3 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρxBLi 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρxBLj 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρxTLg 0.00723 0.00721 0.00553 0.00505 0.00661 0.00627 0.00610 0.00580 

ρxTLh 0.00738 0.00736 0.00553 0.00505 0.00661 0.00627 0.00610 0.00580 

ρyBLd 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρyBLe 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 0.00333 

ρyTLb 0.00607 0.00609 0.00596 0.00547 0.00333 0.00333 0.00333 0.00333 

ρyTLc 0.00630 0.00629 0.00600 0.00548 0.00333 0.00333 0.00333 0.00333 

ASp2 (cm2) 36.77 36.83 26.81 28.61 58.70 61.23 36.96 38.41 

AsP3 (cm2) 36.77 36.83 41.21 44.30 36.96 38.41 36.96 38.41 

AsxBL (cm2) 47.80 47.85 55.79 58.20 43.77 44.85 45.68 46.80 

AsxBLi (cm2) 47.80 47.85 55.79 58.20 43.77 44.85 45.68 46.80 

AsxBLj (cm2) 47.80 47.85 55.79 58.20 43.77 44.85 45.68 46.80 

AsxBT (cm2) 71.66 71.72 76.49 79.09 87.96 89.82 86.93 88.77 

AsxTL (cm2) 105.80 105.67 92.61 88.23 86.82 84.37 83.56 81.41 

AsxTLg (cm2) 103.62 103.50 92.58 88.21 86.82 84.37 83.56 81.41 

AsxTLh (cm2) 105.80 105.67 92.61 88.23 86.82 84.37 83.56 81.41 

AsxTT (cm2) 91.52 91.61 98.74 103.01 107.92 110.56 106.89 109.51 

AsyBL (cm2) 50.70 50.75 49.59 51.73 95.16 97.50 95.16 97.50 

AsyBLd (cm2) 50.70 50.75 49.59 51.73 95.16 97.50 95.16 97.50 

AsyBLe (cm2) 50.70 50.75 49.59 51.73 95.16 97.50 95.16 97.50 

AsyBT (cm2) 40.38 40.40 49.12 50.90 29.97 30.12 39.65 40.33 

AsyTL (cm2) 95.86 95.75 89.28 85.02 95.16 97.50 95.16 97.50 

AsyTLb (cm2) 92.25 92.67 88.63 84.83 95.16 97.50 95.16 97.50 

AsyTLc (cm2) 95.86 95.75 89.28 85.02 95.16 97.50 95.16 97.50 

AsyTT (cm2) 60.23 60.29 63.60 66.35 61.67 63.18 59.61 61.07 

CT 41.06Cc 41.07Cc 41.31Cc 42.09Cc 47.72Cc 48.64Cc 47.45Cc 48.38Cc 
                          where: T = Theoretical, P = Practical 

 

4 Results 
 

Table 4 shows the results of the final design of the four examples (effective depth, total thickness, reinforcing steel areas, 

volume of concrete, volume of reinforcing steel, and total volume).  
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Table 4. Final design of the four examples of the corner combined footings 

Concept Example 1 Example 2 Example 3 Example 4 

d (cm) 87.00 97.00 117.00 117.00 

t (cm) 95.00 105.00 125.00 125.00 

ASp2 (cm2) 40.56 (8Ø1”) 30.42 (6Ø1”) 65.91 (13Ø1”) 40.56 (8Ø1”) 

AsP3 (cm2) 40.56 (8Ø1”) 45.63 (9Ø1”) 40.56 (8Ø1”) 40.56 (8Ø1”) 

AsxBL (cm2) 50.70 (10Ø1”) 60.84 (12Ø1”) 45.63 (9Ø1”) 50.70 (10Ø1”) 

AsxBT (cm2) 74.10 (26Ø3/4”) 79.80 (28Ø3/4”) 91.20 (32Ø3/4”) 91.20 (32Ø3/4”) 

AsxTL (cm2) 106.47 (21Ø1”) 91.26 (18Ø1”) 86.19 (17Ø1”) 86.19 (17Ø1”) 

AsxTT (cm2) 94.05 (33Ø3/4”) 105.45 (37Ø3/4”) 111.15 (39Ø3/4”) 111.15 (39Ø3/4”) 

AsyBL (cm2) 55.77 (11Ø1”) 55.77 (11Ø1”) 101.40 (20Ø1”) 101.40 (20Ø1”) 

AsyBT (cm2) 42.75 (15Ø3/4”) 51.30 (18Ø3/4”) 31.35 (11Ø3/4”) 42.75 (15Ø3/4”) 

AsyTL (cm2) 96.33 (19Ø1”) 86.19 (17Ø1”) 101.40 (20Ø1”) 101.40 (20Ø1”) 

AsyTT (cm2) 62.70 (22Ø3/4”) 68.40 (24Ø3/4”) 65.55 (23Ø3/4”) 62.70 (22Ø3/4”) 

Vc (m3) 18.2433 19.8636 24.0308 24.0691 

Vs (m3) 0.2627 0.2554 0.2817 0.2809 

Vt (m3) 18.5060 20.1180 24.3125 24.3500 

CT 41.89Cc 42.85Cc 49.39Cc 49.35Cc 
 

Table 2 shows the four examples to find the optimal area or minimum contact surface for the corner combined footings with the 

ground. The constant parameters for the four examples are: the axial loads (P1, P2 and P3), the moments around the X axis (Mx1, 

Mx2 and Mx3), the moment around the Y axis (My1, My2 and My3), the sides of the columns (c1, c2, c3 and c4), the separation 

between columns (L1 and L2), and the available permissible load capacity of the soil (qaa). The design variables to find are: the 

sides (a, b, b1 and b2), the moments of inertia around each axis (Ix and Iy), the resultant force (R), the resultant moments (MxT and 

MyT), the distance from the center of gravity to the furthest fiber in each direction (xt, xb, yt and yb), and the pressures at each 

vertex of the footing (q1, q2 q3, q4, q5 and q6), these variables are assumed non-negative (except for the moments). This table 

shows the following: 1) The smallest contact area is presented in examples 1, 2 and 3 of Amin = 18.48 m2 (Theoretical), and in 

example 2 of Amin = 19.16 m2 (Practical). 2) The pressure under the footing is uniform for examples 1, 2 and 3 (Theoretical), 

because the resultant moments MxT and MyT are zero, i.e., the resultant force of all the forces is located at the center of gravity of 

the footing. 3) The greatest contact area is presented in example 4 of Amin = 19.28 m2 (Theoretical), and in examples 1 and 4 of 

Amin = 19.48 m2 (Practical). 

 

Table 3 shows the minimum cost for design, the effective depth, the percentages of reinforcing steel, and the reinforcing steel 

areas. The known parameters for the four examples are: the sides (a, b, b1 and b2), the factored moments (Mua, Mub, Muc, Mud, 

Mue, Muf, Mug, Muh, Mui and Muj), the factored bending shears (Vuk, Vul, Vum, Vun, Vuo, Vup, Vuq and Vur) are presented in function of 

“d”, the factored punching shears (Vup1, Vup2 and Vup3) are presented in function of “d”, the maximum and minimum percentages. 

The design variables to find are: the effective depth (d), the percentages of reinforcing steel at each section (ρP2, ρP3, ρxBLi, ρxBLj, 

ρxTLg, ρxTLh, ρyBLd, ρyBLe, ρyTLb and ρyTLc), the reinforcing steel areas (AsP2, AsP3, AsxBL, AsxBLi, AsxBLj, AsxBT, AsxTL, AsxTLg, AsxTLh, AsxTT, 

AsyBL, AsyBLd, AsyBLe, AsyBT, AsyTL, AsyTLb, AsyTLc and AsyTT). This table shows the following: 1) The lowest cost is presented in 

example 1 of CT = 41.06Cc (Theoretical), and also in example 1 of CT = 41.07Cc (Practical). 2) The highest cost is presented in 

example 3 of CT = 47.72Cc (Theoretical), and also in example 3 of CT = 48.64Cc (Practical). 3) The smallest effective depth is 

presented in example 1 of d = 86.91 cm (Theoretical), and also in example 1 of d = 87.00 cm (Practical). 4) The greatest 

effective depth is presented in example 3 of d = 114.96 cm (Theoretical), and also in examples 3 and 4 of d = 117.00 cm 

(Practical).           

 

Table 4 shows the final design. This table shows the following: 1) The smallest effective depth is presented in example 1 of d = 

87.00 cm, and the greatest effective depth is presented in in examples 3 and 4 of d = 117.00 cm. 2) The smallest volume of 

concrete is presented in example 1 of Vc = 18.2433 m3, and the greatest volume of concrete is presented in example 4 of Vc = 

24.0691 m3. 3) The smallest volume of steel is presented in example 2 of Vs = 0.2554 m3, and the greatest volume of steel is 

presented in example 3 of Vs = 0.2817 m3. 4) The smallest total volume is presented in example 1 of Vt = 18.5060 m3, and the 

greatest total volume is presented in example 4 of Vt = 24.3500 m3. 5) The lowest cost is presented in example 1 of CT = 

41.89Cc, and the highest cost is presented in example 3 of CT = 49.39Cc. 
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Fig. 5 shows in detail the dimensions and the reinforcing steel for the corner combined footing in a general way. 

 

 

 

 

Fig. 5. General diagram for a corner combined footing 
 

 

5 Conclusions 
 

The model presented in this paper deals the design of minimum cost for reinforced concrete corner combined footings subjected 

to an axial load, a moment around the “X” axis and a moment around the “Y” axis, these effects are provided by each column. 

The optimal area or minimum contact surface considers the following: The constant or known parameters are: P1, P2, P3, Mx1, 

Mx2, Mx3, My1, My2, My3, c1, c2, c3, c4, L1, L2, and qaa. The decision or unknown variables are: Amin, a, b, b1, b2, Ix, Iy, R, MxT, MyT, 

xt, xb, yt, yb, q1, q2 q3, q4, q5 and q6. 

 

The optimal model is shown to obtain the total minimum cost of the materials used (concrete and reinforcing steel) for the 

construction of the corner combined footings and the constraint functions are generated according to the requirements of the 

building code (ACI 318-19) [26].  

 

The optimal design or minimum cost considers the following: The constant or known parameters are: a, b, b1, b2, c1, c2, c3, c4, H, 

L1, L2 , Mua, Mub, Muc, Mud, Mue, Muf, Mug, Muh, Mui, Muj, Vuk, Vul, Vum, Vun, Vuo, Vup, Vuq, Vur, Vup1, Vup2, Vup3, qa, γc, γg, r, α, f’c and 

fy. The design or unknown variables are: CT, d, ρP2, ρP3, ρxBLi, ρxBLj, ρxTLg, ρxTLh, ρyBLd, ρyBLe, ρyTLb, ρyTLc, AsP2, AsP3, AsxBL, AsxBLi, 

AsxBLj, AsxBT, AsxTL, AsxTLg, AsxTLh, AsxTT, AsyBL, AsyBLd, AsyBLe, AsyBT, AsyTL, AsyTLb, AsyTLc and AsyTT. 

 

The proposed model presented in this paper concludes the following: 

1. The optimal model is flexible and could be used for three or four property lines, because the values of “a” and/or “b” 

can be restricted on the corner combined footings. These values are not affected in the design, because simply Mue 

and/or Muj are equal to zero and Vun and/or Vur does not exist. 

2. The most economical design is presented in example 1 of CT = 41.89Cc, because the dimensions “a” and “b” are not 

restricted (see Table 4). 

3. The order of least to greatest of the examples investigated is:  

a) For the minimum contact area is 2, 3, 1 and 4 (Practical) (see Table 2).  
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b) For the minimum cost for design is 1, 2, 4 and 3 (Practical) (see Table 4).  

4. Therefore, there is no direct relationship between the optimal area and the minimum cost design. 

5. The proposed methodology shown in this work is more economical, more precise and converges more quickly.  

6. The objective function and constraint functions are shown by simplified and generalized equations.    

7. The proposed model could be used for other concrete design codes, this can be done by changing the equations of the 

resistant moment, the resistant bending shear and the resistant punching shear according to the specifics of each code to 

obtain the minimum cost for the corner combined footings. 

 

 

The proposed model presented in this paper for the structural design of corner combined footings subjected to an axial load and 

moment in two directions in each column can be applied to others cases: The footings subjected to a concentric axial load in 

each column, and the footings subjected to an axial load and moment in one direction in each column. 

 

The suggestions for future research could be:  

1) Optimal design of another type of structural foundation. 

2) Optimal design of another type of structural members for reinforced concrete and structural steel. 

3) Optimal design for the complete structure. 
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