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Abstract. We propose a novel network-level metric called Edge 
Similarity Index (ESI) to quantify the extent of similarity between 

any two edges of a complex network with respect to the values for 

a node-level metric (like centrality metric) of its end vertices. To 
assess the ESI measure for a complex real-world network with 

respect to a node-level metric, we propose to first construct a 

logical network whose vertices are the actual edges of the network 
(with coordinates corresponding to the normalized node-level 

metric values of the actual end vertices), and there exists a 

(logical) edge between two logical vertices if the Euclidean 
distance between their corresponding coordinates is within a 

threshold distance. We propose a binary search algorithm to 

determine the minimum value for this threshold distance ( min

threshdist ) 

that would result in a connected logical unit-disk graph; the ESI 
value for the complex network is then computed as 

 min1 / 2threshdist . The ESI values range from 0.0 to 1.0; the 

larger the ESI value with respect to a node-level metric, we claim 

that more similar are any two edges in the network with respect to 
the node-level metric values for their end vertices. 
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1 Introduction 

 
Similarity assessment is an important problem in complex network analysis. Until now, most of the focus has been on assessing 

the similarity among the nodes in the network at two different levels: between any two nodes (measures such as cosine 

similarity [1], matching index [2], etc) or between a group of nodes (measures such as equivalence classes [3]) in the network. 

Similarity assessment among the nodes is typically conducted on the basis of their values for the topological metrics (such as 

centrality metrics [3]) and/or the domain-level metrics (such as age, height, number of publications, etc). Throughout the paper, 

the terms 'vertex' and 'node', 'edge' and link', 'network' and 'graph' are used interchangeably. They mean the same. 

 

The assortative index (abbreviated as ASI throughout this paper) [4] measure is the only prominent measure available in the 

literature for similarity assessment with regards to the edges. However, the assortative index measure just captures the extent to 

which the values for the end vertices of any edge are similar to each other with respect to a node-level metric. The ASI of a 

network with respect to a node-level metric is computed as the Pearson's correlation coefficient (ranges from -1 to 1) [5] of the 

node-level metric values of the end vertices of the edges in the network. With such a formulation for the ASI measure, we can 

only assess whether the node-level metric value for one end vertex (say, u) of an edge (u, v) would be similar or dissimilar to the 

node-level metric value for the other end vertex (say, v) of the edge (u, v). An assortative network is the one whose ASI value 

(with respect to a node-level metric) is positive, and the end vertices of the edges in an assortative network are considered to 

exhibit similar values with respect to the node-level metric. On the other hand, the end vertices of the edges in a dissortative 

network (with a negative ASI value) are considered to exhibit dissimilar values for the node-level metric. Networks whose ASI 

value is closer to 0 are neither assortative nor dissortative. 

 

Our focus in this paper is on assessing the similarity between any two edges in the network. Given two edges (u1, v1) and (u2, 

v2), the ASI measure cannot quantify the extent to which the node-level metric values of the end vertices u1 and v1 would be 

similar to the node-level metric values of the end vertices u2 and v2. The ASI measure could only quantify how similar would 

the node-level metric value for u1 would be similar to that of v1 (and likewise the similarity/dissimilarity of the node-level 
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metric values for u2 and v2). Consider a hub-and-spoke network below (Figure 1.a) wherein six-spoke vertices (each of degree 

one) are connected to a hub vertex (of degree six). The ASI for such a hub-and-spoke network will be -1.0; i.e., the network is 

highly dissortative with respect to node degree. On the other hand, any two edges in this hub-and-spoke network are exactly 

similar to each other on the basis of a tuple representing the degree values of the end vertices. More precisely, if we were to 

represent the edges of the network as vertices in a coordinate system (wherein the coordinates are the degrees of the end vertices 

of an edge), all the six edges in the hub-and-spoke network could be represented by a tuple (1, 6) and will appear co-located. 

Consider another example: a ring network of seven vertices as shown in Figure 1.b, wherein the end vertices of all the edges are 

of the same degree (i.e., similar to each other with respect to node degree) and hence the network is highly assortative (ASI 

value of 1.0). When represented in a coordinate system of the degrees of the end vertices, all the seven edges could be 

represented by a tuple (2, 2) and will also appear co-located.  

 

                               

                 Figure 1.a: Hub-and-Spoke Network                         Figure 1.b: Ring Network 

                         ASI = -1.0 and ESI = 1.0                                     ASI = 1.0 and ESI = 1.0 

Figure 1: Motivating Examples to Illustrate the Difference between Assortativity Index (ASI) 

and Edge Similarity Index (ESI) 

 
The networks in Figures 1.a and 1.b represent the two extremes of assortativeness, but the edges in each of these networks 

would appear co-located when plotted with respect to a degree. Thus, ASI cannot capture the extent of similarity between any 

two edges of a network with respect to any node-level metric. We need a new "network-level" quantitative measure that could 

comprehensively capture the extent of similarity between any two edges of a network with respect to a node-level metric. We 

propose the name Edge Similarity Index (ESI) for such a measure. The ESI values (computed based on the procedure described 

below and in Section 2) for the networks in both Figures 1.a and 1.b with respect to node degree are 1.0 each. Hence, it is 

possible for both assortative and dissortative networks to have larger ESI values. In other words, ASI and ESI are independent 

of each other. 

 

An outline of our approach to determine the ESI value for a network with respect to a particular node-level metric is as follows 

(more details are in Section 2): We first distribute the edges of the network as data points (vertices) in a logical two-dimensional 

coordinate system wherein the coordinates of a logical vertex are the normalized node-level metric values of the actual end 

vertices of the corresponding edge in the network. We seek to build a unit-disk graph of the logical vertices such that there 

exists an edge between two logical vertices if the Euclidean distance between them in the two-dimensional coordinate system is 

less than or equal to a threshold distance. The unit-disk graph would be completely connected if the threshold distance is 2   

(where '2' corresponds to the number of dimensions in the coordinate system) and would not be connected if the threshold 

distance is 0 (unless all the vertices are co-located as in Figures 1.a and 1.b). We use a binary search approach to determine the 

minimum value for the threshold distance (
min

threshdist ) that would yield a connected unit-disk graph of the logical vertices. The 

smaller the 
min

threshdist   value (ranges from 0 to 2 ), the closer are the data points (logical vertices) to each other in the logical 

two-dimensional coordinate system (i.e., more similar are the edges in the actual network with respect to the node-level metric 

values for the end vertices) and vice-versa. Hence, we formulate the edge similarity index (ESI) metric  min1 / 2threshdist . The 

ESI value (ranges from 0 to 1) for a network could be computed with respect to any node-level metric (say, topology-based 

centrality metrics or domain-level metrics). Also, the ESI values of a network with respect to two different node-level metrics 

need not be the same. 
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The proposed ESI metric can be useful for several applications; a sample list is as follows: (1) A larger ESI value for a 

communication network with respect to router capacities (node-level metric) is an indication that the logical vertices (links in 

the actual network) in the logical two-dimensional coordinate system are closer/similar to each other. Packets propagating 

through such similar links are likely to experience less jitter (i.e., less variation in the end-to-end packet delay) [6]. (2) A larger 

ESI value for a social network with respect to any domain-level node metric (such as age, height, salary, etc) is an indication 

that any two links of users are likely to be similar to each other (for example, majority of the links are between the younger 

users or majority of the links are between a taller user and a shorter user). (3) A larger ESI value for a collaboration network of 

researchers with respect to a domain-level node metric (such as the h-index of the researchers, the total dollar value of their 

grants, etc) is an indication that the researchers of any chosen link are very much comparable to the researchers of another link 

(for example, majority of the links could be between a researcher with a lower h-index and a researcher with a larger h-index, or 

majority of the links could be between researchers with a larger dollar value for their grants, etc). (4) One could run a clustering 

algorithm on the connected unit-disk graph of the logical vertices (actual edges) and identify smaller clusters of logical vertices, 

if any exist, which would correspond to edges that are different from the majority of the edges in the actual network. Such edges 

could be construed as outliers (for example, strange associations in a social network) and could be removed from the network to 

impart larger homophily [7] with respect to the similarity of the links. (5) If a complex network has a larger ESI value with 

respect to a node-level metric, we could use the nature of the values of the end vertices of the edges in the network as the basis 

for predicting a link between any two vertices that are not yet connected. For example, if the majority of the links in a social 

network are between two taller people, then we could predict links between two taller people who are not yet connected to each 

other. 

 

The rest of the paper is organized as follows: In Section 2, we propose the notion of Edge Similarity Index (ESI), explain its 

computation procedure (including the binary search algorithm) and analyze its time and space complexities. We also illustrate 

the computation of the ESI metric with an example. In Section 3, we review related work on similarity assessment of edges in 

complex networks. In Section 4, we first provide an overview of the 70 real-world networks that are used in the ESI analysis and 

present their ESI values with respect to four major centrality metrics (neighbourhood-based degree and eigenvector centrality 

metrics and the shortest path-based betweeness and closeness centrality metrics). We then assess the relationship between the 

ESI values of the real-world networks vs. their ASI values with respect to each of the above four centrality metrics as well as vs. 

the classical metrics that are a measure of the node density and variation in node degree. Section 5 concludes the paper and 

highlights its contributions to the literature. 

 

2 Edge Similarity Index (ESI) 
 

The Edge Similarity Index (ESI) is a network-level measure (with respect to a chosen node-level metric) of the similarity of the 

values for the end vertices between any two edges in the network. The ESI values of a network for two different node-level 

metrics need not be the same. In this paper, we use the four major centrality metrics (neighbourhood-based degree centrality: 

DEG and eigenvector centrality: EVC [6], and shortest path-based betweenness centrality: BWC [7-8] and closeness centrality: 

CLC [9-10]) as the node-level metrics on the basis of each of which we compute the ESI values. The graph in Figure 2 is used 

as a running example throughout this section to illustrate the procedure to compute the ESI value for a network with respect to a 

node-level metric.  

 

2.1  Node-Level Centrality Metrics 
 

Centrality metrics quantify the topological importance of a vertex in the network [3]. Centrality metrics could be broadly 

categorized as neighbourhood-based and shortest path-based. Though several centrality metrics have been proposed for the two 

categories, the degree and eigenvector centrality metrics are considered the representative (prototypical) metrics [11] for the 

neighbourhood-based category and the betweenness and closeness centrality metrics are considered the prototypical metrics for 

the shortest path-based category. The degree centrality (DEG) of a vertex is the number of neighbours of the vertex. The 

eigenvector centrality (EVC) of a vertex [6] is a measure of the degree of the vertex as well as the degrees of its neighbours. It is 

computed using the Power Iteration algorithm [6]. The betweenness centrality (BWC) of a vertex [7] is a measure of the 

fractions of the shortest paths (between any two vertices) that go through the vertex. The BWC values of the vertices are 

computed using the Brandes' algorithm [8]. The closeness centrality (CLC) of a vertex [9] is a measure of the distance (typically 

measured as the number of edges on the shortest path; determined using the Breadth-First Search algorithm [10]) of the vertex to 

the rest of the vertices in the network. In Figure 2, we show the raw values as well as the normalized values for the four 

centrality metrics (DEG, EVC, BWC and CLC) of the vertices. We normalize the raw node-level values for a metric by using 
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the square root of the sum of the squares approach. That is, we first find the square root of the sum of the squares of the raw 

values of the vertices and divide each of the raw values for the vertices by the above square root value.  

 

 

Figure 2: Example Graph as well as the Raw and Normalized Values for the Centrality Metrics 

 

2.2  Logical Topology of the Edges 

 
We build a logical topology of the edges by distributing them as data points (vertices) in a two-dimensional coordinate system 

of the normalized node-level metric values (ranging from 0 to 1) of the end vertices of the edges. We represent an edge as the 

tuple (u, v), wherein u and v are the end vertices of the edge; the two dimensions in the coordinate system are referred to as the 

U-dimension and the V-dimension in Figure 3. There exists an edge (referred to as a logical edge) between two logical vertices 

in the two-dimensional coordinate system if the Euclidean distance between the coordinates of the two logical vertices is within 

a threshold distance, which could range from 0 to 2   (as the values for each of the two coordinate systems could range from 0 

to 1). Figure 3 presents the distribution of the edges (as data points) from the example graph of Figure 1 on the basis of the 

normalized centrality values for their end vertices with respect to each of DEG, EVC, BWC and CLC. In each case, the two 

dimensions are the normalized centrality values of the end vertices of the edges. We observe the data points with respect to the 

CLC metric to be the closest to each other and those with respect to BWC to be the farthest from each other. This implies, the 

edges of the example graph of Figure 1 are relatively more similar to each other on the basis of the CLC values of the end 

vertices and least similar to each other on the basis of the BWC values of the end vertices. Though both BWC and CLC are 

shortest path-based centrality metrics, we observe such a trend for the real-world networks too (see Section 4). 
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Figure 3: Logical Topologies of the Edges with respect to the Normalized Values for the Centrality 

Metrics of the End Vertices 

 

2.3  Binary Search Algorithm 

 
We seek to build a connected unit-disk graph of the logical vertices (edges in the actual network) in the two-dimensional 

coordinate system of subsection 2.2. Two logical vertices in the coordinate system are said to be connected through a logical 

edge if the Euclidean distance between them is within a threshold distance. The range for such a threshold distance in the two-

dimensional coordinate system of the normalized centrality values is [0, ..., 2 ]. Of course, the logical vertices will be 

connected to each other if the threshold distance is 2 . Unless the logical vertices are co-located at the same coordinate values, 

the minimum threshold distance for which we can get a connected unit-disk graph of the logical vertices will be greater than 0. 

Hence, we need to determine a minimum value for the threshold distance (
min

threshdist ) that would contribute to a connected unit-

disk graph of the logical vertices. We propose to use a binary search algorithm for this purpose (see Figure 4 for the pseudo-

code). 
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Inputs 

    Logical topology L of the edges (distributed as vertices) corresponding to a real-world network GR 

    Cutoff parameter   

    // Let C be the node-level metric used 

   // Let the coordinates of a vertex in L (say, edge (u, v) in GR) with respect to C be represented as (uC, vC) 

  

Output 

       Minimum threshold distance, 
min,C

threshdist , with respect to the node-level metric C 

 

Auxiliary Variables 

 Left Index (initialized to 0); Right Index (initialized to 2 );Middle Index 

 

Begin Binary Search Algorithm  

       while ( | Right Index - Left Index | >  ) do 

 Middle Index = (Left Index + Right Index) / 2 

 Build a unit-disk graph GL of the vertices of L using the Middle Index as the threshold distance 

 /* Two logical vertices (u1, v1) and (u2, v2)  are connected in GL if the Euclidean distance 

 
2 2

1 2 1 2( ) ( )C C C Cu u v v     Middle Index */ 

 

 if (GL is connected) then 

  Right Index = Middle Index 

 else 

  Left Index = Middle Index 

 end if 

     

       end while 

    

       return 
min,C

threshdist = Right Index 

 

End Binary Search Algorithm 
 

Figure 4: Binary Search Algorithm to Find the Minimum Threshold Distance for a Connected 

Logical Unit-Disk Graph with respect to the Normalized Values for a Node-Level Metric 

 

The binary search algorithm goes through a sequence of iterations until it determines 
min

threshdist . In all the iterations, the algorithm 

maintains a left index (initialized to 0) and right index (initialized to 2 ) such that the unit-disk graph of the logical vertices is 

not connected when the left index is used as the threshold distance and is connected when the right index is used as the threshold 

distance. In each iteration, we determine a middle index = (left index + right index) / 2, and we build a unit-disk graph of the 

logical vertices such that two logical vertices are connected with an edge if the Euclidean distance between them is less than or 

equal to the middle index. If the unit-disk graph corresponding to the middle index as the threshold distance is connected, we set 

right index = middle index; otherwise, we set left index = middle index and continue to the next iteration. By doing so, we not 

only maintain the invariant (mentioned above), we also reduce the search space by half in each iteration. Finally, when the 

difference between the right index and left index is less than or equal to a cutoff parameter (  ), we stop the algorithm and 

declare the value of the right index at the time of exiting the while loop as the value for the parameter 
min

threshdist . The ESI of the 

real-world network with respect to the node-level metric is then computed as  min1 / 2threshdist . Note that we set 
min

threshdist to be 

the value of the right index (rather than the middle index) at the time of exiting the loop, as the unit-disk graph is guaranteed to 

be connected when the right index value is used as the threshold distance (and the graph need not be connected when the middle 

index value is used as the threshold distance). 

 

The number of iterations of the proposed binary search algorithm simply depends on the number of dimensions used in the 

coordinate system (which is two) and the value for the cutoff parameter,  . To begin with, the minimum threshold distance can 
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be anywhere in the range (0, ..., 2 ], and the left index, right index and middle index are 0, 2 and 2 /2 = 0.7070 

respectively. At the end of the first iteration, we reduce the search space from (0, ..., 2 ] to either (0, ..., 0.7070] or (0.7070, ..., 

2 ]. At the end of the second iteration, we reduce the search space to one of these ranges: (0, ..., 0.3535], (0.3535, ..., 0.7070], 

(0.7070, ..., 1.0605] or (1.0605, ..., 2 ]. We continue the process until the difference between the right index and left index is 

less than or equal to  . As we reduce the search space by half in each iteration, the number of iterations it would take for a 

search space size of 2 to reduce to a search space size of   can be simply given by 2 /

2log  . This implies that the number of 

iterations needed for the binary search algorithm to determine 
min

threshdist does not depend on the number of nodes and edges in the 

real-world network graph considered or on the node-level metric used as the basis for the values of the end vertices of the edges.  

 

The time complexity for each iteration of the algorithm depends on the time complexity to build the logical graph (GL) and 

check for its connectivity. Note that the number of logical vertices in GL corresponds to the actual number of edges (say, 

denoted E) in the real-world network GR. It takes O(E2) time to check for edges between any two logical vertices in GL and a 

time complexity O(E) to run the Breadth-First Search algorithm to check for the connectivity of GL. The time complexity of an 

iteration of the binary search algorithm is thus dominated by the time complexity to build a logical graph of the E vertices.  

 

Hence, the overall time complexity of the binary search algorithm is O(E2*
2 /

2log 
).  

 

The space complexity of the binary search algorithm depends on the memory required to store the logical graph built in an 

iteration. Note that the logical graph built for an iteration could be cleared at the end of the iteration. As the logical graph would 

be of E vertices and E2 edges (at the worst-case), the space complexity of the algorithm is O(E2), where E is the number of 

edges in the real-world network graph. 

 

2.4  Example to Illustrate the Execution of the Binary Search Algorithm 

 
In this subsection, we illustrate the execution of the binary search algorithm on the example graph of Figure 1 with respect to the 

degree centrality metric. Figure 5 presents a sequence of logical graphs that represent the unit-disk graph of the logical topology 

of vertices (edges in the actual graph) for different values of the middle index (threshold distance, abbreviated as TD in Figure 

5) encountered during the binary search algorithm. The IDs of the vertices in the logical graphs are represented as tuples 

corresponding to the end vertices of the edges in the actual graph. We start with a left index of 0 and right index of 1.41421 

(~ 2 ), the values are rounded to the fifth decimal precision. The middle index for the first iteration is 0.70710, the average of 0 

and 1.41421. As the unit-disk graph is connected for a threshold distance of 0.70710, we continue by discarding the right search 

space and set the middle index value of 0.70710 to be the new value of the right index. The second iteration is then run based on 

a middle index of (0 + 0.70710) / 2 = 0.35355 for which the unit-disk graph is connected. We move on to the third iteration by 

setting the latest middle index (0.35355) to be the new value of the right index. We continue like this until the difference 

between the right index and left index is less than or equal to the cutoff parameter  , which is 0.01 for all the analysis conducted 

and presented in this paper.  

 

Table 1 presents the values for the left index, right index and middle index for each iteration, and also reports whether the 

logical unit-disk graph is connected or not for the middle index (threshold distance) used in an iteration. During the beginning of 

the 9th iteration, we find the left index to be 0.11048 and the right index to be 0.11600, and their difference is less than 0.01. 

Hence, we stop the algorithm and conclude the value of 
min,DEG

threshdist to be the latest value of the right index, which is 0.11600. The 

ESI of the example graph with respect to the DEG centrality metric is then computed as  min,1 / 2DEG

threshdist  = 1 ̶  (0.11600 

/ 2 ) = 0.91797.  
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Iteration # 1: TD = 0.70710 Iteration # 2: TD = 0.35355 

 
 

Iteration # 3: TD = 0.17678 Iteration # 4: TD = 0.08839 

  

Iteration # 5: TD = 0.13258 Iteration # 6: TD = 0.11048 

  
Iteration # 7: TD = 0.12153 Iteration # 8: TD = 0.11600 

Figure 5: Sequence of Logical Unit-Disk Graphs Resulting from the Execution of the Binary 

Search Algorithm on the Example Graph of Figure 1, with respect to the Degree Centrality Metric 

 
By conducting a similar execution of the algorithm with respect to the EVC, BWC and CLC metrics, we observe the 

corresponding ESI Values to be 0.93359, 0.69531 and 0.94922 respectively (see Figure 6). These ESI values clearly depict our 

earlier observation in subsection 2.2 that the edges of the example graph are most similar to each other with respect to the CLC 

metric and the most dissimilar to each other with respect to the BWC metric. We could observe that a smaller magnitude of 

difference in the ESI values itself manifests to an appreciable extent of difference in the similarity of the edges with respect to 

their distribution in the logical topology. In Figure 6, we also show the Assortativity Index (ASI) values of the edges with 
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respect to each of the four centrality metrics. We observe the example graph of Figure 1 to be relatively more dissortative with 

respect to DEG (ASI =  ̶ 0.19365) and neutral with respect to BWC (ASI = 0.03052) and CLC (ASI =  ̶ 0.04239) . However, the 

ESI values for CLC and BWC are widely different from each other. 

 

Table 1: Iteration Details of the Execution of the Binary Search Algorithm on the Example Graph 

of Figure 1, with respect to the Degree Centrality Metric 
 

It # Left Index Right Index 
Right Index -  

Left Index 

Middle Index 

(Threshold Distance) 

Connectivity of the 

Logical Unit Disk Graph 

1 0 1.41421 1.41421 0.70710 Connected 

2 0 0.70710 0.70710 0.35355 Connected 

3 0 0.35355 0.35355 0.17678 Connected 

4 0 0.17678 0.17678 0.08839 Not connected 

5 0.08839 0.17678 0.08839 0.13258 Connected 

6 0.08839 0.13258 0.04419 0.11048 Not connected 

7 0.11048 0.13258 0.02210 0.12153 Connected 

8 0.11048 0.12153 0.01105 0.11600 Connected 

9 0.11048 0.11600 
0.00552 < 0.01 

STOP!!! 
  

 

 

 

Figure 6: Comparison of the ESI and ASI Values for the Example Graph of Figure 1 with respect 

to the Four Centrality Metrics: DEG, EVC, BWC and CLC 

 

3 Related Work and Our Contributions 
 

In this section, we review the related work that has been proposed in the literature for quantifying edge similarity and/or node 

similarity in complex networks. The Assortativity Index (ASI) [4] is the most prominent measure proposed in the literature to 

quantify the similarity of the end vertices of the edges in a complex network with respect to a node-level metric. If the end 

vertices of the edges have similar values for the node-level metric, then the network is considered to be assortative (i.e., similar 

vertices are connected to similar vertices) with respect to the node-level metric and the ASI of the network with respect to the 

metric is closer to 1.0. On the other hand, if the end vertices of the edges have dissimilar values for the node-level metric, the 

network is said to be dissortative with respect to the metric and the ASI of the network will be closer to -1.0. More than 60% of 

the 50 real-world networks analyzed in [12] were observed to be neither assortative nor dissortative with respect to the degree 

centrality metric. In general, real-world networks are more likely to be neutral with respect to the DEG and BWC metrics, and 

assortative with respect to the EVC and CLC metrics [12]. On the other hand, in the results reported in Section 4, we observe 

several real-world networks that are neutral with respect to assortativity to incur larger ESI(DEG) and ESI(BWC) values. 

 

Several related works on assortativity are also available in the literature. The local assortativity measure [13] quantifies the 

contribution of a node to the assortativity of the network. With the local assortativity measure, we could identify nodes that are 

assortative (i.e., connected to similar nodes) in a dissortative network and vice-versa. In [2], the maximal assortative and 

maximal dissortative matching of the edges in complex real-world networks were studied with respect to node degree. Edges 

with similar degree values for the end vertices were observed to be preferable for maximal assortative matching, whereas edges 

with dissimilar degree values for the end vertices were observed to be preferable for maximal dissortative matching. In addition, 

the algorithms for maximal assortative or maximal dissortative matching gave secondary preference to edges with fewer 

adjacent edges so that the number of edges included in the matching could also be maximized.  
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All the above schemes related to assortativity are focused on identifying edges with similar (or dissimilar) values for the end 

vertices, on a per-edge basis or on a per-neighbourhood basis. We do not expect any coincidence between the edges that are part 

of a maximal assortative or maximal dissortative matching with those edges that are part of the connected logical unit-disk 

graph for a minimum value of the threshold distance. For example, any two edges that are part of a maximal assortative 

matching could still have dissimilar values for their end vertices (one edge could connect two high degree vertices and another 

could connect two low degree vertices). On the other hand, we could run a clustering algorithm on the connected logical unit-

disk graph corresponding to the minimum threshold distance and obtain clusters of similar edges with respect to the values for 

the end vertices; we could pick non-adjacent edges from each such cluster and use these edges as part of a maximal assortative 

matching with similar values for the end vertices. 

 

Note that measures such as edge degree (sum of the degrees of the end vertices minus 2) [14], edge Jaccard Index (ratio of the 

number of common neighbours and the total number of neighbours excluding the two end vertices) [15], etc cannot be used to 

assess the similarity between edges as such measures cannot capture the relative proximity of the two edges in a coordinate 

system of the degrees of their end vertices. For example, two edges with degree tuples (2, 10) and (10, 2) would have the same 

edge degree (10), but would be located far away from each other in the coordinate system of the degrees of the end vertices of 

the edges. Two edges with identical Jaccard Index ratio of 2/3 = 0.67 = 4/6 could actually comprise of end vertices with 

different degrees that are not co-located in the coordinate system. To the best of our knowledge, ours is the first work to use a 

coordinate system for the node-level metric values of the end vertices to assess the similarity of the edges in a complex network. 

 

4 Real-World Networks 
 

Table 2 presents the 70 real-world networks (each network is identified with a unique three-character code) that are analyzed in 

this paper for the proposed edge similarity index (ESI) measure. The real-world networks are spread over a total of 13 different 

domains; the domain names and the number of networks for each of these domains are as follows: Biological network (15), 

Acquaintance network (12), Friendship network (11), Co-appearance network (8), Employment network (6), Citation network 

(4), Literature network (3), Transportation network (3), Collaboration network (2), Game network (2), Political network (2), 

Geographical network (1) and Trade network (1). A brief description of the typical nature of the nodes and edges in the major 

domains (for which at least 6 real-world networks are listed in Table 2) is as follows: In a biological network, the nodes could be 

the genes, proteins and their associated transcriptions and the edges could be the interactions between these nodes. A biological 

network could also model organisms (nodes) of a particular species and their interactions (edges). An acquaintance network 

comprises of individuals (nodes) who slightly know each other and their interaction (edge) is captured during an observation 

period. A friendship network comprises of individuals (nodes) who know each other very well and there is no need for an 

observation period to capture their friendship (edges). An employment network comprises of individuals (nodes) who interact 

(edges) at the official level due to their job requirements and according to the policies of the organization, they are working for 

and not at the personal level. A co-appearance network is typically a network of novel characters or dictionary words (nodes) 

who co-appear alongside each other (modelled as edges).  

 

In Table 2, we present the number of nodes and edges for each real-world network along with two classical parameters: the edge 

density (ρedge) and the spectral radius ratio for node degree (λsp) [16]. The edge density for a network (ranging from 0...1) is 

computed as the ratio of the actual number of edges in the network and the maximum possible number of edges in the network. 

For a network of N nodes, the maximum possible number of edges in the network is N(N-1)/2. The spectral radius ratio for node 

degree (λsp ≥ 1) for a network [16] is a measure of the extent of variation in node degree and is computed as the ratio of the 

spectral radius of the adjacency matrix of the network and the average node degree. The larger the λsp value for a network, the 

larger is its variation in node degree. Real-world networks whose degree distribution models the power-law (scale-free 

networks) [17] incur a larger λsp value, whereas real-world networks whose degree distribution models a Poisson distribution 

(random networks) [18] incur a lower λsp value. 

 

Table 2: Real-World Networks studied for Edge Similarity Analysis 

 
Seq Net.  Net. Description Ref. Network Domain λsp #nodes #edges ρedge 

1 MDN Macaque Dominance Net. [19] Biological Network 1.04 62 1167 0.6171 

2 CAT Cat Brain Network [20] Biological Network 1.19 65 730 0.3510 

3 HCG Hepatitus C Genetic Int. Net. [21] Biological Network 4.17 105 123 0.0225 

4 FFW Florida Food Web Net. [22] Biological Network 1.22 128 2106 0.2591 

5 FBF Flensburg Food Web Net. [23] Biological Network 1.80 180 1577 0.0979 
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6 HHG Human Herpes 4 Genet Net [21] Biological Network 6.07 216 260 0.0112 

7 CEN C. Elegans Neural Network [24] Biological Network 1.68 297 2148 0.0489 

8 GGI Gallus Genetic Interact. Net. [25] Biological Network 7.00 313 364 0.0075 

9 CEM Celegans Metabolic Net. [26] Biological Network 2.94 453 2025 0.0198 

10 XGI Xenopus Genetic Inter. Net. [25] Biological Network 7.53 461 578 0.0055 

11 RTN Rat Transcription Network [27] Biological Network 3.40 488 1092 0.0092 

12 TTN MTuberculosis Trans. Net. [27] Biological Network 6.13 756 937 0.0033 

13 YTH Yeast Two-Hybrid PPI Net. [28] Biological Network 4.29 813 843 0.0026 

14 HIV Human HIV Gen. Inter. Net. [29] Biological Network 6.16 1005 1189 0.0024 

15 MTN Mouse Transcription Net. [30] Biological Network 4.30 1130 2403 0.0038 

16 TEN Taro Exchange Network [31] Acquaintance Network 1.06 22 39 0.1688 

17 SSM Sawmill Strike Comm. Net. [32] Acquaintance Network 1.22 24 38 0.1377 

18 KCN Karate Club Network [33] Acquaintance Network 1.47 34 78 0.1390 

19 KFP Korea Family Planning Net. [34] Acquaintance Network 1.70 37 85 0.1412 

20 CDF College Dorm Fraternity Net [35] Acquaintance Network 1.11 58 967 0.5850 

21 DON Dolphin Network [36] Acquaintance Network 1.40 62 159 0.0841 

22 MTB Madrid Train Bombing Net. [37] Acquaintance Network 1.95 64 295 0.2012 

23 SJN San Juan Sur Family Net. [38] Acquaintance Network 1.29 75 155 0.0559 

24 HTN Hypertext 2009 Network [39] Acquaintance Network 1.21 115 2164 0.3418 

25 PSN Primary School Contact Net. [40] Acquaintance Network 1.22 238 5539 0.1964 

26 DRN Drug Network [41] Acquaintance Network 2.76 212 284 0.0076 

27 ISP Infectious Socio-Patterns Net [39] Acquaintance Network 1.69 309 1924 0.0404 

28 MMN ModMath Network [42] Friendship Network 1.59 30 61 0.1025 

29 FHT Friendship in Hi-Tech Firm [43] Friendship Network 1.57 33 91 0.2333 

30 WSB Windsurfers Beach Network [44] Friendship Network 1.22 43 336 0.3721 

31 TWF Teenage Female Friend Net. [45] Friendship Network 1.49 47 77 0.0996 

32 PFN Prison Friendship Network [46] Friendship Network 1.32 67 142 0.0823 

33 UKF UK Faculty Friendship Net. [47] Friendship Network 1.35 83 578 0.1781 

34 AFB Author Facebook Network - Friendship Network 2.29 171 940 0.0661 

35 FMH Faux Mesa High School Net [48] Friendship Network 2.81 147 202 0.0193 

36 RHF Residence Hall Friend Net. [49] Friendship Network 1.27 217 1839 0.0785 

37 CKM CKM Physicians Network [50] Friendship Network 4.74 246 668 0.0222 

38 FB2 Facebook Network 2 [51] Friendship Network 13.69 324 2218 0.0424 

39 HCN Huckleberry Coappear. Net. [52] Co-appearance Network 1.66 76 302 0.1114 

40 LMN Les Miserables Network [52] Co-appearance Network 1.82 77 254 0.0868 

41 CFN Copperfield Network [52] Co-appearance Network 1.83 89 407 0.1085 

42 ADJ Word Adjacency Network [53] Co-appearance Network 1.73 112 425 0.0684 

43 SMN Slovenian Magazine Net. [54] Co-appearance Network 1.05 124 5972 0.7831 

44 AKN Anna Karnenina Network  [52] Co-appearance Network 2.48 140 494 0.0522 

45 MUN Marvel Universe Network [55] Co-appearance Network 2.54 167 301 0.0222 

46 ROG Roget Network [52] Co-appearance Network 1.68 1022 3648 0.0070 

47 FTC Flying Teams Cade Net. [56] Employment Network 1.21 48 170 0.1507 

48 CSA CS Department Aarhus Net. [57] Employment Network 2.12 61 219 0.1197 

49 LLF Lazega Law Firm Net. [58] Employment Network 2.63 71 205 0.0825 

50 MCE Manufact. Comp. Empl. Net. [59] Employment Network 1.12 77 1549 0.7949 

51 JBN Jazz Band Network [60] Employment Network 1.45 198 2742 0.1406 

52 SDI Scotland Corp. Interlock Net [61] Employment Network 1.94 230 359 0.0121 

53 CLN Centrality Literature Net. [62] Citation Network 2.03 118 613 0.0742 

54 GD96 Graph Drawing 1996 Net [63] Citation Network 2.38 180 228 0.0142 

55 CGD Citation Graph Drawing Net [64] Citation Network 2.24 259 640 0.0133 

56 PDN Perl Developers Network [65] Citation Network 5.22 839 2111 0.0060 

57 DLN Dutch Literature 1976 Net. [66] Literature Network 1.49 37 81 0.1345 

58 GLN Graph Glossary Network [63] Literature Network 2.01 67 118 0.0923 

59 PBN US Politics Books Network [67] Literature Network 1.42 105 441 0.0808 
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60 APN US Airports 1997 Network [63] Transportation Network 3.22 332 2126 0.0387 

61 LTN London Transportation Net. [68] Transportation Network 3.60 381 507 0.0070 

62 EUA EU Air Transportation Net. [69] Transportation Network 3.81 418 1999 0.0229 

63 ERD Erdos Collaboration Net. [63] Collaboration Network 3.00 433 1314 0.0119 

64 MSJ Soc. Net. Journal Co-authors [70] Collaboration Network 3.48 475 625 0.0056 

65 SWC Soccer World Cup 1998 Net [63] Game Network 1.45 35 118 0.1983 

66 FON US Football Network [71] Game Network 1.01 115 613 0.0935 

67 MPN Mexican Political Elite Net. [72] Political Network 1.23 35 117 0.1966 

68 SPR Senator Press Release Net. [73] Political Network 1.57 92 477 0.1140 

69 USS US States Network [74] Geographical Network 1.25 49 107 0.0910 

70 WTN World Trade Metal Network [75] Trade Network 1.38 80 875 0.2769 

 
Table 3 presents the ESI (Edge Similarity Index) and ASI (Assortativity Index) values of the real-world networks with respect to 

each of the four centrality metrics: DEG (degree), EVC (eigenvector), BWC (betweenness) and CLC (closeness). We notice the 

ESI(CLC) values to be significantly larger than the ESI values incurred with the other three centrality metrics. The ESI(CLC) 

values for all the 70 real-world networks are greater than 0.90. On the other hand, the ESI(BWC) values are the lowest for a 

majority of the real-world networks (59 of the 70 networks). Hence, we could say, the ESI values with respect to the BWC and 

CLC metrics are respectively the lower bound and upper bound for the ESI values incurred with any these four prototypical 

centrality metrics with a probability of 0.84 (= 59/70) and 1.00 respectively. The median of the ESI values with respect to DEG, 

EVC, BWC and CLC are 0.939, 0.943, 0.844 and 0.984 respectively. In Table 3, we highlight the cells (in yellow) for which the 

ESI value of a centrality metric is the lowest for a real-world network. 

 

The ASI of a network/graph with respect to a node-level metric is calculated as the Pearson's correlation coefficient between 

two sets representing the metric values for the end vertices of the edges in the graph. For details of calculating the ASI of a 

graph, the reader is referred to [5]. Per [12], on the basis of the ASI values, the assortativeness of the real-world networks could 

be classified into three regimes: Dissortative regime (-1 ≤ ASI < -0.2); Neutral regime (-0.2 ≤ ASI ≤ 0.2); and Assortative 

regime (0.2 < ASI ≤ 1.0). The median of the ASI values reported in Table 3 with respect to DEG, EVC, BWC and CLC are -

0.031, 0.232, -0.066 and 0.239. Overall (refer to Figure 8 for a visual presentation), we observe the real-world networks to be 

relatively more assortative with respect to EVC and CLC, and neutral (neither assortative nor dissortative) with respect to DEG 

and BWC.  

 

Table 3: Edge Similarity Index (ESI) and Assortativity Index (ASI) of the Real-World Networks 

 

Seq Net.  Network Domain 
Edge Similarity Index (ESI) Assortativity Index (ASI) 

DEG EVC BWC CLC DEG EVC BWC CLC 

1 MDN Biological Network 0.980 0.980 0.965 0.992 -0.048 -0.016 -0.097 -0.047 

2 CAT Biological Network 0.965 0.973 0.891 0.984 0.003 0.105 -0.083 0.006 

3 HCG Biological Network 0.555 0.754 0.563 0.969 -0.382 -0.268 -0.351 -0.067 

4 FFW Biological Network 0.961 0.961 0.816 0.984 -0.119 0.014 -0.128 -0.096 

5 FBF Biological Network 0.914 0.961 0.645 0.984 -0.376 -0.085 -0.146 0.009 

6 HHG Biological Network 0.457 0.641 0.387 0.961 -0.214 -0.072 -0.123 0.306 

7 CEN Biological Network 0.879 0.973 0.477 0.992 -0.167 0.095 -0.137 0.162 

8 GGI Biological Network 0.574 0.664 0.582 0.977 -0.205 0.135 -0.190 0.360 

9 CEM Biological Network 0.797 0.910 0.512 0.988 -0.228 -0.196 -0.127 -0.003 

10 XGI Biological Network 0.578 0.734 0.566 0.984 -0.074 0.031 -0.072 0.182 

11 RTN Biological Network 0.883 0.891 0.781 0.973 -0.081 0.211 -0.081 0.502 

12 TTN Biological Network 0.609 0.566 0.633 0.980 -0.009 0.571 0.056 0.897 

13 YTH Biological Network 0.855 0.672 0.637 0.980 -0.039 0.527 0.045 0.964 

14 HIV Biological Network 0.395 0.570 0.379 0.984 -0.143 -0.044 -0.134 0.196 

15 MTN Biological Network 0.898 0.902 0.871 0.977 -0.091 0.223 -0.073 0.376 

16 TEN Acquaintance Network 0.957 0.953 0.891 0.984 -0.362 0.263 -0.162 0.231 

17 SSM Acquaintance Network 0.914 0.902 0.648 0.949 -0.022 0.499 0.038 0.323 

18 KCN Acquaintance Network 0.875 0.945 0.648 0.973 -0.477 -0.242 -0.358 -0.081 

19 KFP Acquaintance Network 0.914 0.938 0.918 0.973 0.241 0.534 0.171 0.547 
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20 CDF Acquaintance Network 0.977 0.980 0.953 0.992 -0.115 -0.099 -0.103 -0.119 

21 DON Acquaintance Network 0.977 0.953 0.844 0.984 -0.044 0.643 0.123 0.527 

22 MTB Acquaintance Network 0.953 0.945 0.941 0.984 0.029 0.390 -0.126 0.350 

23 SJN Acquaintance Network 0.941 0.887 0.723 0.980 0.030 0.652 0.168 0.512 

24 HTN Acquaintance Network 0.973 0.984 0.754 0.988 -0.121 -0.100 -0.098 -0.121 

25 PSN Acquaintance Network 0.992 0.992 0.961 0.996 0.218 0.290 0.099 0.261 

26 DRN Acquaintance Network 0.938 0.887 0.895 0.957 0.111 0.578 0.216 0.920 

27 ISP Acquaintance Network 0.977 0.984 0.855 0.996 0.286 0.559 0.133 0.765 

28 MMN Friendship Network 0.852 0.875 0.848 0.980 0.276 0.639 0.102 0.451 

29 FHT Friendship Network 0.941 0.949 0.883 0.977 -0.069 0.241 -0.166 0.092 

30 WSB Friendship Network 0.980 0.980 0.895 0.992 -0.108 -0.039 -0.099 -0.066 

31 TWF Friendship Network 0.969 0.906 0.875 0.984 0.363 0.901 0.390 0.814 

32 PFN Friendship Network 0.961 0.949 0.875 0.984 0.160 0.545 0.081 0.462 

33 UKF Friendship Network 0.961 0.965 0.816 0.988 0.039 0.252 -0.037 0.152 

34 AFB Friendship Network 0.984 0.961 0.852 0.965 0.349 0.894 0.094 0.812 

35 FMH Friendship Network 0.945 0.941 0.891 0.949 0.120 0.670 0.164 0.933 

36 RHF Friendship Network 0.977 0.973 0.914 0.992 0.097 0.361 -0.001 0.240 

37 CKM Friendship Network 0.617 0.742 0.656 0.961 0.037 0.011 0.046 0.037 

38 FB2 Friendship Network 0.977 0.953 0.727 0.996 0.257 0.570 0.030 0.467 

39 HCN Co-appearance Network 0.789 0.883 0.469 0.914 0.030 0.183 0.013 0.435 

40 LMN Co-appearance Network 0.871 0.961 0.563 0.977 -0.077 0.432 -0.024 0.213 

41 CFN Co-appearance Network 0.746 0.895 0.383 0.949 -0.166 -0.089 -0.070 -0.086 

42 ADJ Co-appearance Network 0.895 0.898 0.762 0.988 -0.097 0.035 -0.097 0.129 

43 SMN Co-appearance Network 0.977 0.979 0.980 0.992 -0.228 -0.221 -0.197 -0.229 

44 AKN Co-appearance Network 0.883 0.961 0.773 0.984 -0.081 0.094 -0.083 0.117 

45 MUN Co-appearance Network 0.914 0.871 0.715 0.953 -0.018 0.566 -0.013 0.881 

46 ROG Co-appearance Network 0.992 0.988 0.980 0.977 0.182 0.482 0.102 0.614 

47 FTC Employment Network 0.949 0.957 0.895 0.984 -0.014 0.463 -0.052 0.238 

48 CSA Employment Network 0.855 0.914 0.766 0.973 -0.115 -0.154 -0.091 -0.107 

49 LLF Employment Network 0.625 0.762 0.613 0.926 -0.004 -0.011 -0.004 -0.004 

50 MCE Employment Network 0.969 0.980 0.844 0.980 -0.040 0.092 -0.072 -0.063 

51 JBN Employment Network 0.965 0.980 0.727 0.992 0.031 0.353 -0.038 0.180 

52 SDI Employment Network 0.961 0.785 0.902 0.961 0.083 0.950 0.221 0.882 

53 CLN Citation Network 0.879 0.926 0.797 0.980 -0.107 0.064 -0.119 0.029 

54 GD96 Citation Network 0.852 0.914 0.859 0.988 -0.283 0.099 -0.158 0.470 

55 CGD Citation Network 0.977 0.973 0.918 0.957 0.136 0.594 0.067 0.723 

56 PDN Citation Network 0.859 0.926 0.789 0.996 -0.203 -0.196 -0.115 -0.016 

57 DLN Literature Network 0.934 0.934 0.898 0.973 0.070 0.335 -0.068 0.320 

58 GLN Literature Network 0.918 0.914 0.832 0.922 -0.158 0.275 -0.197 0.664 

59 PBN Literature Network 0.980 0.969 0.918 0.992 -0.023 0.541 0.053 0.373 

60 APN Transportation Network 0.965 0.984 0.879 0.992 -0.207 -0.023 -0.149 0.055 

61 LTN Transportation Network 0.898 0.867 0.898 0.992 -0.209 0.626 -0.113 0.374 

62 EUA Transportation Network 0.941 0.980 0.801 0.996 -0.166 -0.005 -0.093 -0.084 

63 ERD Collaboration Network 0.980 0.977 0.957 0.973 0.182 0.403 0.047 0.569 

64 MSJ Collaboration Network 0.969 0.828 0.930 0.988 0.350 0.941 0.236 0.960 

65 SWC Game Network 0.867 0.918 0.816 0.973 0.080 0.140 0.026 0.108 

66 FON Game Network 0.992 0.988 0.965 0.996 0.191 0.693 0.059 0.313 

67 MPN Political Network 0.918 0.938 0.750 0.977 -0.155 0.132 -0.115 0.091 

68 SPR Political Network 0.930 0.949 0.922 0.988 0.019 0.140 -0.063 0.163 

69 USS Geographical Network 0.953 0.914 0.863 0.984 0.225 0.622 0.224 0.652 

70 WTN Trade Network 0.973 0.973 0.871 0.988 -0.016 0.019 -0.033 -0.029 
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Figure 7: Comparison of the Centrality-based ESI Values for the Real-World Networks 

 
Figure 7 plots the ESI(DEG) values vs. the ESI values with respect to the other three centrality metrics. The diagonal dotted line 

in the plot is used to identify the trend among the ESI values. If a data point is above the diagonal line, then the ESI with respect 

to the particular centrality metric is greater than ESI(DEG) and vice-versa. We observe the ESI(CLC) values to be far higher 

than that of the ESI(DEG) values, and there appears to be no correlation between the two. On the other hand, we observe at least 

a moderate level of correlation between the ESI(DEG) values vs. the ESI(EVC) and ESI(BWC) values. Considering all the 70 

real-world networks, the Pearson's correlation coefficient between the ESI(DEG) and the ESI(EVC) values is 0.86 and the 

Pearson's correlation coefficient between the ESI(DEG) and the ESI(BWC) values is 0.77. Thus, using the ESI values of the 

real-world networks with respect to the computationally-light DEG centrality metric, we could predict the ESI values of the 

real-world networks with respect to the computationally-heavy EVC and BWC metrics.  

 

Figures 8.a-8.d illustrate the distribution of the ASI vs. ESI values for the four centrality metrics. In all the subfigures, we 

observe the real-world networks in any of the three regimes of assortativity to have comparable ESI values. In other words, it is 

not possible to assess the ESI value of a network-based on its ASI values. Several real-world networks in the neutral regime of 

assortativity incur a wide range of ESI values (especially, in the case of BWC) as well as incur predominantly larger ESI values 

(in the case of CLC, EVC and DEG). On the other hand, if a real-world network has a lower ESI value with respect to a 

centrality metric, it more likely appears to be in the neutral regime of assortativity (though not 100% guaranteed).  

  
8.a: ASI (DEG) vs. ESI (DEG) 8.b: ASI (EVC) vs. ESI (EVC) 
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8.c: ASI (BWC) vs. ESI (BWC) 8.b: ASI (CLC) vs. ESI (CLC) 

Figure 8: Comparison of the Centrality-based ESI Values for the Real-World Networks 

 
Figure 9 plots the distribution of the spectral radius ratio for node degree (λsp) vs. the ESI values of the real-world networks 

with respect to the four centrality metrics. Except for CLC, we observe an inverse relationship between the λsp values and the 

ESI values for the other three centrality metrics. That is, a real-world network with a larger λsp value is more likely to have a 

lower ESI (DEG, EVC, BWC) compared to a real-world network with a lower λsp value. This implies, scale-free networks (that 

have larger λsp values) [16, 17] are more likely to incur lower ESI (DEG, EVC, BWC) values compared to the random networks 

(that have lower λsp values) [16, 18]. If a real-world network has a lower ESI with respect to DEG, EVC or BWC, it is more 

likely to have a larger λsp value (i.e., a larger variation in node degree). Such a trend is relatively stronger for BWC compared to 

DEG and EVC.  

 

                        
 

                       

Figure 9: Spectral Radius Ratio for Node Degree vs. the ESI Values of the Real-World Networks 
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Figure 10: Edge Density vs. the ESI Values of the Real-World Networks 

 
Figure 10 illustrates the distribution of the ESI values vs. the edge density (ρedge) of the real-world networks. With respect to 

any centrality metric, we observe real-world networks with a larger ρedge to incur a larger ESI value. Also, except for CLC, if a 

real-world network incurs a lower ESI value with respect to a centrality metric, it is more likely to have a lower ρedge. But, the 

converse is not necessarily true. We observe several real-world networks with lower ρedge values to incur significantly larger 

ESI values with respect to any of the four centrality metrics. 

 

To further corroborate our observations in Figures 9-10 and assert the relationship between the ESI values and the spectral 

radius ratio for node degree as well as edge density, we compare (see Figure 11) the ESI(DEG) and ESI(BWC) values incurred 

for the 15 biological networks and the 12 acquaintance networks as well as the 11 friendship networks (grouped together as 

social networks). For both DEG and BWC, we observe the ESI values for the biological networks to be appreciably lower than 

the ESI values of the social networks. We observe the social networks to have a relatively larger edge density and lower spectral 

radius ratio for node degree: such real-world networks are more likely to incur larger ESI values (as seen in Figures 9 and 10). 

On the other hand, most of the biological networks are observed to have a relatively lower edge density and larger spectral 

radius ratio for node degree, both of which contributing to the lower ESI values for the biological networks. 

 

  

  

Figure 11: Biological Networks vs. Social Networks: ESI(DEG) and ESI(BWC) and their Relation 

to the Spectral Radius Ratio for Node Degree and Edge Density 
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5 Conclusions 
 

The high-level contribution of this paper is the proposal of the Edge Similarity Index (ESI) measure to assess the similarity 

between any two edges on the basis of the node-level metric values of their end vertices. To the best of our knowledge, the ESI 

metric is the only quantitative network-level metric (in a scale of 0 to 1) to assess edge similarity in complex networks with 

respect to any node-level metric. Also, ours is the first approach to assess similarity on the basis of a logical coordinate system 

of the normalized node-level metric values for the end vertices of the edges. Another significant contribution of our research is 

the proposal of a binary search algorithm whose number of iterations is simply dependent on the cutoff parameter () used as 

the basis to terminate the algorithm and is independent of the number of vertices and edges in the complex network. The overall 

time complexity of the algorithm is O(E2* 2 /

2log  ), where E is the number of edges in the complex network and O(E2) is the 

time complexity to construct the unit-disk graph of the logical vertices (actual edges in the network) for an iteration.  

 

The ESI metric is different from the assortativity index (ASI) metric in the sense that the latter quantifies the extent of similarity 

between the end vertices of any edge (and not any two edges, which is the basis for ESI) with respect to any node-level metric. 

We evaluate the ESI and ASI values for a suite of 70 real-world networks of diverse degree distributions and edge density with 

respect to four prototypical centrality metrics (neighbourhood-based degree: DEG and eigenvector: EVC; and shortest path-

based betweenness: BWC and closeness: CLC) as the node-level metrics. We observe the ESI and ASI values for the real-world 

networks with respect to any of the four centrality metrics to be independent of each other. Both neutral as well as 

assortative/dissortative networks could incur larger ESI values. The only relationship we observe between the ESI and ASI 

metrics is that we observe real-world networks that incurred lower ESI values for a centrality metric (typically, BWC) to be 

typically neutral with respect to assortativity of the edges with respect to the centrality metric. But, it is very important to note 

that the converse need not be true.  

 

We observed the ESI(CLC) values to be the largest for all the 70 real-world networks. We also observed the ESI(BWC) values 

to be relatively the lowest for a majority of the real-world networks. Though both BWC and CLC are shortest path-based 

centrality metrics, it is interesting to observe such a contrasting difference between their ESI values for any real-world network. 

This could be attributed to the fact that BWC could be viewed as a medial centrality metric [76] (i.e., captures the 

volume/number of shortest paths between any two vertices going through a particular vertex) whereas CLC could be viewed as 

a radial centrality metric [76] (i.e., captures the lengths of the shortest paths originating at a vertex). We also observed the 

ESI(DEG) values to exhibit a moderate level of linear correlation with the ESI(BWC) values and a strong level of linear 

correlation with the ESI(EVC) values. Hence, it is possible to use the ESI values of the real-world networks with respect to the 

computationally-light DEG metric as the basis to predict the ESI values with respect to the computationally-heavy BWC and 

EVC metrics. 

 

We observe the ESI values of the real-world networks with respect to DEG, EVC and BWC to be related to the spectral radius 

ratio for node degree and edge density. Networks with larger spectral radius ratio for node degree (typically, such real-world 

networks are said to be scale-free in nature) incur lower ESI values, and networks with lower spectral radius ratio for node 

degree (typically, such real-world networks are said to be similar to random networks) incur larger ESI values. On the other 

hand, networks with larger edge density are observed to incur larger ESI values. We further corroborate our above claim by 

comparing the biological networks vs. social networks (includes both acquaintance and friendship networks). The biological 

networks are observed to have a relatively larger spectral radius ratio for node degree and the social networks are observed to 

have a relatively larger edge density. For both DEG and BWC, we observe the ESI values of the biological networks to be 

appreciably lower than the ESI values of the social networks. As part of future work, we plan to use the ESI measure as the basis 

to evaluate the similarity between any two real-world networks. 
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