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Abstract. P versus NP is an unsolved problem in mathematics and 

computational complexity. In this paper, we use the formal 

language theory to the computational complexity to analyze P 
versus NP problem from a new point of view. P versus NP problem 

is to determine whether some deterministic algorithm also accepts 

every language accepted by some nondeterministic algorithm in 
polynomial time in polynomial time. Then, we use the theory of 

formal languages to determine whether some deterministic 

algorithm also accepts every language accepted by some 
nondeterministic algorithm in polynomial time in polynomial 

time. We use different problems to display the question of P versus 

NP from Formal Languages Theory View. 
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1 Introduction 
 

P versus NP is an unsolved problem in mathematics and computational complexity. The computational 

complexity contains diverse elements such as the classes of problems complexity, the complexity of algorithms, 

the complexity of instances and other items [1]. 

 

The theory of Problems Computational Complexity is computational complexity classes to determine the 

complexity of the problems [1]. The Computational Complexity introduces diverse categories of complexity 

(P, NP, NP-hard and NP-complete, and others) of real problems [2]. Some examples of the real problems are 

[2]: A) The design of networks, which contains the problems of minimization of route costs. B) Storage and 

recovery, which contains problems to maximize the allocation of weights (products) in partitions (storage 

spaces) to obtain savings in the expenses of storage, among other problems. C) The scheduling and allocation 

of priorities that contain the problems of scheduling of manufacture processes (saving in the idling of the 

manufacturing processes), of transport vehicle fleets (saving in gasoline), and other problems. Some definitions 

of the problems complexity classes are: 

a. P class. It is the class of recognizable languages by a determinist Turing Machine of one tape in 

polynomial time [3]. 

b. NP class. It is the class of recognizable languages by a Non-determinist Turing Machine of one tape 

in polynomial time [3]. 

c. NP-equivalent class. It is the class of problems that are considered NP-easy and NP-hard [4]. 

d. NP-easy class. It is the class of problems that are recognizable in polynomial time by a Turing Machine 

with one Oracle (subroutine). 

e. NP-hard class. The Q problem is NP-hard if each problem in NP is reducible to Q [2, 5]. It is the class 

of problems classified as problems of combinatorial optimization at least as complex as an NP. 

f. NP-complete class. An L language is NP-complete if L is in NP, and Satisfiability ≤pL [6, 3, 7]. It is 

the class of problems classified as decision problems. 

 

The Theory of Algorithms Computational Complexity is computational complexity measures (time and space) 

to determine the relations between the size of algorithms or machines and their efficiency. The Computational 

complexity of algorithms is a way to classify how efficient is an algorithm by means the execution time 

(asymptotic analysis) to solve a problem with the worst-case input. It is expressed by O (f (x1, x2,…xn)) where f 
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is a function of xi parameters of instance [2]. Von Neumann [8] propose the definitions: polynomial time 

algorithm and exponential time algorithm. The time complexity of an algorithm is commonly expressed using 

the big O notation (it was popularized in computer science by Donald Knuth [9]. The most common classes of 

complexity of algorithms are: Polynomial time algorithms (constant time, linear time, quadratic time, cubic 

time, polynomial time, strongly polynomial time, weakly polynomial time, super-polynomial time and quasi-

polynomial time), Sub-linear time algorithms (logarithmic time, log-logarithmic time, and poly-logarithmic 

time), Super-polynomial time algorithms (sub-exponential time, exponential time, factorial time, and double 

exponential time) [1]. 

 

The theory of Instances Computational Complexity is computational complexity measures (time and space) to 

determine the complexity of the problem instances. The Computational complexity of cases is a measure of the 

computational complexity of individual instances (the specification of particular values of the parameters of a 

problem [2]) of a string x on a set A and time-bound t [9]. Instance complexity [9] or ict(x:A) is defined as the 

size of the smallest special-case program for A that runs in time t. The complexity of instance of combinatorial 

optimization problems could be calculated by a mathematical expression based on the descriptive statistics [20]. 

In this paper, we introduce a formal language theory to the computational complexity to analyze the P versus 

NP problem from a new point of view. Section II shows the status of the works on the topic of P versus NP; 

Section III introduces a formal language theory to the computational complexity to analyze P versus NP 

problem from a new point of view, later are experimentation and the conclusions. 

 

 

2 Related works on P versus NP 
 

In this section, we show the status of the works on the topic of P versus NP briefly. 

 

Hemmerling shows relationships to quantifier elimination and a computation tree analysis using first-order 

formulas to find results for P versus NP problems, and other results of structural complexity theory [27]. 

 

Cook mentions that P versus NP problem is to determine whether every language accepted by some 

nondeterministic algorithm in polynomial time is also accepted by some (deterministic) algorithm in polynomial 

time [26]. 

 

Mainhardt shows P versus NP and computability theoretic constructions in complexity theory over algebraic 

structures [25]. 

 

Jukna presents the analogy of P versus NP ∩ co-NP question for the traditional two-party communication 

protocols where polynomial time is replaced with polylogarithmic communication [24]. 

 

Fortnow surveys in a short paper P versus NP problem, its importance to prove P  NP and the approaches to 

deal with the NP-complete problems [16]. Fortnow presents a non-technical point of view of the P versus NP 

Problem. 

 

Allender surveys P versus NP question; he summarizes some of the progress that has been made in 2009 [23]. 

Landsberg describes geometric approaches to variants of P versus NP, results on the role of group actions in 

complexity theory, and a geometric definition of complexity classes [17]. 

 

De Figueiredo [18] contributes to graph theory in the classification of 2 classes of problems for which every 

problem is classified into P or NP-complete [18].  

 

Pérez-Jiménez [19] analysed the P versus NP problem from the membrane computing view provided by an 

unconventional bio-inspired model of computing. 
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3 The P versus NP problem from Formal Languages Theory 

 
 

P versus NP problem is to determine whether every language accepted by in some nondeterministic algorithm 

in polynomial time is also accepted by some deterministic algorithm in polynomial time [15]. In this section, 

we analyze P versus NP problem from formal language theory view. 
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Fig. 1. Every language accepted by in some nondeterministic algorithm in polynomial time is also accepted by 

some deterministic algorithm in polynomial time. 

 

We propose the next definitions: 

Definition. P class from Formal Languages Theory view is the class of recognizable formal languages (alphabet 

and grammar) by a deterministic algorithm in polynomial time. 

 

Definition. P-instances are obtained by specifying particular values of the parameters of a P class. Y1 defines 

yes-instances of the problem or feasible solutions and The D1 defines no-instances or infeasible solutions. 

 

Definition. NP class from Formal Languages Theory view is the class of recognizable formal languages 

(alphabet and grammar) by a nondeterministic algorithm in polynomial time. 

 

Definition. NP-instances areobtained by specifying particular values of parameters of an NP class. Y2defines 

yes-instances of the problem or feasible solutions and The D2 defines no-instances or infeasible solutions. 

 

Definition. NP-hard class from Formal Languages Theory is the class of the Combinatorial Optimization 

Problems that could be transformed by a polynomial transformation that uses the formal language theory to 

another NP Combinatorial Optimization Problem. 

 

Definition. NP-complete Class from Formal Languages Theory view is the class of the Decision Problems that 

could be transformed by a polynomial transformation that uses the formal language theory to another NP 

Decision Problem. 

 

An algorithm is a finite sequence of instructions (a procedure that always terminates) that can be mechanically 

carried out [28].  
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Definition. A nondeterministic algorithm in polynomial time is an algorithm with a finite sequence of 

instructions that performs several steps or computations to obtain different feasible or infeasible solutions in 

polynomial time function. 

 

Definition. A deterministic algorithm in polynomial time is an algorithm with a finite sequence of instructions 

that perform the same steps or computations to obtain the same feasible or infeasible solution in polynomial 

time function. 

 

Definition. A nondeterministic algorithm in exponential time is an algorithm with a finite sequence of 

instructions that performs several steps or computations to obtain different feasible or infeasible solutions in 

exponential time function. 

 

Definition. A deterministic algorithm in exponential time is an algorithm with a finite sequence of instructions 

that perform the same steps or computations to obtain the same feasible or infeasible solution in exponential 

time function. 

 

There are different definitions of languages: Brown (1960) [10] described engineering languages with the 

objective of making a language distinct from the natural language. The engineering languages are languages 

that are designed to specify objective criteria and modelled to meet criteria. Hopcroft and Ullman (1969) [11] 

defined the language as any set V* of sentences on an alphabet V. A sentence of an alphabet is any string of 

finite length composed of symbols from alphabet V [11]. Cook (1971) [12] defined a language as a set G of 

chains of symbols on a fixed, large, and finite alphabet {0, 1, *}. Karp (1972) [13] defined a language as a 

subset of Σ* (the set of all the finite chains of 0’s and 1’s). Karp defined NP-complete problems (L-complete) 

as L (polynomial) complete if LNP and every language in NP is reducible to L[13]. Garey and Johnson (1979) 

[2] mentioned a language as any finite set Σ of symbols, denoted by Σ* the set of all finite strings of symbols 

from Σ, if Σ= {0, 1}. A language corresponds to an NP-complete problem when the values of the instance 

parameters of the problem can be codified in a hypothetical language [20]. 

 

A formal language is defined abstractly as a mathematical system [28]. In this paper, we use the theory of formal 

languages [21] to determine whether some deterministic algorithm also accepts every language accepted by 

some nondeterministic algorithm in polynomial time in polynomial time. Specifically, we use polynomial 

transformations of a language A to language B performed using a computer program that translates text written 

in a source language into another target language [28]. A polynomial transformation is a mechanism that is 

useful for finding out if a problem belongs to a class of problems, determining if a problem is more complex 

than another, and for helping solve complex real-life optimization problems for which no algorithms can be 

found that guarantee to yield exact solutions. Polynomial transformation is possible through transformation 

expressions, NP-completeness theory, graph theory and formal language theory [22].A polynomial 

transformation between NP-hard problems allows a language (L1) and a language (L2) to be transformed in 

polynomial time. 

 

For polynomial transformations exist several definitions [22]: Karp (1972) [13] defined a polynomial reduction 

as follows: considering two languages L and M, then L is reducible to M if there exists a function fMxL. 

Cook (1971) [12] defined a polynomial reduction as follows: a set S of chains of symbols (on a fixed, large, and 

finite alphabet {0.1, *}) is polynomial reducible to a set T of chains of symbols (on a fixed, large, and finite 

alphabet {0.1, *}) if there exists a query machine M and a polynomial Q(n), such that for each input string w 

the computation of M with input w halts in Q (|w|) steps (|w| is the length of w) and ends in the accept state iff 

wS.Garey and Johnson (1979) [2] defined a polynomial transformation from a language L1Σ1
* to a language 

L2Σ2
* as a function f: Σ1

*→Σ2
* that satisfies the following two conditions: (1) There is a polynomial time 

deterministic Turing machine (DTM) program that computes f. (2) For all xΣ1
*, xL1 if and only if f(x)L2.The 

polynomial transformation approach mentions that a language L1 of a complex real-life optimization problem 

Ais transformable in polynomial time to a language L2 of a complex real-life optimization problemB (L1≤PL2) if 

there exists a transformation f from problem A to problem B. This implies a transformation from each instance 

x of L1 to an instance f(x) of L2. 
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Table 1. Differences between definitions of NP using Turing Machine / polynomial reduction and definitions 

from the Formal Languages Theory View / polynomial transformation. 

Definitions from Turing Machine Definitions from the Formal Languages Theory 

View 

P class. It is the class of recognizable languages by 

a determinist Turing Machine of one tape in 

polynomial time [3]. 

P class from Formal Languages Theory view is the 

class of recognizable formal languages (alphabet 

and grammar) by a deterministic algorithm in 

polynomial time. 

NP class. It is the class of recognizable languages by 

a Non-determinist Turing Machine of one tape in 

polynomial time [3]. 

 NP from Formal Languages Theory view is the class 

of recognizable formal languages (alphabet and 

grammar) by a nondeterministic algorithm in 

polynomial time. 

NP-hard class. The Q problem is NP-hard if each 

problem in NP is reducible to Q [2, 5]. It is the class 

of problems classified as problems of combinatorial 

optimization at least as complex as an NP. 

NP-hard class from Formal Languages Theory view 

is the class of the Combinatorial Optimization 

Problems that could be transformed by a polynomial 

transformation that uses the formal language theory 

to another NP Combinatorial Optimization Problem. 

NP-complete class. An L language is NP-complete if 

L is in NP, and Satisfiability ≤p L [6, 3, 7]. It is the 

class of problems classified as decision problems. 

NP-complete Class from Formal Languages Theory 

view is the class of the Decision Problems that could 

be transformed by a polynomial transformation that 

uses the formal language theory to another NP 

Decision Problem. 

 

The steps for polynomial transformation using formal language theory are [21, 22]: 1. Select areal-life 

optimization problem A (source problem). 2. Define a formal language L1 (source language) for the real-life 

optimization problem A.3. Select areal-life optimization problem B (target problem). 4. Define a formal 

language L2 (target language) for the real-life optimization problem B.5. Construct a compiler that transforms 

in polynomial time (L1 ≤P L2) a source language L1into a target language L2. 6. Optionally, it is possible to add 

to the phase of language generation an algorithm that solves target language L2.  

 

In the figure 2 is the codification scheme of real-life optimization problem based on formal languages by using 

a compiler (with phases of lexical analysis, syntactic analysis, semantic analysis and language generator) from 

the source language L1 (which defines yes-instances of the problem or feasible solutions Y1) to target language 

L2 (which defines yes-instances of the problem Y2).The D defines no-instances of both problems.  
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Fig. 2. Codification scheme of the real-life optimization problem based on formal languages. 

 

The steps for polynomial transformation from P-instances to NP-instances (P-instances ≤PNP-instances) and 

from NP-instances to P-instances (NP-instances ≤PP-instances) are:  

1. Select an NP class optimization problem.  

2. Define a formal language L1 for the NP class optimization problem.  

3. Solve the L1 by a nondeterministic algorithm in polynomial time. 

4. Select a P class optimization problem.  

5. Define a formal language L2 for the P class optimization problem.  

6. Construct a compiler that transforms in polynomial time (L1 ≤PL2) a source language L1 into a target language 

L2.   

7. Add to the phase of language generation an algorithm that solves the target language L2by a deterministic 

algorithm in polynomial time. 

 

 

4 Conclusions 
 

This article contained a formal language theory to the computational complexity to analyze the P versus NP 

problem from a new point of view. P class and NP class from formal languages theory view, with the 

fundamental difference of updating the concepts of languages recognizable by determinist and Non-determinist 

Turing Machine of one tape in polynomial time a recognizable formal language (alphabet and grammar) by a 

deterministic and nondeterministic algorithm in polynomial time. 

Also, new definitions were proposed on P-instances, NP-instances, the nondeterministic algorithm in 

polynomial time, the deterministic algorithm in polynomial time, the nondeterministic algorithm in exponential 

time, the deterministic algorithm in exponential time. 
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