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Abstract. The Two-Dimensional Strip Packing Problem (SPP) is 
an NP-Hard problem where a list of rectangular objects must be 

accommodated in a container to minimize the objects' total height 

while avoiding overlapping. It is common to use meta-heuristic 
algorithms to solve this problem, which produces near-optimal 

solutions in a reasonable time. In this paper, we analyze several 

characteristics of SPP instances, looking for features that define 
their hardness. For further development of new algorithms that 

make use of this knowledge. 
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1 Introduction 
 

The arrangement of two-dimensional objects, called strip packing problem, is commonly found in the industrial 

area, where it is most commonly used to cut or arrange parts in materials such as paper, cloth, wood, glass, and 

other materials. Reducing the height used to accommodate as many as possible inside these containers. 

 

The Strip Packing Problem (SPP) is an NP-Hard optimization problem [1], for which the use of heuristic or 

meta-heuristic algorithms is required. The strip packing problem is defined as follows, let 𝑅 be a rectangular 

container with a fixed width 𝑊𝑟 and an infinite height, the problem is to accommodate a set of rectangular 

objects 𝑂 =  {𝑜1, 𝑜2, . . . , 𝑜𝑛} within 𝑅 in order to minimize the height used. 

 

Gaticia et al. approached this problem in [2]; they implemented an algorithm called Strip Packing Problem 

Game (SPPG) using players, patterns, data mining, heuristics, and decision trees.  The algorithm analyzes a 

player's moves, trying to solve a puzzle representing a Strip Packing Problem instance, through data mining 

techniques and patterns.  Their experimental results showed that (SPPG) could identify game patterns from 

previous plays. 

 

In [3], Zhang et al. proposed an improved hybrid meta-heuristic algorithm of variable neighbourhood search 

called Hybrid Algorithm (HA), based on block pattern construction. Their algorithm has three phases. First, it 

uses the less waste strategy, consisting of scoring rules to take the objects that fit with less waste into the strip. 

The second phase selects a better sorting sequence to finish an initial solution.  Finally, the third phase constructs 
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a different neighbourhood; based on block patterns. Their results show that HA is efficient to select a neighbour 

dynamically. Furthermore, computational tests demonstrate that HA surpasses other literature approaches for 

hard instances of the Strip Packing problem. 

 

In [4], Wei et al. analyzed the SPP with unloading constraints; this means that the objects are arranged in a two-

dimensional space for transport and unload- ing.  However, the items belong to different customers, and the 

accommodation impacts the cost of the solution. Thus, this problem aims to minimize the total height while the 

packaging must satisfy the discharge conditions.  This proposal uses segment trees, heuristics for open spaces, 

and random local searches.  The results showed that their implementation outperforms the literature; while 

testing 283 instances of the two-dimensional orthogonal packing problem (2lcvrp, Chr, Brk, Ben, Htu, Hop, 

Bea). 

 

In [5], Martin et al. approached the Constrained Two-dimensional Guillotine Placement Problem (C2GPP), 

which is mainly different from the SPP in restricting the type of cut allowed.  This problem only allows 

orthogonal cuts, which means that the cuts must be parallels to the edges of the objects, and the cut produces 

two rectangles. The authors proposed implementing a nonlinear integer function to obtain linear programming 

for nonlinear models and decision trees.  They developed constraints for each model, such as the step cut 

patterns.  The tests were carried out on three data sets (Chr, Bea); the study concludes that models based on 

ascending storage lead to optimal or semi-optimal solutions with a reasonable computational cost. 

 

For this problem, as for many others, there are differences in the hardness of the instances.  In this research, we 

aim to identify the main characteristics of the instances that define their hardness.  Thus, we analyze several 

data sets used in [4], Wei et al. (2lcvrp, Chr, Brk, Ben, Htu, Hop, Bea) and [5], Martin et al. (Chr, Bea) and 

apply data mining techniques to identify and classify the hardness of the instances and the characteristics that 

make them hard. 

 

The remainder of the paper is as follows, Section 2 specifies the set of instances used in this work, Section 3 

shows the methodology used, Section 4 contains the experimental results. Finally, Section 5 presents 

conclusions and future work. 

 

2 Instances and their classification 
 

Table 1, describes the used instances 2lcvrp, Chr, Brk, Ben, Htu, Hop, Bea.  Where the first column shows the 

name of the data set, the second column contains the cite that uses it, while the third and fourth columns show 

the number of instances and the range of the number of objects for each data set, respectively. 

 

Table 1. Used Instances 

Data Set Author Inst n 

2lcvrp Gendreau et al [6] 180 15 − 255 

Chr Christofides and Whitlock [7] 3 10 − 70 

Brk Burke et al [8] 12 10 − 500 

Ben Bengtsson [9] 10 20 − 200 

Htu Hopper and Turton [10] 9 16 − 28 

Hop Hopper and Turton [11] 14 17 − 199 

Bea Beasley et al [12-13] 25 10 − 22 

 

As we aim to study the characteristics of the instances that make them hard, we need to identify the hard to 

solve instances. Therefore, we solve every instance twenty times using a GRASP algorithm, not described in 

this paper, to produce an average error for each instance. We incline to obtain the average error in this way 

because the state of the art papers did not show results for individual instances, instead they showed their 

average error for every data set. 
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Once we have the average error for each instance, we carried out a k-means clustering algorithm [14] to group 

the instances according to their hardness. This algorithm makes groups of sets of objects into k clusters and 

uses a distance function to measure their proximity. One of the main drawbacks of these algorithms is that it 

needs a parameter the number of clusters desired, which is not always clear to the researcher. One way to tackle 

this problem is to use the elbow method [15] to find the right number of groups to use in the k-means algorithm. 

 

 
Figure 1. Elbow Graph 

 

As we can see in Figure 1, the (elbow technique) suggests using k = 5, because that value is where the curve 

lowers its error reduction. Figure 2 shows the result of the k-means algorithm for k = 5. 

 

 
Figure 2. Classification with 5 Clusters. 

 

Thus we named each group: extremely easy (ee), easy (e), normal (n), hard (h), and very hard (vh). Table 2 

shows the number of instances in each group, where the first column shows the group's name, and the second 

column shows the total number of instances in the group. 

 

Table 2. Groups Assigned 

Cluster Total 

Extremely Easy 41 

Easy 101 

Normal 63 

Hard 39 

Very Hard 9 
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For each one of these groups, we took five random instances for further analysis. Table 3 shows the cite, the 

name of the data set, the number of instances selected from each data set, and the range of size of the instances 

in the data set for columns one to four respectively. 

 

Table 3. Selected Instance 

 

 

 

 

 

 

 

 

 

 

Table 4 shows the 25 selected instances, classified according to the averages of the error range obtained. Where 

the first column shows the name of the data set, the second column contains the instance name, while the third 

and fourth columns show the group member of the instance and the error for each instance, respectively. 

 

It is worth mentioning that the easy group (e) is the one with the most elements with 121 instances, followed 

by the normal, extremely easy, hard, and very hard groups (n) with 63, 41, 39, and 9 instances, respectively. 

 

Finally, once we obtained the five data sets classification per group, we calculate the percentage of objects they 

represent, their average width, the average height, and each group's standard deviation for selected instances. 

 

 

3 Instances Object Analysis 

 
 

After the selection of the five instances for each group, we analyze the characteristics of the objects of the 

instances. Thus, for each instance, we calculate the ratio of the width of the objects regarding the width of the 

strip (see eq.1), 

 

Table 4. Instances Results 

 

Cite Data Set Inst n 

Gendreau et al [7] 2lcvrp 12 15 − 255 

Burke et al [9] Brk 6 10 − 500 

Hopper and Turton [11] Htu 1 25 

Hopper and Turton [12] Hop 3 25 − 199 

Beasley et al [13-14] Bea 3 30 − 50 

Data Set Name Difficult Error 

2lcvrp 2lcvrp112 ee 1 

2lcvrp 2lcvrp117 ee 1 

2lcvrp 2lcvrp141 ee 1 

Brk Brk01 ee 1.02 

Bea Bea23 ee 1.008 

Brk Brk11 e 1.06 

2lcvrp 2lcvrp122 e 1.07 

2lcvrp 2lcvrp129 e 1.07 

2lcvrp 2lcvrp167 e 1.06 

2lcvrp 2lcvrp177 e 1.06 

Brk Brk12 n 1.09 

Htu Htu06 n 1.13 

Hop Hop14 n 1.11 

Bea Bea08 n 1.11 
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𝑤𝑖𝑑𝑡ℎ_𝑟𝑎𝑡𝑖𝑜𝑖  =  (𝑜𝑤𝑖/𝐶𝑊 )               1 ≤  𝑖 ≤  |𝑂| (1) 

 

Where: 

 

• 𝑜𝑤𝑖  is the width of the object 𝑖. 
• 𝐶𝑊 is the container width. 

 

The ratio of the objects' height regarding the best solution height found (see eq.). 

 

 

Where: 

 

• 𝑜ℎ𝑖  is the height of the object 𝑖. 
• 𝐵𝑆𝐻 is the best solution height. 

 

For every instance of Table 1, we used the k-means algorithm and the elbow technique to determine the proper 

number of clusters, regarding the height and 𝑤𝑖𝑑𝑡ℎ_𝑟𝑎𝑡𝑖𝑜. 

 

However, it is worth noting that the elbow technique suggested the same number of clusters for all the studied 

instances. Subsections 3.1 and 3.2 present two instances and the methodology to produce the clustering on their 

objects. 

 

 

4 Experimental Results 
 

In this section we present several graphs of the percentage of the objects (y axis) of the sampled instances of 

groups (ee, e, n, h, vh), and the average 𝑤𝑖𝑑𝑡ℎ_𝑟𝑎𝑡𝑖𝑜/ℎ𝑒𝑖𝑔ℎ𝑡_𝑟𝑎𝑡𝑖𝑜 as percentage (𝑥 𝑎𝑥𝑖𝑠). Tables 5 and 6 

show an example of these data. 
 
4.1. Graphical analysis for ee 

 

Figures 7 and 8 show the sampled instances' graphical data, from the ee set, regarding the objects' width and 

height respectively. Here, we can see that the 2lcvrp1xx instances were designed to generate a satisfying filling 

of the container because all the objects have 100% of 𝑤𝑖𝑑𝑡ℎ_𝑟𝑎𝑡𝑖𝑜 and have one unit of height, which is 

confirmed in Figure8. However, those values are below and around one percentage because their best solution 

height is 75, 134, and 255, and by applying Eq. 1 and 2 those values will present such behaviour. Additionally, 

the rest of the instances in ee are designed to produce a width near 100%; e.g., if we take three elements from 

26% (Bea23) plus the other three elements from the 7%, it will reach 99% of the width of the container. 

 

2lcvrp 2lcvrp118 n 1.09 

Brk Brk07 h 1.21 

Brk Brk08 h 1.19 

Hop Hop06 h 1.14 

Bea Bea12 h 1.2 

2lcvrp 2lcvrp96 h 1.2 

Brk Brk04 vh 1.21 

Htu Htu02 vh 1.24 

2lcvrp 2lcvrp14 vh 1.29 

2lcvrp 2lcvrp07 vh 1.33 

2lcvrp 2lcvrp08 vh 1.3 
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Furthermore, regarding Figure 8, the objects around 46% (Bea23) and 52% are near half 100%, which makes 

them ideal to complement each other, and the objects of 1% fill the remaining space. It is important to highlight 

that these values are mean, which produce worse matches than real individual values. 

 

 

 
 

Figure 7. Width of Objects Extremely Easy Group 

 

 
 

Figure 8. Height of Objects Extremely Easy Group 

 

4.2. Graphical analysis for e 

 

Figures 9 and 10 describe the result obtained from the sampled instances of the set e. Here we can see that 

Brk11 is the easiest instance because of the large number of small size objects, which help fill empty spaces.  
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The rest of the instances hold the same amount of objects, regarding the width, for sizes 8-10, 21-25, and 34-

42. On the other hand, a large number of objects have a low height, except for one instance, which has a 

percentage of the height of 36 and 49. However, the objects in this instance can be tiled, and for the remaining 

space, we can use objects of 5%.  Figure 9 shows that small objects are predominant, with roughly 40% of the 

objects, while Figure 10 shows the same predominance of small objects with 59.9% of the objects. 

 

 

 
Figure 9. Width of Objects Easy Group. 

 

 
 

Figure 10. Height of Objects Easy Group. 

 

 

 

 

 

 



Oviedo-Salas et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(2) 2021, 16-24. 

 

23 

 

5 Conclusions 
 

In this research, we used datasets from state of the art to identify instances of hardness for the two-dimensional 

strip packing problem. 

 

These datasets were processed through the use of clustering techniques, which, according to the results obtained, 

allowed the classification of five groups named as; extremely easy (ee), easy (e), normal (n), hard (h), and very 

hard (vh). 

 

Once we obtained the groups, we sample five instances of each group to further analyse their objects’ width 

and height. 

 

These analysis, allow us to note that the number of objects in the instances was not relevant, neither the 

𝑤𝑖𝑑𝑡ℎ_𝑟𝑎𝑡𝑖𝑜 nor the distribution of objects in the groups small, medium, and large regarding the 𝑤𝑖𝑑𝑡ℎ 𝑟𝑎𝑡𝑖𝑜 

and ℎ𝑒𝑖𝑔ℎ𝑡_𝑟𝑎𝑡𝑖𝑜. However, the ℎ𝑒𝑖𝑔ℎ𝑡_𝑟𝑎𝑡𝑖𝑜 of the objects does show a direct relation with the hardness of 

the instances. It is not that the number of objects in the large group was higher; rather, the heights of the objects 

(regarding the best solution height) for all the groups of objects (small, medium, and large) were taller. 

 

Therefore, as future work, we propose using the analysis of the ℎ𝑒𝑖𝑔ℎ𝑡_𝑟𝑎𝑡𝑖𝑜 as a way to identify the hardness 

of the instance and therefore produce an ad-hoc algorithm to solve each kind of instance or create a hyper-

heuristic algorithm. 
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