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Abstract. This paper presents a software implementation of 

genetic algorithms on autonomous agents that can navigate a 
virtual environment created in Unity3D to find an indicated 

destination. The fitness of the autonomous agents is calculated 

mainly through a proposed fitness function, which evaluates the 
performance to heuristically find a destination on three different 

scenarios with different difficulty and simulation parameters. 

Based on the obtained results, it is determined that the complexity 
of the scenarios, the established parameters, and the randomness of 

the algorithm affect the performance of individuals in finding their 

destination, but without the need to establish a map of predefined 
routes. 
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1 Introduction 
 

Nowadays, the solution of mathematical and/or optimization problems is linked to computer systems that can perform multiple 

simulations in the shortest possible time, using many combinations of input variables. To explore all possible solutions, the use 

of Genetic Algorithms is needed, which involves a stochastic search technique based on the mechanism of natural and genetic 

selection. The central research theme of genetic algorithms is to maintain a balance between exploitation and exploration in 

search of optimal solutions to survive in different environments [1]. The application of genetic algorithms in videogame 

development or virtual reality gives rise to adaptive autonomous agents that can adapt to their environment and improve their 

performance over time [2].   

 

The virtual environments in three dimensions are tools that have increased in utility to visualize, manipulate, and process 

information with the creation of simulators throughout various fields such as education, science, and engineering. In the area of 

video games and virtual reality, scenarios are characterized by the ability to be navigated or explored. They can become 

relatively complex, putting the spatial skills of users to the test [3]. Although there is a difference in the design of these 

environments, living beings can adapt relatively easily, unlike robotic agents with artificial intelligence, which must be 

configured to navigate them, either by programming defined routes, points of interest or in an adaptive manner. 

 

Various works have been developed to create autonomous agents in virtual environments that adapt to various factors. In [4] the 

authors use genetic algorithms for the development of uncontrollable agents that adapt to three types of gaming behaviour: 

survival, combat efficiency (to defeat other agents) and a combination of both, resulting in better artificial intelligence than in 

their better conditions increases up to 5 times its survival time and victory in combat with respect to agents to which the 

evolutionary algorithms were not applied. In [5], a virtual vehicle was developed that is controlled automatically using neural 



Rubio-Sandoval et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 12(1) 2021, 9-20. 

10 

 

networks, and that uses genetic algorithms for its training. Its results are satisfactory when managing to drive on a track without 

colliding with walls. In [6], it is explained the process of developing genetic algorithms and their implementation for finding 

routes within a maze without the use of pathfinding algorithms. 

 

This article proposes the implementation of a genetic algorithm applied over autonomous agents for heuristic navigation within 

a virtual scenario in Unity3D, allowing users to find a destination without the establishment of predefined routes. The use of a 

genetic algorithm in solving navigation problems allows finding more than one route without the need for it to be the shortest 

and for autonomous agents to reach their destination with the possibility of wandering on their way. 

 

2  Theoretical foundations 

 
2.1 Genetic Algorithms  

 
Genetic algorithms are a class of adaptive stochastic optimization algorithms that use natural evolution principles to calculate 

optimal solutions to search problems. It is based on three fundamental principles described by Darwin: reproduction, natural 

selection, and diversity of individuals. Genetic algorithms use a population of solutions, everyone in the population represents a 

candidate solution, and its properties are found on the individuals' chromosome or genotype. Based on these properties, an 

evaluation function called "fitness function" is performed, which calculates a score based on the individuals' possibilities of 

solving a type of problem, which can be minimization, where a lower score is sought or a maximization problem, where higher 

scores are preferred. Over time the population evolves, which occurs with the formation of new individuals through the crossing 

process. In this process, two individuals are selected according to their aptitude and using a selection method. One or more 

children are the product of this cross and contain characteristics of both parents. Like nature itself, a mutation can occur in one 

of these children at low probabilities, which causes its genotype to change partially or completely, to maintain a varied 

population that can expand the search to the desired solution. All new children represent a new generation and replace the old 

population. Genetic algorithms are an iterative process, and each iteration is called a generation. The generations will continue 

to occur until a condition is met, either obtaining the optimal solution or a specific number of iterations have occurred [7]. 

 

2.2 Navigation in virtual environments 
 
Navigation is a task that has been relevant for thousands of years. Its objective is to explore an environment to search for new 

paths, transfer from different points, and optimize routes through shortcuts. The navigation is performed by applying strategies 

that include the integration of roads, trackers, points of interest, route navigation, and map navigation. Each of these strategies 

uses knowledge that involves the spatial ability of individuals, the recognition of their environment, the location of their starting 

point and destination, the learning of a sequence of places and actions and/or the use of a map of the spatial positions of the 

known locations [8]. Within the area of autonomous system applications, self-localization has become a significant challenge for 

autonomous navigation of autonomous devices. Autonomous navigation requires obstacle detection and collision avoidance, 

tracking objects around them, and real-time monitoring of the position and orientation of the device in question [9]. In virtual 

environments such as simulators and video games, the need for autonomous navigation is applied in non-controllable agents to 

create artificial intelligence capable of navigating in its environment. It is common to use pathfinding algorithms, which search 

for the optimal path between two points using a mapping system or the use of graphs. 

 
2.3 Unity 3D  
 

Unity is a video game development tool created by the Unity Technologies company that has tools for rendering images, 2D / 

3D physics, audio, animations, multiplayer networking, NavMesh navigation tools for Artificial Intelligence or support for 

Virtual reality. One of the significant advantages or virtues of Unity is the large community of users it has, not only within the 

Unity forums but throughout the Internet [10]. Unity 3D is available in most of the latest generation platforms and operating 

systems, being able to reuse the same code for all the equipment. This game engine allows programming in three programming 

languages, all object-oriented: C #, JavaScript and Boo (obsolete) [11]. Traditionally, in Unity to solve navigation problems, a 

component called NavMeshAgent is used, which is placed in an agent on the stage and navigates on a surface using a 

Navigation Mesh (NavMesh) [12]. This component was integrated into Unity and other game engines using a library called 

RVO2 with which the user can specify static obstacles, agents and their speeds [13]. 
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3  Methodology 

 
3.1. Genetic algorithms Methodology 

 
The description of the proposed project is based on the requirements for the genetic algorithms: Definition of the problem to be 

optimized, generation of an initial population, natural selection, crossing of individuals, and mutation. The applied algorithm 

uses object-oriented programming techniques; particularly, individuals are governed by a class that contains the characteristics 

of the chromosome of each and methods to perform the actions described above. At the beginning of the simulation, input 

values described in section 4 of this document are introduced and give rise to the instantiation of individuals at the starting point 

of the scenario. When completing an N number of steps described in the configuration screen, the agents proceed to the 

procedure of the genetic algorithm. 

 

3.1.1. Definition of the problem to be optimized 

 

This project is based on the creation of autonomous agents who can adapt to a virtual environment and navigate in a heuristic 

way to reach a defined destination. The navigation performance of individuals within the map is evaluated according to the 

proposed fitness equation (1) and the code in Algorithm 1. This function uses the final agent position at the end of a generation 

to measure a remaining distance to the destination in question. This distance is related to the total distance between the start and 

destination points through a division to obtain a percentage of the remaining distance traveled. The average speed and time of 

movement are part of the individual's genes established at the moment of instantiation of the individual on stage and serve to 

reward those agents that present more significant time and speed of movement. The final resultant value comprises a value from 

0 to 1, where 0 indicates that the target was not approached while 1 is the optimal approach value, returning to the situation in a 

maximization problem. 

 

                                            Fitness = [1-(d/D)] + (speedav / 200) + (Timerav / 300)                                                                      (1) 

 

Where:  

D = Distance between an origin point and end point. 

d = distance between the final position of the agent and the end point. 

speedav = Average movement speed 

Timerav = Average movement time. 

 

Algorithm 1. Fitness function proposed for the algorithm. 
//Fitness function 

public void Fitness(Vector3 target){  

float distFit = 1 - (Vector3.Distance(this.transform.position, 

target)/Vector3.Distance(positions[0], target)); 

float sumMovSpeed = 0; 

float sumMovTime = 0; 

 

foreach(Genes gen in genes){ 

sumMovSpeed += gen.moveSpeed; 

sumMovTime += gen.moveTime;} 

 

float promMovSpeed = sumMovSpeed / genes.Length; 

float promMovTime = sumMovTime / genes.Length; 

 

fitness = distFit + (promMovSpeed/(2*100)) + (promMovTime/(3*100)); 

fitness = Mathf.Clamp(fitness, 0, 1); } 

 

3.1.2 Initial population 

 

The initial population is composed of several individuals that are randomly generated within a range of possible solutions. Each 

individual (chromosome) has a number of genes that are determined in the configuration screen, specified in detail in section 4.2 
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within a variable called “Max steps per generation”. The composition of the individual can be seen in Figure 1, and each of the 

genes comprises: 

 A (motion) vector that determines the direction in which the agent will move. The values in X and Z in Vector3 are 

randomly set between -1f and 1f, while the Y value remains at position 0. 

 A speed of movement that determines how fast it will move. It goes in a random range between 0 and 2 floating. 

 Movement time determines how long it will move in one direction. It is in a random range between 0.5 and 3 float. 
 

 
Fig. 1. Components of an individual. It is composed of a vector, speed, and time of movement. 

 

3.1.3 Natural selection 

 

Natural selection is made after evaluating the fitness function and is responsible for selecting a pair of individuals to cross and 

generate a new individual. For the parent selection, an individual is randomly from the entire population, 

 and its suitability is assessed against a random value ranging from 0 to the best fitness. The individual is selected as a parent if 

its fitness value is higher than the random value; otherwise, it is discarded, and another individual is selected for comparison. 

The flow of selection can be seen in Figure 2 and the steps of Algorithm 2. 
 

 
Fig. 2. Natural selection flow chart to select the parents to mate. 

 

3.1.4 Crossing phase 

 

Once having two parents, the cross is made, which generates an individual that combines the genes of both. The crossing 

performed is called "uniform crossing”, which consists of each gene on the chromosome being transmitted from the father with 

the same probability. A representation of the uniform cross is shown in Figure 3. 
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Fig. 3. Crossing of two chromosomes by means of uniform crossing. 

 

Algorithm 2. Selection of parents for the generation of a new individual, adapted from Daniel Shiffman (2016), Nature of Code, 

Github [14]. 
//Breeding 

public void CreateNewGeneration(){ 

PFDNA[] newPopulation = new PFDNA[population.Length]; 

for(int i = 0; i < population.Length;i++){ 

PFDNA father = acceptReject(); 

PFDNA mother = acceptReject(); 

PFDNA child = father.Crossover(mother); 

child.Mutation(mutationRate);  

newPopulation[i] = child; } 

 

for(int i = 0; i < population.Length;i++){ 

Destroy(population[i].gameObject); 

population[i] = newPopulation[i];} 

generations++;}  

 

private PFDNA acceptReject(){ 

while(true){ 

int i = Random.Range(0, population.Length); 

float r = Random.Range(0, getBestFitness); 

PFDNA partner = this.population[i]; 

if(partner.fitness > r){ 

return partner;} 

                  } 

      } 

 

3.1.5 Mutation 

 

Finally, the individual resulting from the cross undergoes a mutation, which has a low probability of occurring and has the 

function of altering part of the individual's genes in order to recreate nature itself. Thanks to this, it is more difficult for 

individuals to converge to the same DNA, maintaining variety in the population. The probability of mutation and other 

parameters in this project are determined through a configuration screen before the simulation. In this project, each gene of each 

individual has an X probability of mutating. If this is the case, the gene takes new random values among the possible solutions 

established in the initial population. Algorithm 3 shows the proposed mutation. 
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Algorithm 3. Mutation function of the newly generated individual. 
    //Mutation Function 

    public void Mutation(float mutationRate){ 

        float rnd = Random.Range(0f,1f); 

            if(rnd < mutationRate){ 

                float rnd3 = Random.Range(1, 101); 

                if(rnd3 > 50){ 

                    int rnd2 = Random.Range(0, genes.Length-1); 

                    genes[rnd2].direction = new Vector3(Random.Range(-1f, 

1f), 0, Random.Range(-1f,1f)); 

                    genes[rnd2].moveSpeed = Random.Range(0f, 2f); 

                    genes[rnd2].moveTime = Random.Range(0.5f, 3f); 

                } 

                 

            } 

    } 

 

4  Design and Experimentation 

 
4.1 Technical requirements 
 

This project was developed on a PC with Windows 10 x64 operating system with 8GB of RAM and Intel Graphics HD (R) 

4000. The Unity version used is 2019.2.17f1, in the C # Monobehavior environment. 

 

4.2 Design of the experiment 
 

To test the evolutionary algorithm, three scenarios of different difficulty were created for its navigation as shown in Figures 4, 5 

and 6. Each of the tests consists of: A starting point, a target point, the individuals in the population, and obstacles that 

characterize the different scenarios. 

 
Fig. 4. Simulation scenario 1. It consists of navigating around a single obstacle. The starting point is the grid surface on the left. 

The destination is the squared surface on the right, the individual is the cylindrical object, and the obstacles are the dark cubes. 

Difficulty: Easy. 
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Fig. 5. Simulation scenario 2. It consists of navigating between various obstacles. Difficulty: Medium. 

 
Fig. 6. Simulation Scenario 3. It consists of navigating between two obstacles, being necessary to learn how to go around them. 

Difficulty: Hard. 

4.3 Configuration screen 
 
At the beginning of the software simulation, an initial configuration screen is shown (Figure 7) that allows the user to adjust 

parameters directly affecting the simulation and the genetic algorithms. This screen allows the user to modify the values of: 

 

- Population Amount: indicates the number of individuals with whom the simulations will be done. 

- Mutation Rate: indicates the likelihood that an individual will change its genetics. 

- Max Steps per Generation: indicates the length of the individual's genes. 

- Speed Scale: alters the speed of the simulations. 

- Finish Condition: 3 options are offered: until the objective is found, after x successive generations or never. 

- Select Level: 3 differently designed stages are offered. 

 

 
Fig. 7. Initial configuration screen. 
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4.4 Scenario configuration 
 

It is proposed to execute three tests in each scenario to analyze the performance of the algorithm with the following 

initial settings: 

- Population amount: 50, 75 and 100. 

- Mutation rate: 2 %. 

- Max Steps per Generation: 25. 

- Speed scale: 10.  

- Finish Condition: When target found 
To evaluate the performance of the algorithm on the autonomous agents, the best values of each generation, and their 

comparison in each simulation will be considered. 

 

5  Results 

 
Figure 8 shows the path traveled by the individual with the best fitness within scenario 1, showing three reference generations 

(the first two blurred for comparison): initial, an intermediary, and the final. Figure 9 and Table 1 show numerical results 

obtained in simulations of the first scenario. In these tests, the simulation with 75 individuals presented a favourable evolution 

more quickly, managing to find their destination in generation 5, unlike the scenarios with 50 and 100 individuals who found 

their destination in generation 6 (even though the population with 50 individuals started as the most suitable). 

 
Fig. 8. Route performed by the agents with the best fitness in generation 0, 3 and 5, with a population of 75 individuals. 
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Figure 9. Graph of the simulation in the first scenario. A comparison of the performance of the tests with different populations 

is represented in relation to the best fitness obtained (Y) of each generation (X). The initial population is considered as 

generation 0. 

Table 1. Summary of the values obtained in the simulation of the first scenario indicating the number of individuals in the 

population, the number of generations it took to find their fitness, the largest increase and smallest increase in fitness, an average 

increase. The best aptitude with which the simulation started and ended. 

Population Number of 

generations 

Highest 

growth 

Lower growth Average 

growth 

Initial fitness Final fitness 

50 7 0.2018 -0.1830 0.0636 0.5794 0.9610 

75 6 0.1631 0.0323 0.0988 0.4666 0.9608 

100 7 0.2208 -0.0179 0.0854 0.4469 0.9598 

 

In the second scenario, a similar performance to the previous one was presented, being the population with 75 individuals the 

one that first found the destination, taking it until generation 4. The route taken can be seen in Figure 10. Both the population of 

50 and 100 showed a lower performance, taking them until generation 8 and 9, respectively. Both showed regressions in their 

evolution, negatively affecting their final result. Figure 11 and Table 2 show in more detail the results obtained. 
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Fig. 10. Route performed by the agent with the best aptitude in generation 0, 2 and 4, with a population of 75 individuals. 

 
Fig. 11. Graph of the simulation in the second scenario. 

 
Table 2. Summary of the values obtained in the simulation of the second scenario. 

Population Number of 

generations 

Highest 

growth 

Lower growth Average 

growth 

Initial fitness Final fitness 

50 9 0.1594 -0.0427 0.0684 0.4116 0.9592 

75 5 0.1560 0.0317 0.0954 0.5769 0.9587 

100 10 0.1562 -0.0374 0.0593 0.4257 0.9599 

 
Again, the population with 75 individuals presented a higher average increase and without presenting any type of regression. 

The simulation with 100 individuals shows the lowest growth, this might be due to the randomness of the selection and crossing 

process. In the last scenario, the simulations with a smaller population present a more significant problem to navigate the 

scenario. The population with the best performance was that of 100, and the one that presented a low performance was that of 

50. Figures 12, 13, and Table 3 detail the path is taken and the performance of the simulations. 
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Fig. 12. Route performed by the agent with the best aptitude in scenario 3, with a population of 100 individuals. 

 
Fig. 13. Graph of the simulation in the third scenario. 

 

Table 3. Summary of the values obtained in the simulation of the third scenario. 

 

Population Number of 

generations 

Highest 

growth 

Lower growth Average 

growth 

Initial fitness Final fitness 

50 17 0.2813 -0.0950 0.0436 0.2603 0.9584 

75 14 0.1985 -0.1427 0.0263 0.6170 0.9601 

100 6 0.2521 -0.0200 0.10978 0.4101 0.9590 

 
The peculiarity of the third scenario is to force individuals to "go back" for a moment in order to overcome the second obstacle. 

By not going around it, they can get stuck at one point without being able to continue moving towards their destination. Thus, 
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this is demonstrated in the simulation with a population of 50 individuals around 12 generations to get out of that problem 

completely. The population with 100 individuals, having a greater variety of genes allowed to overcome that obstacle more 

quickly. 

 

6  Conclusions 

 
According to the obtained results, it can be determined that the objective function fulfills the purpose of creating autonomous 

agents that can navigate in a virtual scenario in a heuristic way. The autonomous agents can adapt to their environment. 

However, due to the random nature of these algorithms, favourable conditions must be presented so that the population evolves 

in the same way. With the initial configuration, the simulations can be completed at a relatively high speed as it does not take 

many generations to find the destination. The modification of the parameters of initial population size and/or the number of 

steps significantly affect the simulations because with a smaller population it is possible that you do not have a lower number of 

solutions, while a lower number of steps forces individuals to always move in the optimal way possible or otherwise a 

regression is reached and may never find their destination. 

 

Despite its success, the complexity of the scenarios may present a problem for assessing the fitness function, as it evaluates 

favourably the closer the individual is to the destination. If a maze-type scenario is made, which requires individuals to move 

away from the destination to avoid obstacles, it would be necessary to increase the number of steps and hope that individuals do 

not get stuck on dead ends. To solve the previous situation in a more agile way, route search or pathfinding algorithms can be 

applied, which apply graph theory to create a route map. These algorithms solve this type of problem more efficiently. Its 

combination with genetic algorithms allows us to find routes that are the shortest, requiring less effort or less traveled. 
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