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Abstract. This paper is an attempt to exploit the opportunity of 

Semi Definite Programming (SDP), which is an area of convex 
and conic optimization. Indeed, Numerous NP-hard problems can 

be solveby using this approach. Hence, we intend to investigate the 

strength of SDP to model and provide tight relaxations of 
combinatorial and quadratic problems in order to present a new 

polynomial time algorithm for solving this robust model. This 
algorithm was firstly use to solve the nonlinear programs, the 

reason for which we search to extend it to the SDP programs. 

Actually, this algorithm designs the combination of two 
penalization methods. The first one is a primal-dual interior point 

(PDIM) method while the second one is a primal-dual exterior 

point (PDEM) method. Unlike the first method, which converges 
globally, the second one, also called the primal dual nonlinear 

rescaling method, has local super linear/quadratic convergence. 

Therefore, it seems appropriate to use a mixed algorithm based on 
the interior-exterior point method (IEPM). In fact, this resolution 

starts from the interior method, and at a certain level of execution, 

it proceeds to exterior method. Hence, a convergence evaluation 
function is use to know the level of permutation. Through 

evaluation, it has been approve that our approach is use to solve 

some instances of max-cut problem. This problem is a central 
graph theory model that occurs in many real problems and it is one 

of many NP-hard problems, which has attracted many researchers 

over the years. Then, we have used a semi definite programming 
solver SDPA (Semi Definite Programming Algorithm) that is 

modify to include the exterior point method subroutine. From the 

computational performance, we conclude that as the problem size 
increases, interior-exterior point algorithm gets relatively faster. 

The numerical results obtained are promising. 

Keywords: Semidefinite programming, Max-cut Problem, Primal-
dual interior point method, Exterior point method, search direction, 

nonlinear rescaling. 
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1 Introduction 
 

Our problem is an optimization problem (OP). It is non-linear model. We will focus on the minimization problem with 

inequality constraints as follows: 

  

 

   (1) 
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Where and are vectors function. We assume that  and all , are 

smooth.We use the standard primal form of semidefinite program (2)and its dual (3) in block diagonal form, for the original 

problem(1): 

 

             (2) 

 

And its dual : 

 

 (3) 

 

 

Where the matrix , are linearly independent matrices, i.e.,  span an m dimensional linear space 

in , the space of   real symmetric matrices. The vector is the cost vector where is the -

dimentionnel Euclidean space. The matrix    means that  is positive semidefinite with   is the cone of SDP 

matrices.The operator  denotes the standard inner product in : for . The vector and the 

matrix  are the dual variables. The values  and are the optimal value of the primal objective function and the optimal 

value of the dual objective function respectively for (2) and (3). 

 

The duality theory for semidefinite programming is similar to its linear programming counterpart, but more subtle (see for 

example [1-3]. The programs (2) and (3) satisfy the weak duality condition: at the optimum, the primal objective 

is equal to the dual objective . 

 

The semidefinite programming is a convex optimization technique, see [2]. It is an extension of LP (Linear Programming) in the 

Euclidean space to the space of symmetric matrices. SDP problems are linear. Their feasible sets which involve the cone of 

positive semidefinite matrices, a non-polyhedral convex cone and they are called linear semidefinite programs. Such problems 

are the object of a particular attention in the papers by [2], as well on a theoretical or an algorithmically aspect, see for instance, 

the following references [2, 4]. The figure 1 below shows the geometrical representation of Max-Cut problem, which is used 

below in experimentation. It is an elliptope for . 

 

 
 

Fig. 1.Elliptope for , Boundary of the set of SDP matrices in S3. [5] 

 

SDP is not only an extension of LP but also includes convex quadratic optimization problems and some other convex 

optimization problems. The formulation problems as a semidefinite program have been well studied, although before the 

development of interior point methods (IPMs). We distinguish two cases: 
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• The semidefinite programming to model the problem exactly. The optimum provided by IPMs is the real optimum of 

the problem. 

• The semidefinite programming to model a relaxation of a problem. The optimum provided by the IPMs is a lower 

bound of the true optimum problem (in the case of minimization). 

 

SDP has many applications in various fields such as combinatorial optimization [6], control theory [7], robust optimization [5, 

6]and quantum chemistry [6, 8]. See [9, 10-11] for a survey on SDPs and the papers in their references. 

 

Interior-points methods for SDP have sprouted from the seminal work of Nesterov and Nemirovksi [12] who stated the 

theoretical basis for an extension of interior-methods to conic programming and have suggested three extensions of IPM to SDP 

(Affine-scaling algorithms, Projective methods with a potential function, Path-following algorithms) [13-15]. 

 

Interior point methods for nonlinear optimization problems (see [2, 4]) have good theoretical properties and practical 

performance for many problems. They use the sequential unconstrained minimization technique developed by Fiacco and 

McCormick [15] for solving constrained optimization problem with inequality constraints. It is related to a sequence of 

unconstrained minimizations of the classical log-barrier function used the barrier parameter update.  

 

The majority of SDP solvers implement the primal-dual interior point algorithm which is the most efficient. The theory and 

numerical experiments of this algorithm demonstrates its excellent performance for wide scale practical problems [16]. 

Nevertheless, iterates should be kept strictly inside the interior region. If the feasible region is “narrow” iterates that start from a 

point far from a solution may take many iterations to arrive at the region near the solution. If an iterate happens to be near the 

boundary of the feasible region which is not close to a solution, it may not be easy to escape from the region and to arrive at the 

near center trajectory because of possible numerical difficulties when the barrier parameter is small [17]. In this fact, we can use 

the PDEM when the PDIM method stops making progress to find the solution. 

 

Recent research on exterior point methods for convex optimization problems (see [14, 17–20]) show good theoretical properties 

and practical performance for a wide range of problems. Polyak [17-18,19] introduces a study about the primal-dual exterior 

point (PDEM) method for convex optimization problems. The exterior point method has the same computation of the primal-

dual interior approximations PDIM. In addition, the PDEM has local convergence properties and it is faster in practice. The 

work of[14, 19-20]demonstrates the performance of this approach for non-linear optimization problem. 

 

In this paper, we were inspired by the work of polyak and Griva [14, 19-20] on exterior point methods and Semidefinite 

programming. We extend the work of [14, 17–20] for nonlinear problems to SDP problems. We exploit the robustness and the 

global convergence of the interior point method and the fast local convergence of the exterior point method. We implement an 

interior-exterior point method (IEPM) which is the combination of the two methods mentioned above. 

 

The paper is organized as follows: In the next section, we describe briefly the interior point algorithm implemented in SDPA 

solver [21]. In section 3, we discuss the exterior point method in connection to the nonlinear rescaling principle. Section 4 

describes the interior-exterior point method (IEPM). Section 5 contains the numerical results and concluding remarks. Section 6 

is the conclusion and future work. 

 

2 The interior point method 
 

A The interior methods are (also referred to as barrier methods) crucial for convex optimization. For a convex optimization 

problem, we can take the barrier function defined on the feasible set that tends to approach the boundary of feasible set. We 

apply the log-barrier function to problem (1) with  where  is a barrier parameter. 

 

The PDIM algorithm presented in this paper corresponds to the predictor-corrector variant of the primal-dual barrier method 

developed by [22]. The figure 2 above shows the different steps of the PDIM method. 
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Fig. 2. The graphical representation of the interior points algorithm in S2 [22]. 

 

The PDIM tries to solve the below first order necessary optimality conditions Karush-Kuhn-Tucker (KKT) applied to the barrier 

problem by iterative methods. Usually, the search direction uses the Newton step for solving the equality part of the barrier KKT 

conditions. Iterates are kept in the interior region that satisfies  and   by definition. However, in extending 

primal-dual interior-point methods from LP to SDP, certain choices have to be made and the resulting search direction depends 

on these choices. As a result, there can be several search directions for SDP corresponding to a single search direction for LP. 

We can cite the following four search directions: 

• HRVW/KSH/M direction (proposed by [22]), 

• MT direction (proposed by [23]), 

• AHO direction (proposed by [24]), 

• NT direction (proposed by [25]).  

 

The convergence property of the interior-point methods algorithm varies depending on the choice of direction. To compute the 

search direction, the SDPA employs Mehrotra type predictor-corrector procedure [26] with use of the HRVW/KSH/M search 

direction [22, 27-28].  

 

Then, KKT provides necessary and sufficient conditions for optimality: 

 

  (4) 

 

Where  is the identity matrix. The set of solutions  constitutes the central path when  varies. When   tends to , 

the central path converges to an optimal solution of the problem. A summary of the different steps of PDIM algorithm is 

displayed in Figure 3, [1-3, 22]. 
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PDIM Algorithm Description 

 

 
 

Fig. 3.The PDIM Flow chart 

 

We present the details of (a), (b), (c), (d) in the algorithm: 

 

(a): (Checking Feasibility): If    is an , stop the iteration. 

(b) : (Computing a search direction):As described in [17, 26], apply Mehrotra type predictor-corrector procedure to generate a 

search direction. 

(c) :(Computing  and ): To compute  and as primal and dual step lengths, we use the procedure proposed in a previous 

work entitled -Numerical Experiments with a Primal-Dual Algorithm for Solving Quadratic Problems- in order to minimize the 

computation cost the procedure. It gives efficient results in practice. 

(d) : (Generating a new iterate): 

• (Computing  ):  is compute as half the duality measure . This choice is justified by good practical 

results obtained with this simple heuristic for LP 

• (Linearization): There are several possibilities for the linearization of the optimality condition . In the 

present method, the chosen condition is ZX- . It does not preserve symmetry and therefore, only the 

symmetric part of the obtained search direction is kept.  
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Method PDIM is efficient in practice; its polynomiality is prove by showing that  converges linearly [9]. We can augment this 

performance when we integrate it in the switch system with PDEM.  

 

 

3 The exterior point method 
 

The exterior-point method is the generalization of the primal-dual nonlinear rescaling approach. The basic principle of the 

PDEM is to use the Newton nonlinear rescaling method, which consists of using Newton method for finding an approximation 

of the primal minimizer followed by the Lagrange multipliers update, for more details see [18]. 

 

Here, we just review its basic principles. The external point method calculates simultaneously the primal and the dual problems. 

The (PDEM) also has interesting local convergence properties. We used the convergence demonstrations of the PDEP method 

presented in the reference. The work of Polyak.R,Roman.A and Griva.I  [14, 19-20, 30] has given a very advanced step to the 

use of positive semi-definite programming in solving non-linear problems. 

 

This approach is to replace the original problem by a sequence of unconstrained problems whose objective function a 

combination is of   and a function measuring the violation of constraints.  The "exterior" qualifier comes from the property (iii) 

in (6) below, which states that  modifies at the exterior of the admissible set. External penalty methods try to approach the 

minimum from outside of admissible set of . This is an example (a variable and a constraint): 

 

 (5) 

 

 

An external  penalty function said quadratic, is associated to (5) where , with . So the 

problem (5) is replaced by the penalty problem, it is equivalent to , where   is a barrier 

parameter. The effect of this penalty can be observed in Figure 4. 

 

 
 

Fig. 4.Quadratic Penalization for r=1,1.2,1.5,2,3,5. [18]. 

 

 

In our work, we use one popular exterior penalty method which is the quadratic penalty function: with the 

barrier parameter . The function  has the following properties (see [30]): 
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  (6) 

 

 

The Classical Lagrangian , for the equivalent problem, which is our main tool, is given by formula : 

Knowing that  are the Lagrange multipliers.  

 

Then, we solve the SDP problem associated to problem (5) with this penalty. The computation of the Hessian assembling is 

necessary.The Hessian assembling matrix is a square matrix of second-order partial derivatives of a scalar-valued function, or 

scalar field. It describes the local curvature of a function of many variables. Then the Hessian matrix  of  is a square  

matrix, usually defined by . However, the choice of quadratic penalty function allows direct computation of the 

Hessian.The exterior point method allows the simultaneous calculation of the primal and dual approximations. Infeasible points 

are generated in the infeasible region. The limit of these points is an optimal solution to the initial problem. We start with a 

selected infeasible point. A good property of the method is to start at an unfeasible point (outside the feasible region). It has a fat 

convergence.Let us give the general procedure: 

 

Procedure PDEM 

 

   Choose the following initially: 

 a tolerance , 

 an increase factor , 

 a starting point , 

 An initial penalty parameter , 

 .     

   At Iteration  

   1. Solve the SDP relaxation of the problem (5):  

• Calculate the scaling parameter, 

• Find the primal-dual Newton direction from the system, the computation of the Hessian is considered,  

• Find the new primal-dual vector.  

   2. If the test is attained STOP, else iterate,   and go to 1. 

 

For more details about the algorithm, see [18]. 

 

The primal-dual iteration takes places outside the primal interior region.  The method has the similar performance of an interior 

point method. The PDEM utilizes an infeasible start point. We propose to combine between the twice methods (the PDIM end 

PDEM), it has more performance.    

 

 

 

4 The Mixed penalization method: The interior-exterior point method 
 

In short, both the robustness of the interior point method and the local convergence properties of the exterior point method 

encourage us to examine the combination of the methods. The investigation has revealed that the methods can augment each 

other. Indeed, the interior point method can bring the trajectory to the area of a super linear convergence of the exterior point 

method, while the exterior point method can improve the convergence in case the interior point method experiences numerical 

problems. 

 

The interior and exterior point methods are mainly distinct in their driving force of convergence. While, the former requires the 

decrease to zero of the barrier parameter , the latter converges due to the information carried by the vector of the Lagrange 

multipliers y, and then the exterior penalty parameter is so large. 
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On the other hand, the interior point method, which has global convergence properties, exhibits robust behavior that brings its 

trajectory to the neighborhood of the solution. If the barrier parameter is decreased, the exterior point method converges locally 

with the super linear rate [31]. Therefore, both the robustness of the interior point method and the local convergence properties 

of the exterior point method encourage us to examine the combination of the methods. The investigation has revealed that the 

methods can augment each other. Indeed, the interior point method can bring the trajectory to the area of a super linear 

convergence of the exterior point method, while the exterior point method can improve the convergence in case the interior 

point method experiences numerical problems. 

 

We consider the two SDP problems, the primal one (2) and its dual (3). We define the lagrangian as 

follows . Where the operator  denotes the inner product in ,  , = is 

the quadratic penalty function on  and  is a barrier parameter. As cited above, we choose the quadratic penalty function in 

order to minimize the computation of the Hessian assembling. The quadratic penalty function allows direct computation of the 

Hessian.  

 

The algorithm consists of a switch between the PDIM and PDEM methods. This switching must be controlled. We consider a 

function  of measuring the degree of violation of KKT conditions (that controls convergence of the algorithm) [14]. 

We begin with the interior search by executing the PDIM procedure. If the measure of the violation is minimal, we continue 

with the interior search. If this violation is important, the interior point method stops making progress then we switch towards 

the PDEM method. 

 

The proposed algorithm is carried out by modifying the code of the method implemented in the SDPA solver.  Globally, the 

procedure is the switching between the PDIM and PDEM described below.  The algorithm of the mixed penalization methods 

uses the barrier penalization for the interior method and the quadratic penalization of exterior method. 

 

IEPM Algorithm Description  

 

Initialization: 

                Propose an initial solution where , , , 

                Propose values of these parameters: 

: a precision parameter, 

 : a degree of violation KKT (4), 

:a precision parameter, 

 is the number of inner iterations and  is the number of outer iterations, 

Set , . 

 

1. If    is an , Stop, Output: . 

 

2. If , Goto 6. 

 

3. Find new , . 

 

4. If   is an  , Stop, Output:  

 is the solution, end. 

 

5. If , Set ,Goto Step 3. 

 

6. Find new , . 

 

7. If , Stop, Output:  is the solution, end. 

 

8. Goto Step 6. 
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The implementation of this algorithm makes a new version of solver of SDP programs. 

 

 

5 Numerical experiments 
 

A Now, we will describe the computational experience that we have done to compare the new version of our algorithm and the 

classical one. We use the library SDPLIB [32], it is collection of semidefinite programming test problems. All problems are 

stored in SDPA format [33-34]. From the collection SDPLIB, we are particularly interested to solve the Max-cut problem. It is 

one of many NP-hard graph theory problems, which attracted many researchers over the years. However, there is almost no 

hope in finding a polynomial time algorithm for max-cut problem, various heuristics, or combination of optimization and 

heuristic methods have been developed to solve this problem. We use its relaxation to produce an approximate solution to the 

max-cut problem. This approximate solution, however, can be integrated in the branch and bound algorithm to resolve the 

problem to optimality. 

 

In this section, we first define the max-cut problem, and then we present its SDP formulation. We generate big instances for 

particular Max cut problem and we use the instances from the SDPLIB sets.  

  

5.1  Max-cut Problem  

 

A cut in a weighted undirected graph  , is defined as partition of the vertices of  into two sets; and the weight of a 

cut is the summation of weights of the edges that has an end point in each set (i.e. the edges that connect vertices of one set to 

the vertices of the other). Trivially, one can define the max-cut problem as the problem of finding a cut in with maximum 

weight [35]. 

 

a. Notation 

 

In this paper, stands for a weighted undirected graph. is the set of nodes andE is edge set. We consider 

the weight on edge , for with . We assume that  for all .  

 

5.3 Formulation of the Max-cut Problem  

 

In this section, we first model the max-cut problem, and then we show how we can obtain its semidefinite relaxation. This 

relaxation is convex and semidefinite. Let us assign a variable to each node of , and define this variable as follows: 

 if the ith node is  and if the ith node is in , where  is a subset of and   is the complement of . 

 

Now, we can model the max-cut problem as: 

 

 (7) 

 

 

The feasible region of model (7) obviously defines a cut, so we only need to show that the objective function gives the value of 

this cut. Notice that for any  and ,  if nodes  and  are in the same set, and 2 otherwise. This means that  

 is twice as much as the weight of the cut. Dividing this value by 2 gives the weight of the cut. It is worth 

mentioning here that we can write the same objective function as . Model (7) can be translated into vector 

notation as follows: 

 

 

 (8) 
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Where  is the weighted Laplacian   matrix of the graph  with  nodes. For more details from the computing of   see 

[37]. 

 

Lets define a new variable  . It is easy to show that  with . is 

equivalent to As , now we can write model (8) as follows: 

 

 (9) 

 

 

This problem (9) is still hard to solve because of the rank constraint. We Relax the problem by deleting this constraint, (we get 

elliptope figure 1 above). We obtain the following relaxation: 

 

 (10) 

 

We see that MC Relax provides an upper bound on MC. To obtain the SDP format (2) and (3) of (10), we have: 

 

  (11) 

 

And its dual : 

 

  (12) 

 

Where . 

 

Model (11) and its dual (12) is an SDP problem, which can efficiently be solved in polynomial-time, and gives us an upper 

bound on the max-cut problem. This relaxation of max-cut is well known and studied e.g. in [7, 29, 35]. Goemans and 

Williamson [7] have recently shown that the optimal value of this relaxation is approximate to the value of the maximum cut 

with little gap. For the tests, firstly we consider random graphs. We consider a complete graph, the variable can be interpreted 

as being defined on the edge set of the graph. Secondly, we test the max-cut instances of the SDPLIB set. 

 

5.3 Numerical results 

 

Here is a brief description of the Used Tools. The computational tests were performed in Intel(R) Coreâ„ i5 2.50 GHz with 4Go 

memory under Linux 11. To implement the new predictor-corrector variant we used the 6.0 version of the source code of the 

package SDPA by Makoto Yamashita, Katsuki Fujisawa, Mituhiro Fukuda, Kazuhiro Kobayashi, Kazuhide Nakata and Maho 

Nakata [34]. The code was modified to achieve two main purposes: it was adapted to implement the EIPM variant and it was 

optimized to become faster and more robust. We use the library LAPACK [36] for dense case and the library Lanczos [36] for 

sparse case. 

 

To compare the performance of the algorithm corresponding to PDIM in SDPA classic and IEPM in new version of SDPA, we 

generated automatically big instances of max-cut problem and then we test the SDPLIB max-cut problem (maxG11, maxG32, 

maxG51). The motivation to consider this example is to show the effectiveness and the realizability of our procedure and to 

generate big instances. These results are preliminaries. 
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Table I below presents the results of our experimentations. In this table, Problem is the problem to solve, m is the number of 

variables, inner iter is the number of iterations with PDIM (SDPA classic), outer iter is the number of iterations with IEPM 

(SDPA new variant), and CPU is the time in second required to solve the problem. 

 

Table 1.Comparison of the number of iterations and CPU with SDPA classic and SDPA new variant of max-cut problem 

 SDPA Classic SDPA new variant 

Problem n Inner iter CPU Inner iter Outer iter CPU 

Max200        200 10  0.111  6 3  0.105 

Max400   400 12 3.356 7 6 2.950 

Max500   500 14 5.378 11 3 4.512 

Max700  700   13  18.560  7  3  16.987 

Max800       800   11  20.525  7  4  19.109 

Max900     900   14  40.568  6  7  40.319 

Max1000    1000  13 134.256 10  3  134.165 

Max1500 1500 15 295.235 12 3 290.191 

MaxG11      800   10  47.23  4   4  47.200 

MaxG32      2000  17 682.235 7   8 679.652 

MaxG51      1000  17  46.25  12   4 42.257 
 

 

The various numerical experiments show that the IEPM is efficient in practice. The PDIM algorithm is known to converge after 

very little iterations, but with large computation cost for each one. The cost of the iteration is improved with the IEPM and this 

is proved by the decrease of the CPU. The solver is particularly suitable for large sparse problems. Our experimentation is 

preliminary but promising.  

 

 

6 Conclusions 
 

This paper presents SDP relaxation and its resolution of max-cut problem with a new algorithm. We present comparative 

computational study between the classic PDIM implemented in SDPA solver and our combination of the PDIM and PDEM.The 

numerical testing of the interior-exterior point method (IEPM) has shown that the interior point method and the exterior point 

method are capable of augmenting each other. Their combined performance is better than either method can achieve 

individually. Our proposition has three profits; the first one is the exploitation of the performance of each method. Secondly, the 

tightly bound of the SDP relaxation of max-cut and the numerical performance obtained from the combination of the two 

methods give us the opportunity to integrate this relaxation in a branch and bound algorithm to resolve this problem and other 

nonlinear problem to optimality. Finally, we can already use other penalty functions and test them to augment the efficacy of the 

implementation. 
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