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Abstract. Bacterial Vaginosis (BV) is a pathological condition 

that causes complications in women’s health. Efforts to 

characterize microorganisms associated to BV etiology have 
failed. In this work, the Support Vector Machine (SVM) is used as 

base classifier in three scenarios to identify between classes of BV. 

The first scenario uses the entire feature set in the dataset. The 
second scenario uses two sub-datasets created with the features in 

two rankings obtained from previous work. The third scenario uses 

one feature at a time to create classifiers. Performance measures in 
each are given. The dataset used is a real vaginal microbiology test 

of 201 women from Tabasco, Mexico. Results show that SVM 

surprisingly obtained 100% accuracy in a classifier made of a 
single feature. This research is a first effort to lay the groundwork 

for computer-based BV diagnosis as advice. 
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1 Introduction 
 

Bacterial vaginosis (BV) is a dysbiosis commonly detected in sexually active women. During this 

condition, clinical manifestations such as abnormal vaginal discharge in color (gray or green) and a fishy 

smell can be observed [1]. Women with this infection have a 60% higher risk of contracting Human 

Immunodeficiency Virus (HIV) and the chances of transmitting HIV to uninfected partner are increased by 

30% [2]. A large percentage of patients are asymptomatic, which further complicates the diagnosis [3]. 

 

Efforts to characterize BV using microscopic assays, microbiological culture, and sequenced-based 

methods have all failed to reveal an etiology that can be consistently documented in all women with BV 

[4]. Among the classical procedures for the diagnosis of BV are the Amsel criteria and the Nugent score 

[3,5]. Another technique most recently employed for the diagnosis of BV is real-time Polymerase Chain 

Reaction, also known as Quantitative PCR (qPCR) [1,5]. Moreover, most of these procedures are 

unreliable [6], and others offer poor information due to the complex polymicrobial nature of the BV [7]. 

 

In this work, experiments with the use of Support Vector Machine (SVM) to diagnose BV under three 

scenarios are reported. The first scenario uses SVM with the entire set of features in a BV dataset. The 

second scenario consists of experiments for evaluating SVM on two sub-datasets created with selected 

features based on two feature rankings obtained from previous work [8]. In essence, these sub-datasets are 

made of the fifteen features identified as most relevant according to different feature selection methods 

investigated in [8]. The third scenario consists of experiments with SVM for BV diagnosis when using 

individually one feature at a time to create predictive models. The 10-fold Cross-Validation (10FCV) 
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technique was used as a validation scheme in the experiments of this work as similarly was used in 

[8][9][10]. Results obtained from this work show that SVM is 100% accurate using one feature only to 

identify the BV. The dataset used in all experiments consists of molecular diagnosis of bacterial vaginosis. 

It contains 201 instances and 57 features. The samples correspond to women from Comalcalco, Tabasco, 

México, and they were obtained and analyzed at the Research Laboratory in Infectious and Metabolic 

Diseases of the Comalcalco Multidisciplinary Academic Division [1]. 

 

This document is organized as follows: Section 2 describes some works related to methods and techniques 

from the machine learning area focused on the study of bacterial vaginosis. Section 3 details the dataset 

used and the machine learning methods implemented in this research. Section 4 explains in detail the 

experimental phases of the investigation. Section 5 shows the results obtained in the experiments 

developed. Finally, Section 6 provides the general conclusions of this work. 
 

2 Related work 

In this section, some studies related to methods and techniques from the machine learning area applied to 

bacterial vaginosis are described. Some of those works have motivated the use of the algorithms proposed 

in the experimental development of this research. 

In the work of Pérez-Gómez’s [11] classification algorithms such as SVM and Logistic Regression (LR) 

and feature selection methods such as decision trees and Relief were used to determine the combination of 

techniques with the highest predictive values in the bacterial vaginosis diagnosis. In that paper, the dataset 

used consists of clinical and biological information about vaginal microorganisms of patients from two 

universities in Baltimore and Atlanta, United States of America [12]. The experiments consisted of 30 runs 

of the algorithms under a cross-validation scheme. Performance measures such as accuracy, balanced 

accuracy, sensitivity, and specificity were obtained for comparison purposes. Based on the obtained results 

was determined that the SVM classifier algorithm with the use of only the 15 most relevant features 

identified by decision trees obtained up to 100% in all predictive values calculated. Even, in experiments 

with the use of the entire set of features, SVM obtained an accuracy of more than 95%. 

In the research of Yolanda Baker [13], it was proposed to find the most relevant features of BV, and 

applying some classification methods to diagnose it. In the experiments implemented with the WEKA 

software twenty feature selection methods and nine classification methods were applied. Measures such as 

accuracy, recall, and the number of features reduced were some of the performance metrics reported in this 

research. The dataset contains 1601 instances and 418 features. It consists of a combination of clinical 

information and Amsel criteria test results [14]. Through the experiments performed, it was found that the 

Functional Trees as a classification method and WrapperSubSetEval as a feature selection method obtained 

accuracies over 97%. 

In the paper of Beck and Foster [10], the Random Forest (RF) and LR were implemented to diagnose the 

BV. Rank criteria such as purity increase in the node from RF and the mean ratio and standard deviation 

from the LR process were used to evaluate the feature relevancy and create the feature rankings. The 

feature selector method called RELIEF was used to create a third feature ranking. A table with the most 

relevant features of BV was obtained from the feature selection methods, and a sub-dataset with the top 

fifteen features was created. Later, this sub-dataset was used to perform additional experiments. Based on 

the results, features such as Aeroccocus, Atopobium, Dialister, Eggerthella, and Gardnerella were 

categorized as the most relevant for BV. It was also determined that the RF as classifier obtained the 

highest performance in most of the experiments performed and that only a few features are necessary to 

create models with predictive values above 95% of accuracy. 
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3 Materials and methods 
 

This section details the dataset, methods, and techniques used in the experimental design. The methods 

described below were implemented in the R programming-language [15] using the R-Studio [16] 

environment version 1.2.5001.  
 

3.1 Bacterial vaginosis dataset 
 

The dataset [1] used in the experiments resulted from a study of molecular diagnosis of bacterial vaginosis. 

It is integrated by cervical samples of 201 gynecological tests. The microorganisms in the cervical samples 

were determined by qPCR technique (VBPCR). The samples and microbiological analysis were performed 

at the infectious disease and metabolic investigation laboratory from the Comalcalco Multidisciplinary 

Academic Division1, Tabasco, México. 

 

The dataset contained missing data and data that did not correspond to information related to bacterial 

vaginosis, so it was pre-processed. In this work, data preprocessing was similarly implemented as in [8]. 

According to the dataset providers, this process does not reduce the relevant information about bacterial 

vaginosis diagnosis. This process is detailed below: 

 

1. The instances in the dataset with null values were eliminated. 

2. The features in the dataset with null values were eliminated. 

3. The original dataset contains three principal classes: positive, negative, and undefined. The third class -

named undefined- was eliminated with the aim that the classification methods implemented in this paper 

identify between healthy or sick patients -positive or negative-.    

 

Finally, the preprocessed dataset contains 173 instances (125 to BV- and 48 to BV+) and 34 features. A 

summary of the features in the dataset is shown in Table 1. The dataset can be provided to interested upon 

request to the corresponding author. 
 

Table 1. Feature set of bacterial vaginosis dataset [1] after the preprocessing phase. 

Features Values 

VBPCR Class label: 1=positive, 2=negative  

EDADENA, EDAD30 Pacient age 

Citolog, CitologiaOrd, CitologiaBICAT 
Normal, ordinary or abnormal 

citology 

Crispatus, L. Gasseri, L. Iners, L. Jensenii, 

CripatusCq, GasseriCq, JenseniiCq, InersCq, 

Megasphaera Phylotype1, Atopobium vaginae, 

Gardnerella vaginalis., CT, NG, MH, UP, UU 

Microorganisms analyzed by qPCR. 

BVNumero Pathogens number 

BVCombination Pathogens combination 

HSV1/2 Herpes type 1 and 2 

RMY0911ELSY Related with HPV positivity 

ELSY, HPV, HPVgenotypes, 

SingleHPVComplete, MultipleHPVComplete, 

LRIHPVComplete, PHRHPVComplete, 

HRHPVComplete 

Related with HPV 

 

                                                           
1 http://www.ujat.mx/damc 
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3.2 Best predictors of bacterial vaginosis 
 

In the paper of Pérez-Gómez [8], the most relevant features in the BV dataset were obtained through five 

feature selection methods. Based on these methods, two combined feature rankings were obtained. The 

first one was calculated with the scaled and averaged feature relevancy across the five methods 

implemented. The second one was calculated based on frequency analysis. For a more detailed description 

see [8].  The 15 most relevant features in both two rankings are the base to create the two sub-datasets used 

in Scenario 2 experiments. Both two feature rankings are shown in Table 2. 

 
Table 2. Fifteen most relevant features of bacterial vaginosis dataset obtained in [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Support Vector Machine 
 

SVM is a classification algorithm that creates a model representing the sample points in the feature space 

by separating the classes as much as possible in that space [17]. The decision limit represented by a 

hyperplane is placed to leave the largest possible margin on each side [18] (See Figure 1). When a new 

instance is evaluated using an SVM model, this new instance will be classified into either of the classes. 

By maximizing the margin between the two classes the classification performance improves [19]. 

Feature ranking 1 Feature ranking 2 

Atopobium BVNumero 

BVCombination Atopobium 

BVNumero GardnerellaVaginallis 

MegaespheraPhylotype1 MegaespheraPhylotype1 

Gardnerellavaginalis BVCombination 

MH MH 

Crispatus CitologiaBICAT 

EDADENA Crispatus 

CitologiaBICAT LRHPVCOMPLETE 

InersCq ELSY 

UP EDAD30 

CrispatusCq LIners 

Jensenii CitologiaOrd 

Citolog RMY0911ELSY 

CitologiaOrd Citolog 
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SVM is based on a Kernel function. This function transforms the data from given space -also named Input 

Space- to a new high dimensional space -known as Feature Space- where data can be separated with a 

linear surface – called hyperplane- [20] (See Figure 2).  

 

 

Suppose 𝑥1 and 𝑥2 are two data point, ∅ is a mapping and K denotes Kernel which is given by Equation 1. 

 

 𝐾 (𝑥1, 𝑥2) = ∅(𝑥1)𝑇 ∅(𝑥2) (1) 

 

Figure 2. The data is transformed from Input Space (Left) to Feature Space (Right) with a 

Kernel function. Then, where the data in two-dimensions were inseparable, now in three-

dimension space is separable by a hyperplane. 

Figure 1. Graphic representation of how a Support Vectors works. 
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A kernel takes two arguments, apply a mapping on the arguments and then return the value of their dot 

product. Kernels where mapping is identity mapping -Input Space and Feature Space are equal- is called 

linear Kernel and SVM using linear Kernel is called linear SVM [20]. The linear Kernel is calculated with 

Equation 2. 

  

 𝐾 (𝑥1, 𝑥2) = 𝑥1
𝑇𝑥2 ⇒   ∅(𝑥) = 𝑥 (2) 

 

In this work, the SVM algorithm was implemented with the parameters by default. This is; Type: C-

classification, kernel: linear, cost: 1. An implementation of the SVM algorithm is provided in the e1071 R 

software package [21]. 

 
3.4 Performance measures 
 

Accuracy. This performance measure is the number of instances that a classification method predicts 

correctly, expressed as a proportion of all instances to which it applies [22]. The accuracy is obtained in 

Equation (3). 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑡𝑝+𝑡𝑛)

𝑡𝑝+ 𝑓𝑝+𝑡𝑛+𝑓𝑛
  (3) 

 

Where tp is true positive, tn is true negative, fp is false positive, and fn is false negative for the prediction 

values in the confusion matrix obtained from a classifier model. 

 

Balanced accuracy. The dataset [1] used in this paper is imbalanced, that is, the cardinalities of the classes 

are far apart. In other words, the number of instances between classes is remarkedly different. The 

balanced accuracy - or also named weighted accuracy - is the average of the accuracies obtained across all 

classes [22]. The balanced accuracy is calculated in Equation (4). 

 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(

𝑡𝑝

𝑡𝑝+𝑓𝑛
+

𝑡𝑛

𝑓𝑝+𝑡𝑛
)

2
  (4) 

 

Sensitivity. According to Bramer [23], this performance measure is the proportion of positive instances 

that are correctly classified as positive. It is interpreted as the level of confidence that a test will obtain a 

positive result correctly. The sensitivity is obtained in Equation (5). 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (5) 

 
 

Specificity. It is the proportion of negative instances that are correctly classified as negative [23]. The 

specificity is interpreted as the level of confidence that a test will obtain a negative result correctly. The 

specificity is calculated in Equation (6). 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑛

𝑡𝑛+𝑓𝑝
  (6) 
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K-Folds Cross-Validation. It is a method for obtaining reliable estimates for small datasets and prevent 

over fitting. Torgo [24] describes this method as follows: Obtain k equally sized and random subsets of the 

dataset. For each of these k subsets, a model is built using the remaining k-1 sets to evaluate this model. 

The performance of the model is stored and the process is repeated for all remaining subsets. In the end, 

there are k performance measures, all obtained by testing a model. These k performances are averaged, 

with which mean performances are obtained. In this work, the value used for k is 10, as similarly was used 

in [8][9][10], presented in Section 2. 
 

4 Experimental design 

The classification experiments with SVM to investigate its capability to accurately learn to identify 

positive and negative BV instances were performed in three scenarios as described below:  

4.1 Scenario 1: Entire features set. 

Thirty runs of SVM under a 10-fold cross-validation scheme were performed. This scheme was described 

in Section 3.4. Across all 30 runs a different seed was used to ensure different data splitting on each run. In 

this scenario, the entire feature set was used, that is 34 features plus the class label feature. The 

performance of all 30 cross-validation processes were averaged, which is given as final performance of 

this scenario. All metrics such as accuracy, balanced accuracy, specificity, and sensitivity are also reported.  

 
 

4.2 Scenario 2: Sub-datasets from two feature rankings.  

Were performed 30 runs of SVM with 10FCV, but this time, the feature rankings resulting in Pérez-Gómez 

[8] and described in Section 3.2 were used as sub-datasets. These sub-datasets, with only 15 features, 

corresponding to the BV features determined as the most important predictors by the feature selection 

methods used in that research. The performance measures calculated and the validation scheme used were 

the same as those described in Scenario 1. 

 

4.3 Scenario 3: One feature taken at a time.  

Were performed 30 runs of SVM by each feature in the dataset using the class label and one feature at a 

time. This, to evaluate the performance of the SVM to distinguish between both classes of BV using only 

one feature individually. As in Scenario 1, the validation scheme and the performance measures were 

calculated in the same way from each experiment performed. 

The process of all scenarios is shown in Figure 3. 
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5 Results  
 

Experiments were completed, and detailed results are given in this section.  
 

A sample of how an SVM with a linear kernel separates the training instances between classes positive and 

negative is shown in Figure 4. This separation is the hyperplane created by SVM.  Here, only two features 

-MegaespheraPhylotype1 and InersCq- were used to training a SVM model. 

Figure 3. Experimental design performed with Support Vector Machine (SVM) to 

determine the capability to classify between positive or negative Bacterial Vaginosis. The 

experiments were implemented in three different scenarios. 10FCV: 10- folds cross 

validation. 

Figure 4. Hyperplane traced by a linear-Kernel support vector machine (SVM) model using two features of 

the bacterial vaginosis training set. The red area in the plane represents the training instances classified as 

BV positive. The yellow area represents the training instances classified as BV negative. 

MP1: MegaespheraPhylotipo1, ICq: InersCq. 
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5.1 Scenario 1. 

Experiments with 30 runs of SVM under a 10-fold cross-validation scheme were performed. Here, the 

entire set of features was used to evaluate the performance of the classifier. The results of this scenario are 

described in Table 3. 

 

 
Table 3. Performance of support vector machine (SVM) obtained in Scenario 1. For the evaluation of the classifier, the entire 

feature set in the bacterial vaginosis (BV) dataset [1] was used. 

Dataset 
Features 

number 
Accuracy 

Balanced 

accuracy 
Sensitivity Specificity 

Entire BV dataset  34 1 1 1 1 

 

 

According to results, the implementation of SVM with the use of the entire feature set obtained the highest 

level for a classifier across all performance measures computed. 
 

5.2 Scenario 2  

 

The 30 runs of SVM with 10FCV by each sub-dataset were performed. The sub-datasets, created with only 

the 15 most relevant features from the feature rankings in the previous work [5] were used in these 

experiments. The results of this scenario are shown in Table 4. 

 
 

Table 4. Performance of Support Vector Machine (SVM) using two sub-datasets crated with only the 15 most relevant features 

of bacterial vaginosis (BV) from a previous paper [8]. 

Dataset 
Features 

number 
Accuracy 

Balanced 

accuracy 
Sensitivity Specificity 

Subdataset 1 15 1 1 1 1 

Subdataset 2 15 1 1 1 1 

 

In the SVM experiments where the sub-datasets were used, similar results to those first were obtained. 

With the two both sub-datasets created with only the 15 most important features of bacterial vaginosis, 

100% accuracy was obtained. Balanced accuracy, sensitivity, and specificity also obtained 100%. 

 

5.3 Scenario 3 
 

The results of 30 iterations of SVM under a 10FCV scheme are provided. In this scenario, one feature at a 

time was used to create a classification model with SVM. By each feature in the dataset this step was 

repeated. The results of this scenario are shown in Table 5. The features are sorted according to the 

accuracy obtained in the experiment. 
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Table 5. Classification performance obtained by support vector machine (SVM) with the use of one feature at a time in the 

bacterial vaginosis (BV) dataset. 

Features in BV dataset Accuracy 
Balanced 

accuracy 
Sensitivity Specificity 

BVCombination 1 1 1 1 

Atopobium 0.953622 0.948720 0.960106 0.937333 

MegaespheraPhylotype1 0.872826 0.790585 0.976004 0.605166 

GardnerellaVaginalis 0.863221 0.874914 0.848162 0.901666 

BVNumero 0.844196 0.789775 0.912051 0.6675 

MH 0.820758 0.689790 0.984081 0.3955 

ELSY 0.740012 0.537670 0.992008 0.083333 

CitologiaBICAT 0.722712 0.5 1 0 

Crispatus 0.722712 0.5 1 0 

Citolog 0.722712 0.5 1 0 

CitologiaOrd 0.722712 0.5 1 0 

MY0911_A 0.722712 0.5 1 0 

LRHPVCOMPLETE 0.722712 0.5 1 0 

EDAD30 0.722712 0.5 1 0 

JenseniiCq 0.722712 0.5 1 0 

UP 0.722712 0.5 1 0 

RMY0911ELSY 0.722712 0.5 1 0 

LIners 0.722712 0.5 1 0 

HSV12 0.722712 0.5 1 0 

CT 0.722712 0.5 1 0 

MultipleHPVCOMPLETE 0.722712 0.5 1 0 

LGasseri 0.722712 0.5 1 0 

Jensenii 0.722712 0.5 1 0 

HRHPVCOMPLETE 0.722712 0.5 1 0 

InersCq 0.722712 0.5 1 0 

GasseriCq 0.722712 0.5 1 0 

SingleHPVCOMPLETE 0.722712 0.5 1 0 

UU 0.722712 0.5 1 0 

NG 0.722712 0.5 1 0 

HPV 0.722712 0.5 1 0 

MG 0.722712 0.5 1 0 

pHRHPVCOMPLETE 0.721971 0.499487 0.998974 0 

CrispatusCq 0.717743 0.496538 0.993076 0 

EDADENA 0.713480 0.493653 0.987307 0 

 

Based on the accuracies obtained by SVM and the features individually evaluated, features such as 

“BVCombination”, “Atopobium”, “Megaesphera”, “Gardnerella vaginalis”, “BVNumero” and “MH” are 

highlighted between the most related to the BV diagnosis.  

 

Finally, a comparative graphic of all experimented scenarios with SVM is provided in Figure 5. 
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Figure 5.  Performance obtained by support vector machine (SVM) into Scenario 1 described in  

section 5.1, those of Scenario 2 described in section 5.2, and those of Scenario 3 described in section 5.3.  

According to the previous graphic, the highest results with SVM were obtained in Scenario 1, Scenario 2, 

and in the experiments performed with the feature named “BVCombination”.  
 

6 Conclusions 

In this work, the capability of SVM to identify microorganisms associated with bacterial vaginosis in an 

effort to create a computer-based diagnosis was investigated. The experiments were divided into three 

scenarios. In the first one, the entire feature set of the dataset was used to evaluate the classifier. In the 

second scenario, the classifier used two sub-datasets with the most relevant features of BV. In the third 

scenario, the features were individually used to create models with SVM by each. The performance 

measures obtained by SVM in all scenarios were compared. 

Results confirm SVM is a classifier highly accurate in the use of the entire dataset of BV. Even if sub-

datasets with only the fifteen most relevant features of bacterial vaginosis are used, accuracy of up to 

100% can be reached. This means that the use of a reduced set of features can generate models with high 

BV classification accuracy. To knowing the optimal, maximum, and minimal number of features, more 

experiments are necessary. However, these results highlight the potential usefulness of SVM to identify 

those microorganisms related to BV etiology, thus reducing the number of laboratory assays necessary to 

determine the presence of BV with diagnostic accuracy. 

The implementation of SVM with only one feature at a time to determine its classification capability is 

analyzed below. “BVCombination” as a BV feature used to create a model with SVM obtained the possible 
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highest results in the performance of a classifier. The importance of this feature is that it denotes the 

combination of previously identified microorganisms related to bacterial vaginosis (anaerobic bacteria as 

Gardnerella vaginalis, Prevotella spp., Mycoplasma hominis, among others), and it represents the presence 

or absence of those microorganisms in the vaginal sample. If in contrast, the importance of the features 

representing the count of microorganisms in the dataset is highlighted, Atopobium can be considered the 

most related feature to the diagnosis of BV, followed by species such as Megaesphera and Gardnenerella 

vaginalis. This approach results essential for BV diagnosis because in most cases the transition between 

normal and disease status lies on the microbial density of organisms usually present in cervicovaginal 

microenvironment. From a biological point of view, although the presence Gardnerella vaginalis is 

commonly related to the development of BV, most of the studies suggest that the main feature that 

distinguishes the role of Gardnerella vaginalis is the high density observed in vaginal samples, which is 

frequently associated with its pathological behavior. On the other hand, although the presence of 

Atopobium vaginae and/or Megasphaera phylotype 1 are not frequently associated to clinical signs of BV, 

molecular studies have demonstrated their high rate of prevalence in women with a confirmed diagnosis of 

BV. Additional studies are required to determine the biological significance of the findings obtained with 

the present work. 

Based on the variability observed between the accuracy and balanced accuracy performance measures, 

experiments with techniques for data balancing as possible future work are proposed. This proposal is 

founded with the aim to improve the results obtained in this work. 

This is an ongoing research that is part of an extensive exploratory analysis on machine learning methods 

applied in the bacterial vaginosis study. More experiments with other feature selection methods and 

classification techniques are being investigated. 
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