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Abstract. The picking problem is part of the item picking problem 

in a warehouse for a given order and is the most expensive in the 

process; Optimizing the item collection time is essential because 
it is a bottleneck in the service rate of orders fulfilled and has a 

significant impact on the efficiency of the supply chain. This work 

proposes a strategy to reduce the picking time by minimizing the 
route using a genetic algorithm; a comparison is performed with 

other heuristic strategies in warehouses with different 

morphologies and considering orders of different sizes. 
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1 Introduction 
 

Warehouses are an essential component for managing any logistics operation and supply chain management; 

storage controls the movement, shipment, receipt, and collection of merchandise. They are the component 

responsible for linking suppliers, production systems, distribution systems, and points of sale; Warehouse 

performance significantly affects the supply chain [1], so it is essential to establish policies on the operation of 

the warehouse that improve its efficiency. 

 

In warehouses, the different activities carried can be classified and distinguished into storage, receipt of goods, 

receipt of orders, preparation of orders, classification, packaging, and shipping. Each of these activities depends 

on the context and design of the warehouse. 

 

In warehouses, spatially distributed items must be collected; a quite popular system is the so-called picker to 

parts where the aisles of the warehouse must be travelled to retrieve the products stored on shelves to satisfy a 

customer's order. Bozer & Kile [2] mentions that each item is distributed in different warehouse locations, 

which implies a displacement and planning for its collection. 

 

Among the different activities to be carried out in a warehouse, the picking or collection process is the most 

laborious and repetitive, generating 50% to 70% of the warehouse's operating costs [3]. The picking process 

time is broken down into travel time 50%, search time 20%, collection time 15%, preparation time 10% and 

others 5% [4]. 

 

The picking problem can be approached analytically using an integer programming model to achieve the 

optimal solution to the problem. In the work of Valle, Beasley, & da Cunha, [5] a model is proposed that expose 

two phases, calculating the shortest route between two locations in a warehouse and as a second phase focuses 

on the optimization problem of finding the best selection sequence to minimize the distances traveled, this is 

like  combinatorial optimization problems, these problems expose high levels of complexity. 

 

The complexity of algorithms is classified into two classes, one of which is of type P whose solution algorithms 

are polynomial in time; and the other classification is NP problems, whose solution are hard to found using 

efficient deterministic algorithms; but which can be solved by non-deterministic or heuristic algorithms [6]. 
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The picking problems are NP-Hard type. Heuristics and metaheuristics are used to find the solution; 

Considering obtaining the optimal travel solution to prepare each order becomes impractical due to the 

computational cost, the time required, and the time required volume of orders over a period. 

 

 

 

2 Heuristic  strategies for picking 
 

Considering the impact of the cost in travel time on the operation of a warehouse and the cost of finding the 

optimal solution, heuristic techniques have been developed to planning the route or collection of items of an 

order that help to decrease the collection time [7]. These intuitive strategies have different travel time costs and 

generally do not obtain the optimal time. However, they are very usual in practice due to the low cost of 

implementation and the time required for planning. 

 

Return 

For each item to collect, you go to the last item in the aisle, once you take it, go back to the beginning of the 

aisle and continue with the rest. 

 

S-Shape 

The S-shaped strategy, transversal strategy, leads to a route in which the corridors, which must be visited, are 

completely travelled. Aisles, where there is nothing to collect, are omitted. Therefore, the corridors its visit in 

an S shape. 

The collector enters the aisle from one end and exits the aisle from the other end, starting on the left side of the 

warehouse. After choosing the last item, the order picker returns to the front of the aisle. This strategy is 

common because it is straightforward to use and understand. 

 

Largest Gap 

In the Largest Gap strategy, the first and last corridors containing items to be collected are completely covered. 

The picker goes through the other aisles without crossing the largest space between each pair of neighbouring 

items to collect within the same aisle; this space is the largest gap. The heuristic largest gap is especially useful 

when the time to change aisles is short, and the number of selections per aisle is low. 

 

 

 

 

 

 

 

 

 

 

 

Figure  2 S-shape strategy Figure 3 Return Strategy Figure 1 Largest Gap strategy 
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3 Warehouse layout 
 

The organization and distribution of space in different operating areas include the design of warehouses; in 

general, a warehouse has reception, quality control, adaptation of loading units, storage, order preparation, and 

dispatches. A suitable choice of the distribution of the storage area affects the performance of the operations 

[8] in general, the choice of the distribution of the warehouse depends on the particular operation. 

 

For the picking problem, the relevant area is the storage area, which is generally considered a rectangular 

arrangement containing the racks, places where the items are stored, and the corridors where you can walk to 

collect items. 

 

The part of the warehouse between two adjacent transverse corridors is called a block, and the corresponding 

part of the corridor through which one can transit is denoted as an aisle or corridor. Storage locations are 

identical in size and arranged on either side of the aisles, whereby order pickers are enabled to enter and exit to 

pick items. From this scenario, various solution strategies to the picking problem are analyzed. In the present 

study, a design of cells with homogeneous storage capacities and a distribution parallel to each other is 

considered to form a warehouse block; The dispatch point in the upper left is considered, where picking the 

different items within the warehouse is considered begins and ends. In the example, in Figure 5, the warehouse 

layout has four vertical and three horizontal aisles. 

 

The parameters that define a layout are: 

1. Number of racks, the set of contiguous cells that store the items. 

2. Number of cells for each rack. 

3. Number of vertical corridors. 

4. Front corridor and bottom corridor, first and last horizontal corridor; for a given layout it is 

considered that at least this pair of corridors exist. 

5. Number of horizontal aisles, at least two for every layout. 

 

 

To compare the performance of the picking strategies; the location of the items is distributed with a uniform 

random distribution, and it is considered a set of layouts with the following parameters: 

 

1. Number of horizontal corridors: 3, 4, 5, ..., 10 

2. Number of vertical corridors: 3, 4, 5, ..., 10 

3. Number of items in order: 5, 10, …, 50 

 

Each experiment is given by the combination of parameters, horizontal aisles, vertical aisles, and the number 

of items in one order; four algorithms are evaluated for each experiment: S-shape, Return, Largest Gap, and a 

solution approach based on a genetic algorithm described below. 

 

 

 

Figure 4 Warehouse layout, the 

inverse triangle marks the 

dispatch point.  
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4 Picking based on genetic algorithms 
 

Genetic algorithms use a strategy based on a heuristic search directed in the space of possible solutions, and the 

phenomenon of biological evolution inspires them, the first proposal of John Henry Holland [9] has become 

popular for problems where the analytical solution is impractical. 

 

For genetic algorithms, several elements are required. First, the coding of the problem in a particular 

representation called phenotype that contains the semantics of the solution to the problem posed. Also, a set of 

individuals or solutions called population, validation of the individual as a solution to the problem, and operators 

on the solutions or individuals, mutation operator, and crossover operator working on the solution space to 

generate new individuals with potentially better performance. 

 
 

Figure 5 Genetic Algorithm:i  initialization, f(X): evaluation, ?: stop condition, Se: selection, Cr: crossover, 

Mu: mutation, Re: Replacement, X*: best solution. [15] 

 

The operation of the genetic algorithm is shown in Figure 6, where the different components are illustrated: set 

of initial solutions, objective function, operators to generate new solutions based on current solutions, and a 

stop criterion or when to stop searching for the next best solution. 

 

The genetic algorithm is an iterative optimization procedure that starts from a set of admissible solutions, called 

the initial population; For the picking problem, an admissible solution is the order of collection of items in the 

warehouse that is encoded as a vector with numerical entries, which is called the individual or phenotype. 

 

Later, order the solutions according to the efficiency, which is called the aptitude or quality of the individual. 

Based on the quality of the solutions, it builds a set of new solutions, next generation, taking into account the 

best characteristics of the individuals in the population. In genetic algorithms, the inheritance of characteristics 

between generations is a fundamental component and emulated using a binary operator called crossing, and a 

unary operator called mutation. 

 

In the following subsections, we will detail how to model the warehouse picking problem. 

 

 

4.1 Representation of the travel problem as phenotype 

 

The genetic algorithm requires coding the problem into a vector of characteristics regularly with entries that 

take integer values, which define a solution to the picking problem for the items of an order. 

 

Due to complexity considerations in the size of the problem and based on the heuristics used in strategies like 

S-shape, Return, and Largest-Gap; it's proposed one partition of the warehouse area. 

 

Let a  set X, a partition of X , denoted by P(X) is a family of subsets Xi  with the following properties: 

 Xi                   = ∅ 

 ⋃i Xi  = X 
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In the warehouse the elements Xi in the partition are the same size to get a homogeneous pathlength over each 

partition element; To the elements in the partition, we denominate them as sites. 

 

The partition of the warehouse area is established as follows, for each rack in the vertical aisle is segmented 

into three zones of the same length, and for the horizontal aisles of the warehouse, an area covering half of the 

previous block is associate with the middle of the next block, as shown in Figure 7. Partitioning is applied to 

generate a level of discretization over the warehouse and allows reducing the search time for the picking route, 

due it considers a smaller space in factor 1: 3 in the racks. 

 

 

 

Note that partitioning in three regions is independent of the length of the rack. In the case of racks of length 

greater than nine, the partitioning of the rack keeps in three regions, two adjacent to the horizontal aisles and 

one central. For warehouses with more racks, the partitioning level not change; however, more partitions would 

be taking on the warehouse layout. 

 

For the search of suitable picking routes; A two-step strategy is used; first, the partitioning zones it is 

determined, followed by an optimization of picking route over the partition zones. 

 

For an order O = {item1, item2, …, itemn} with n ítems the route to travel, it is encoded using the partitioning 

and sort by picking preference. Let the el itemi in the Pk(i) site; A sequence or order to visit the sites in the 

warehouse can be represented using the following vector: 

 

[ P1   Pk2    Pk3   Pk4   P1  ] 

 

Note that all tours start and end at site 1, the dispatch point. The order of the sites in the vector is interpreted as 

a priority over which block is more important to visit first, which implicitly establishes the order of collection 

of items. 

 

For example, consider the items in the order  O = { item1, item2, …, item8 }  spatially distributed in the racks 

and partitioning zones as shown in Figure 8. The set of sites to consider encoding the travel problem as an 

individual for the genetic algorithm considers the sites: 

 

{ P1, P5, P19, P25, P33, P32} 

 

The visit to the following sequence of sites gives a codification as a solution to collect the items: 

 

Figure 6.- Warehouse partition, dispatch 

point is mark with a triangle inverted 
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P1→P2→P3→P4→P5→P6→P7→P8→P26→P25→P24→P23→P22→P21→P20→P19→P18→P35→P34→P33→P32

→P31→P22→P13→P4→P3→P2→P1 

 

 

For the type of layout, the permissible displacements given a position in a site are horizontal or vertical 

movements, a Manhattan type-world. The previous representation can be simplified, considering only the points 

of change direction in the path.  The previous sequence can be equivalently denoted by 

 

P1 → P8 → P26  → P18 → P35 → P31 → P4 →P1 

The previous path has a length of 76 and visits the sites that contain the items in the following order: 

[ P1, P5, P25, P19, P33, P32 ] 

 

Another possible route in the warehouse can be represented as: 

 

P1 → P8 → P26 → P25 → P26 → P27  → P35 → P18 → P19 → P18 → P1 

It has a length of 66, and the order of visit of the sites containing the items is: 

 

[ P1, P5, P25, P32, P33, P19 ] 

 

Note from the above trajectories: 

1. The trajectories have variable lengths for the same list of sites to visit or equivalently for collecting 

items. 

2. The length of the route is calculable from the representation in phenotypes. 

3. The length of the path is calculable from the partitioned representation. 

 

The phenotype of the length variable in the genetic algorithm is expensive; to reduce the length in the 

representation, only includes the order of visits for the sites. The individuals are permutations on the priority of 

visit in the sites that contain the items to be collected; This approach does not specify the path to follow from 

one partition element to another, it does not describe the list of intermediate sites to traverse. However, 

considering that the aim is to minimize the length of the path, the shortest path between pairs of sites can be 

used. 

 

The minimum distance between sites pairs can be pre-calculated using matrix algebra, based on the incidence 

matrix associated with the warehouse layout, which is defined as follows: 

Figure 7 Example of an order of items 

distributed in the warehouse layout 
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The adjacency matrix associated with the layout in the warehouse is a square matrix, A(aij), of dimension n, 

where n is the number of sites in the layout partition, where the entry aij  of matrix A is defined as one if the 

site i of the partition is contiguous to site j of the partition. For example, in the layout of Figure 8, the site P0 of 

the partition is contiguous to the site P17 and P1, but it is not contiguous to the site P2. 

 

The powers of the adjacency matrix of the layout corresponding to the warehouse contain information about 

the paths between the partition sites. For a power k of the adjacency matrix A, denoted by: 

 
The value of the entry pij  in the matrix P takes the value of the number of paths that exist of length k between 

the site Pi and Pj elements. Based on this property [11] the minimum path length between sites can be 

determined. 

 

The power matrix corresponding to the adjacency matrix contains the minimum path length between two 

different sites [10]. The maximum power to calculate that determines the minimum path length corresponds to 

the cardinality of the set of sites in the layout partition. 

 

 
 

Algorithm 1.- Calculation of the minimum distance matrix 

 

Figure 8 Left, visualization the adjacency matrix for the layout in the Figure 6. Rigth, visualization of 

minimum distances between elements of the partition. The partition number is displayed at the edges. 
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For the example in Figure 7, the maximum power is 35, because there are 35 blocks in the partition. This 

minimum distance matrix can be pre-calculated using Algorithm 1 and serves for any order of items that need 

to be optimized. 

 

Figure 8 shows the adjacency matrix and the minimum path length matrix between partition elements, the 

distance values are displayed as a heat map; Notice the patterns that form due to the spatial distribution of the 

layout. 

 

The minimum distance matrix provides the minimum path length; however, it does not provide the sequence of 

sites that make up the minimum length path. To find the minimum length path, see Figure 9, between pairs of 

elements Pi and Pj different scenarios are considered for the position of the partition elements Pi and Pj in the 

warehouse layout, which are list below: 

 

1. The sites are in the same vertical corridor 

2. The sites are between the same horizontal aisles, and they are on the same line of horizontal racks 

3. The sites are in different rows of horizontal racks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first case, the minimum trajectory is trivial; the second case, the minimum path is obtained by traveling 

vertically towards the first horizontal corridor in the direction of the destination site, after moving horizontally 

towards the vertical destination corridor and finally moving vertically towards the destination site; The route 

using this policy is minimal since a Manhattan layout is assumed. There are two routes to consider in the third 

case: take the route through the horizontal corridor above or through the horizontal corridor below. The distance 

is different depending on the distances to the ends, see Figure 9 images of the bottom line. The path above has 

a length of: 

β1+ϕ+α 

and the path through the corridor below has a length of: 

α+ϕ+β2 

 

 

analyzing both trajectories in general, the trajectory above its shorter if: 

β1+ϕ+α ≤ α+ϕ+β2 

by canceling common terms; the previous inequality is accomplished if and only if: 

β1≤β2 

Figure 9.- Spatial distribution cases for the calculation of the minimum trajectory between pairs of elements of 

the partition. Upper left corner case 1, upper right corner case 2, lower-left corner case 3, lower right corner 

detail of distances for case 3 

 

2 

ø 

1 
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Therefore, if β1≤β2 the minimum path to reach Pj is through the upper corridor, otherwise the route with 

minimum distance is through the below corridor. 

 

With the above, given two sites of the partition Pi and Pj in the layout of a warehouse, we can always find the 

minimum route that connects them. For the encoding of the phenotype in the genetic algorithm, it is sufficient 

to represent the visit order of the sites and not is necessary the complete path. 

 

The approach used to minimize the total path is based on the minimization of the path between pairs of sites, a 

dynamic programming method supported by Bellman's optimality principle [12] that establishes: 

 

"An optimal decision sequence that solves a problem must fulfill the property that any subsequent subsequence 

of decisions, which has the same final state, must also be optimal concerning the corresponding subproblem." 

 

For the coding of the phenotype of a given order O ={item1, item2, …, itemn} first the sites to visit are obtained 

{P1, P2, …, Pk} 

and later an individual is represented as a permutation of the sites to visit: 

(Pπ(1), Pπ(2), …, Pπ(k)) 

where the order of appearance in the tuple is interpreted as the order of visit of the site in the collection of items 

in the warehouse; the space of possible permutations we denote by Ωk with k the number of sites to visit. 

 

The search space for solutions is combinatorial size as a function of the number of sites to visit given an order 

O. If the number of sites to visit is N, the solution space has size N!, the size of the solution space Ωk grows 

combinatorically in relation to the number of sites to visit associated with the items in an order O. 

 

4.2 Crossover operator 

 

The genetic algorithm requires a binary operation on the solution space, which, given two solutions encoded as 

phenotypes, generates a new solution inheriting properties from the parents. The crossover operator, ⨝i, is a 

binary operation defined on the individuals of the population, Ωk, dependent on the cut-off point i: 

⨝i: Ωk×Ωk → Ωk 

 

The definition is based on the operator of [13] with the variant of considering the crossover operator in terms 

of the parent's travel priority.  Let an order O, and P1,P2,…,Pm sites to visit and let X, Y  solutions: 

X:(Pπx1,Pπx2,….,Pπxm) 

Y:(Pπy1,Pπy2,….,Pπym) 

 with πx, πy ∈ Ωm, πxn el n-th element of the order induced by the permutation πx and πyn the nth element of 

the order induced by the permutation πy. Let i the cut-off point; then ⨝i is defined as follows: 

⨝i(X,Y) ⟼ Z( (Pπx1, Pπx2,….,Pπxm), (Pπy1,Pπy2,….,Pπym) ) 

⟼ ( Pπx1, …, Pπxi, Pπy(1), …, Pπy(m−i) ) 

where: 

 Pπy(1) is the first entry of Y such as  Pπy(1) is not in Xi:={Pπx1,…Pπxi} 

 Pπy(2) is the first entry of Y such as  Pπy(2) is not in  Xi∪{Pπy(1)} 

 … 

 Pπy(m−i) is the first entry of Y such as  Pπy(m−i) is not in Xi∪{Pπy(1),…, Pπy(m−i−1)} 

 

With the crossover operator defined above, the priority of X is considered first up to the entry i at the phenotype, 

and then the priority of individual Y is considered for the remaining sites. For example, if the sites to visit are 

{P1, P5, P19, P25, P33, P32}, let the solutions X, Y be given by: 

X = [ P1, P5, P25, P19, P33, P32  ] 

Y = [ P33, P19, P1, P25, P32, P5  ] 

And let the cut-off i=3 then: 

Z = X⋈3Y = [ P1, P5, P25, P33, P19, P32] 

for the cut-off point i=2 we obtain: 

Z = X⋈2Y = [ P1, P5, P33, P19, P25, P32] 
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4.3 Mutation operator 

 

The mutation operator is a unary operation on the solution space, which makes a change in the phenotype of 

the individuals, that is, it makes a change in the order of travel by swapping the position of a pair of sites for a 

given path. 

 

Let an order O, and P1, P2, …, Pm sites to visit and let X a solution given by: 

X:(Pπx1,Pπx2,….,Pπxm) 

then it is defined ∝(i,j),the mutation operator over Ωm, as follows: 

∝(i,j)  (X)⟼Z( Pπx1, …, Pπxi , …, Pπxj, …, Pπxm) 

 

⟼ (Pπx1, …, Pπxj, …, Pπxi, …, Pπxm      ) 

 

The pair of indices (i,j) are taken arbitrarily for each individual and iteration of the genetic algorithm. 

For example, if the sites to visit are {P1, P5, P19, P25, P33, P32}, and let X a solution given by: 

X = [ B1, B5, B25, B19, B33, B32] 

and the mutation point is (i=5,j=2), then: 

∝(2,5)(X) = [ B1, B33, B25, B19, B5, B32 ] 

for the mutation point  (i=1,j=6) we obtain: 

∝(1,6)(X) = [ B32, B5, B25, B19, B33, B1] 

 

Note that ∝(i,j)(X) = ∝(j,i)(X) for all  i, j. 

 

4.3 Fitness operator 

 

The fitness operator measures the quality of solutions to take the phenotype that encoded the sites to visit and 

compute the distance minimum associated with the trajectory. For compute minimum distance, the matrix L is 

used, calculated according to Algorithm 1. 

 

Let an order O, and P1, P2, …, Pm sites to visit and let X a solution given by: 

X:(Pπx1,Pπx2,….,Pπxm) 

then it is defined ⨿(i,j), the mutation operator over Ωm, as follows: 

⨿(X) ⟼ v ∈𝑅 

 

(Pπx1, …, Pπxi, …, Pπxm) ⟼ ∑i<m     L(Pπxi, Pπxi+1) + L(P0, Pπx1) + L(P0, Pπxm) 

where L(Px, Py) denotes the entry in the minimum distance matrix associated with the sites elements. The 

aptitude operator is a real-valued function and allow sort the solutions by the inverse travel distance. 

 

4.4 Selection and reinsertion 

 

Initially, the genetic algorithm creates a population of K randomly individuals of Ωk, the associated 

permutations space of an order O, and between each iteration r individuals are selected to inherit their 

characteristics to the next generation. 

 

The individuals are selected by the roulette method; which assigns a probability to each individual in base on 

their aptitude [14]. The roulette method takes r individuals randomly; with this selection method, the best 

individuals have the best opportunity for selection while still considering the worst individuals to give 

variability to the population. 

 

The selected individuals inherit their characteristics by the crossing operator; each of them randomly crosses 

with some individuals from the total population. Also, the selection operation establishes which part of the 

population to be applied mutation operator. In this way, a part of the individuals that form the next generation 

is obtained. 
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In this work, the percent of individuals generated by the cross operator is 40% of the total population; and the 

mutation operator generates 20 % of the total population. The best individual from the previous generation is 

too selected for the next generation; this is called elitism. 

 

Since the population size between iterations is always constant, it is necessary to generate 40% of the population 

of new individuals and randomly take it from Ωk. With this, variability in the population is allowed, and local 

minima are avoided in the optimization problem. 

 

 

5 Results 
 

The genetic algorithm used to perform out the experiments proposed in the Layout section of the warehouse 

uses the following fixed parameters for the genetic algorithm: 

 

 Population size: 100 individuals. 

 Probability of crossing: 20%. 

 Probability of mutation: 15%. 

 Reinsertion: elitism, the best individual from the previous generation, survives in the new generation. 

 Number of iterations: 1000 iterations maximum or stop the iterations if in the last 100 generations 

there is no improvement in the solution. 

 

Each experiment consists of a tuple of values (h, v, i) that take values in the following ranges: 

 h  the number of horizontal aisles, takes values 3, 4, 5, ..., 10 

 v  the number of vertical corridors, takes values 3, 4, 5,…, 10 

 i   denotes the number of items to consider in the order, takes values 5, 10, 15, ... 50 

 

The possible combinations above are 8 x 8 x 10 = 640; each possible combination of horizontal and vertical 

aisles and the number of items to collect tests with 20 scenarios or spatial distributions of items in the layout 

generated randomly with a uniform probability distribution. 

 

 
Figure 10.- General results of the experiments carried out for all the different layouts and items. R Return 

strategy, S S-shape strategy, GAP Largest Gap strategy and AG genetic algorithm strategy 

 

 

In each of the generated scenarios, the performance of the Return, S-shape, Largest Gap algorithms, and the 

genetic algorithm was compared, obtaining the results shown in Figure 10, note the density distribution shows 

in the violin charts. On average, the genetic algorithm obtains better results than the other strategies and obtains 

less variability in the range of values for the calculated routes, which indicates that the genetic algorithm is 

more consistent in the length of the routes. 
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Figure 11.- Experiment with 5 items in test layouts for strategies Return (R), S-Shape (S), Largest Gap (GAP) 

and Genetic Algorithm (AG) 

 

Figure 11 shows the set of tests applied for five items in the layouts considered for comparison. For the 3x3 

layout, the algorithms have similar performance, increasing the vertical aisles begins to notice differences in 

the algorithms. Comparing the first and first columns, which correspond to warehouse layouts type 3 x V and 

H x 3, shows the behaviour is not symmetrical. 
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Figure 12.- Experiment with 25 items in test layouts for Return (R), S-Shape (S), Largest Gap (GAP) and 

Genetic Algorithm (AG) strategies 

 

Figure 12 illustrates the distance dispersion diagram for 25 items and the different warehouse layouts considered 

in the experiment, showing similar behaviour in the first row versus the first column, although the range of 

values taken in the first column is slightly wider. In the case of 25 items per order, it is observed that square 

warehouse layout as growth in increasing route times while preserving the relative performance between the 

different algorithms. 
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Figure 13.- Experiment with 50 items in test layouts for Return (R), S-Shape (S), Largest Gap (GAP) and 

Genetic Algorithm (AG) strategies 

 

Figure 13 illustrates the dispersion diagram of distances travelled for the simulation performed with 50 items. 

Comparatively, the first row versus the first column in the results array is similar, the order in the performance 

of the evaluated algorithms is preserved; however, the first column has a slightly greater distance consistent 

with the distribution of the morphology of the warehouse layout, structures that are longer than they are wide. 

 

6 Conclusions 
 

One of the factors in the picking problem, collecting items for an order in a minimum of time, is the route taken. 

The choice of route depends on the strategy used, some basic but intuitive, and others efficient but impractical 

due to the computation time required that makes its use difficult; therefore, it is essential to propose methods 

that help to find better routes. 

 

The use of a partition in warehouse layout reduces the complexity of the combinatorial problem; and transforms 

the number of items to collect for sites to visit; This transformation allows the reduction of the dimension of 
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the search space and, therefore, the exploration time. The partitioning morphology is inspired by the largest gap 

policy determining when it is convenient to make a complete tour of the corridor or only a part and leave the 

rest for a second visit. 

 

Representing the route using only the elements of the layout partition reduces the dimension of the workspace 

and simplifies the representation of the path, allowing the application of the Bellman optimality principle to 

search for the path of minimum length. To obtain the complete succession of sites to visit, an algorithm is 

presented that allows deciding the minimum path between elements of the partition. 

 

The application of genetic algorithms using partitioning-induced algorithms as an individual model reduces the 

problem's combinatorial growth and makes it treatable. The defined cross and mutation operators allow the 

creation of new individuals who inherit characteristics from the parents, who are the solution to the problem 

and tend to improve their quality. 

 

The experimental results show that, in large warehouses, the classic heuristics do not achieve a good 

performance compared to the method proposed using genetic algorithms and present greater dispersion in the 

range, on the other hand, for orders with few items in general, warehouses with more vertical corridors than 

horizontal is better. For orders in which there are many items, 50 in the experiment, the performance between 

long and wide warehouses is equivalent, where a long warehouse is one that has more horizontal aisles and few 

vertical aisles, in contrast, a wide warehouse is one that has more vertical than horizontal aisles. 
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