
© International Journal of Combinatorial Optimization Problems and Informatics, Vol. 8, No. 3, Jan-April

2017, pp. 33-38. ISSN: 2007-1558.

Received May 24, 2017 / Accepted Jun 11, 2017

 Editorial Académica Dragón Azteca (EDITADA.ORG)

Quadratic Assignation Problem: A solution approach with parallel

GRASP

Beatriz Bernábe Loranca, Martín Estrada Analco, Rogelio González Velázquez, Abraham

Sánchez López, Jorge Cerezo Sánchez, Mario Bustillo Díaz

Benemérita Universidad Autónoma de Puebla, Universidad Tecnológica de Puebla

beatriz.bernabe@gmail.com

Abstract. The goal of this work is to establish and solve the Quadratic As-signation Problem (QAP) as a

combinatory optimization problem by means of GRASP (Greedy Randomized Adaptive Search

Procedure) as an approximation method to QAP.Applying GRASP to QAP produces good results to

obtain solutions close to the optimum or even reach the optimum in several cases. The implementation of

a sequential program was successfully made in C. The robustness of GRASP obeys to the inclusions of

strategic procedures for each one of the three local search neighborhood structures employed as a second

phase of GRASP. Finally a parallel system was built to reduce the time cost of the CPU.

Keywords: GRASP, QAP, Parallel system.

1 Introduction

The Quadratic Assignation Problem was originally proposed in 1957 by Koopmans and Beckman, analyzing the location of

economic activities [1, 2]. The QAP is a classic problem in combinatory optimization and basically consists in finding the

optimal assignation of n facilities to n locations with the end of minimizing transportation costs. A distance matrix, representing

the distances between the locations and the respective flow of materials between them, is the input data.

The solution space of QAP is of size n! On the other hand, it has been proven that it belongs to the NP-complete class [3] which

implies that an exact algorithm that can solve it in a reasonable amount of time, doesn't exist, even for instances of moderate

size. At this point it is necessary to design approximation algorithms such as metaheuristics before the inefficiency of exact

methods. With the arrival of metaheuristics such as Tabu Search, Simulated Annealing and GRASP among others, great

improvements have been made to find high quality solutions in complex problems. In this work we have applied GRASP to

solve QAP.

To test our algorithm we have used instances from QAPLIB, where it is possible to retrieve dissertations, articles, results and

test problems related with QAP (http://www.imm.dtu.dk/~sk/qaplib/#address) [4].

2 Problem Description

Let      ijdDijfFnN  and and...,,3,2,1 be two square symmetric matrices of n x n size; we try to find the assignation

of n facilities to n locations, this is to say, a permutation NP that minimizes the objective function

Where N is the set of all the permutations of the set N , ,i jf , represents the flow of materials from facility to facility and

,i jd is the distance from location to location .Working details must be given concisely; well-known operations should not be

described in detail.


 


n

i

n

j

jPiPij dfz
1 1

)()(

Bernábe Loranca et al. / Title. IJCOPI Vol. 8, No. 3, Sep-Dec 2017, pp. 33-38. EDITADA. ISSN: 2007-1558.

34

 Multiple applications of QAP have been found in areas as diverse as engineering and logistics. Some of the problems treated

are the total minimization of the wiring of electronic circuits, the optimal placement of industrial facilities, task scheduling,

distribution of medical services within a hospital and the placement of trailers over rail plat-forms in an intermodal

transportation environment.

Within the requirements for the solution of QAP, a data matrix is used. In practice this is known as compact matrix. Assume that

the flow and distances matrices and are symmetric, then we can write the instances of the data into one single matrix that

compacts and as follows:

































0

0

0

0

0

121

1

3433213

2423212

1413121

nnnn

nn

n

n

n

fff

d

ddff

dddf

dddd

C











3 Development

GRASP is a metaheuristic that consists of two phases, the first phase builds a solution whereas the second one is for post-

processing. These could be presented in tabular or graph form, with appropriate statistical evaluation.

First Phase (constructive GRASP)

Stage 1, a candidate list is generated, which has been previously bounded by two parameters, one of the candidates is randomly

chosen from which the first two assignations are made,

Stage 2, one by one the rest of the n-2 assignations are added according to a greedy function, wherewith having completed the

solution produces a feasible solution that is expected to be in the neighborhood of an optimal solution or at least a solution very

close to the optimum, with this ends the first phase or constructive phase.

Second Phase (Post-processing GRASP)

The second phase or improvement phase is started taking the solution originated from the first phase as the initial solution, this

is done through the use of some local search procedure, which once is completed we'll have an optimum local solution, which

could be as well a global optimum.

For the development of QAP, we have two phases (construction and post-processing) that are described below:

3.1 Constructive phase for QAP

Stage 1. The two initial assignations are done simultaneously, specifically it is indicated that the resource i is assigned to

location k and resource j is assigned to location l , while the cost corresponding to this assignation pair is lkji df  .

Let  and ,)01,0(  be the parameters that restrict the candidate list. Let    lkji dDfF  and be the input

symmetric matrices n x n with 0 in the diagonal wherewith the non-symmetric square compact matrix is formed.

































0

0

0

0

0

121

1

34313

2423212

1413121

nnnn

nn

n

n

n

fff

d

ddff

dddf

dddd

C











It is specified that [x] is the integer part of x. Let m = n (n-1)/2 be the number of inputs in the upper and lower triangles of the

compact matrix. Afterwards these distances and flows inputs are listed in increasing and decreasing order respectively, this is,

mmlklklk ddd  
2211

Bernábe Loranca et al. / Title. IJCOPI Vol. 8, No. 3, Sep-Dec 2017, pp. 33-38. EDITADA. ISSN: 2007-1558.

35

mm jijiji fff  
2211

Now we have two ordered lists, and the parameter  is used to restrict both lists, thus they are cut up to the element m. A new

list is generated which stores the product of the distances by the flows in the corresponding order, this is how the new list is

obtained

       mmmm lkjilkjilkji dfdfdf


 ,,,
22221111



The last list is ordered in increasing order and we use parameter α to get the final restricted candidate list (RCL) from which

only the first  m  elements will be taken and element lkji df  will be randomly chosen that represents the cost of

committing the assignation pair    ljki , and , , this is to say that we have two components of the solution, which to simplify

will be written as permutation, where the k-th component and the l-th component are placed. Here we can appreciate the random

component of the method. With this the first constructive stage concludes.

Stage 2. In this stage we seek to complete the initial solution by calculating the n-2 remaining assignations, by mean of a greedy

procedure that generates one by one the assignations with the minimum cost according to the existent assignations and ties are

randomly broken. This stage is supported by an adaptive component which is in charge of updating the solution as it is being

built up.

Let  ),(...,),,(),,(2211 rr liljlj be the set of assignations being built. Stage 2 begins with 2 as a result of stage 1. Let






),(lj

lkjiki dfC be the cost of assigning facility i to location k according to the existent assignations. We select the couples

(i, k) not assigned that have the minimum cost kiC , this is the core of the greedy procedure. In this part there is as well a

restricted candidate list, where the costs kiC are ordered in increasing order and one of the first pairs  z is randomly chosen

where z is the amount of pairs not assigned another random component.

The adaptive component of GRASP has the function of updating the set  by adding new assigned pairs, this is  ),(ki

At the end of this stage, the first stage ends as well. A solutions has been built contained in the set

 ),(,),,(),,(2211 nn ljljlj  ordering the first components of the pairs, we take the second components to form the

permutation equal to the solution. In summary we have a good quality solution to begin with.

Procedure stage2 (,(j1,l1),(j2,l2))

= {(j1,l1),(j2,l2)};

While  n do

z = 0;

 for i = 1 to n;

 for j = 1 to n;

 if (i,j)  then

 Cik = kl

ji

ij df
),(

;

 inheap (Cik);

 z = z +1;

 end{if};

 end{for};

 end{for};

 s = random(1,..., z);

 Cik = outheap(s)

  =   (i,k);
end{while};

end{estapa2};
Algorithm for the stage 2 of the constructive phase of GRASP

3.2 Post-processing phase for QAP

Bernábe Loranca et al. / Title. IJCOPI Vol. 8, No. 3, Sep-Dec 2017, pp. 33-38. EDITADA. ISSN: 2007-1558.

36

This phase pursues the mission of improving the solution produced during the constructive phase. In our case we

will apply a local search procedure with three neighborhood structures; 2-exchange, -exchange and Nstar. The

structures –exchange and Nstar are more complex structures based on detecting good moves to avoid executing

them. For example if (i, j) is a good move in the permutation, -exchange keeps the elements corresponding to i and

j fixed allowing only the exchange of the remaining elements of the permutation, whereas Nstar allows moving the

elements corresponding to i and j with the rest of the elements, but forbids the exchange between them.

4 Conclusions

The results of the program were obtained by running an executable program, generated by the compiler gcc (v2.7) in a machine

SGI/CRAY ORGIN 2000 located at the DGESCA UNAM with 32 processors R 10000 at 195 Mhz, with IRIS 6.4 OS [5].

The test instances were obtained from the QAPLIB website [4], twelve proposals by Nugent which dimensions are: 5, 6, 7, 8,

12, 15, 20, 21, 22, 24, 25 and 30 and three by Skorin-Kapov which dimensions are 42, 64 and 81.

All the results shown were obtained by restricting the candidate list with the parameters 1.0 and5.0   which were

determined experimentally. For the instances which dimension is less or equal to 42, the stopping criterion used was the

following: If the best value found hasn't been improved after
2n iterations, then finalize and return the best value; and for the

last two instances the stopping criterion was a fixed number of n4 iterations, these stopping criteria were obtained

experimentally.

The statistic values in the tables were obtained from 20 runs of the sequential program, for each instance in every neighborhood

structure design 2-exchange, λ-exchange and Nstar (N*).

Table 1. Nomenclature

Problem n OVBVK BVF LB EPLB OSP

Nug5 5 25 25 25 0 100

Nug6 6 43 43 43 0 100

Nug7 7 74 74 74 0 100

Nug8 8 107 107 97 9.34% 100

Nug12 12 289 289 264 8.65% 90

Nug15 15 575 575 542 5.73% 100

Nug20 20 1285 1285 1119 12.91% 100

Nug21 21 1219 1219 1004 17.63% 35

Nug22 22 1798 1798 1417 21.19% 100

Nug24 24 1744 1744 1419 18.63% 95

Nug25 25 1872 1872 1532 18.16% 70

Nug30 30 3062 3062 2886 5.75% 10

Sko42 42 7906 7926 7467 5.79% 0

Sko64 64 24249 24436 22868 6.41% 0

Sko81 81 45499 45738 43036 5.90% 0

Table 1 shows the nomenclature for the parameter:

n: The dimension of the compact matrix,

OVBVK: Optimal Value or Best Value Known,

BVF: Best Value Found,

Bernábe Loranca et al. / Title. IJCOPI Vol. 8, No. 3, Sep-Dec 2017, pp. 33-38. EDITADA. ISSN: 2007-1558.

37

LB: Lower Bound [6],

EPLB: Error Percentage where with BVF exceeds the lower bound,

OSP: Percentage in which the optimal solution or the best value known was obtained,

IAGRASP: Iterations Average of GRASP in which the OVBVK was obtained for the 3 strategies (λ, neighborhood structure 2

and N*),

ACPUT: Average CPU Time.

Table 2 shows the results with previous nomenclature for the parameters from table 1:

The numbers in the cells of column OVBVK are reported in the literature as the optimal values from n = 5 until n = 25 and for

dimensions 30, 42, 64 and 81 as the best values known (several sources agree on this point). The numbers in column LB are

considered from the QAPLP Statistics table, which was generated with an interior points algorithm from linear programming.

Whereas the values in column EPLB are calculated from the formula EPLB = [(BVF - LB)/BVF]* 100%. The following figure

reveals the behavior of the performance of the 3 neighborhood structures.

In the figure 1, is possible to observe the behavior of the results obtained by the sequential program for the neighborhood

structures 2-exchange, l-exchange and N*, with respect to IAGRASP.

We can see that l-exchange is the best proposal regarding the number of iterations and 2-exchange is the best option with regard

to the CPU time and as well as the number of times the optimum is reached.

Table 2. Results

IAGRASP

(Nstar)

ACPUT

(Nstar)

IAGRASP

(λ)

ACPUT

(λ)

IAGRASP

(neighborhood

structure 2)

ACPUT

(neighbohood

structure 2)

3 0 1 0 2 0

4 0 4 0 3 0

3 0 5 0 5 0

4 0 5 0 4 0

55 0.87 55 0.81 65 0.23

121 6.1 56 2.65 67 0.79

15 6.59 77 14.21 73 3.61

428 117.2 359 99.87 485 32.97

215 82 101 34.82 250 24.05

408 230.14 241 117.35 435 63.89

270 217.35 339 205.3 420 56.65

1647 2720.32 363 561.18 529 224.78

3263 28186.3 2203 20171.2 3823 9294.33

256 5262.38 256 4858.48 256 5989.71

324 23451.2 324 21752.9 324 110638.2

Bernábe Loranca et al. / Title. IJCOPI Vol. 8, No. 3, Sep-Dec 2017, pp. 33-38. EDITADA. ISSN: 2007-1558.

38

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 101214161820222426283032

It
e

ra
ti

o
n

s

n

Comparison of the IAGRASP

2-intercambio

Nstar

Lambda

Fig. 1. Performance tests for the 3 neighborhood structures 2-exchange, λ-exchange and Nstar

References

1. Li, Y., Pardalos, P.M., Resende, M.G.: A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment

Problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related problems, vol. 16 of DIMACS Series

on Discrete Mathematics and Theoretical Computer Science, pp 237-261. American Mathematical Society, 1994.

2. Feo, T., Resende, M.G.:. Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization, vol 6, pp109-133,

1995.

3. Sahni S., Gonzalez T.: P-complete approximations problems. J. Asssoc. Comp. Machine. vol. 23, pp 555-565, 1976.

4. Burkard, R. E., Karisch, S.E., Rendl F.:QAPLIB - A Quadratic Assignment Problem, Library,

http://www.imm.dtu.dk/~sk/qaplib/ins.html.

5. Pardalos, P.M., Crouse, A.: A parallel algorithm for the quadratic assignment problem. In Proceedings of the supercomputing

1989 Conference, pp 351-360, ACM Press, 1989.

6. Resende, M.G., K.G., Drenzner, R.Z.: Computing lower bounds for the quadratic assignment problem with an interior point

algorithm for linear programming. Operations Research, vol 43,N° 5, september-october1995.

http://www.imm.dtu.dk/~sk/qaplib/ins.html

