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Abstract. In this context, we introduce a multi-objective 

optimization problem (MOOP) to simultaneously minimize the 

objectives of cancerous cells density as well as the approved drug 

amount in order to optimize the medical remedy of a tumor. The 

main aim is gaining a proper pattern for medical supervision to 
sick people with malignant cancer. To this end, a comparison is 

made between the two important and useful methods of non-
dominated sorting genetic algorithm II (NSGA-II) and multi-

objective particle swarm optimization (MOPSO). The gained 

Pareto's Curve here yields a series of optimal protocols. A desired 
optimal technique is then selected from these optimal protocols for 

drug supervision, relating to an under consideration criterion. The 

results show that in both criterions, the convergence and expansion 
of Pareto optimal fronts of the performance of the NSGA-II 

method is better compared to MOPSO. 
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1 Introduction 
 

Cancer is a group of diseases that are created by irregularities of the natural function of the body cells, and it is one of the most 

important causes of death in Iran, where its growth rate is higher than world rate. Liver cancer, lung cancer, stomach cancer, breast 

cancer, and colorectal cancer are considered as the main kinds of cancer. The principle treatment of cancer consists of surgical 

procedure, chemotherapy, radiotherapy, bisphosphonates, hormone therapy, stem cell and bone marrow transplants, and organic 

remedies. Among these treatment strategies, chemotherapy has an important and widespread application for most cancers. 

Displaying of tumor cells movement is an agile investigation subject for biologists, mathematicians, and engineers. Distinctive 

methodologies are utilized as a part of the scientific demonstration of cancer and its control. Many mathematical models have 

been improved for predicting tumor growth after the chemotherapy implementation as well as controlling cancer during the 

treatment course by minimizing the number of cancer cells [1-8]. The influence of the drug and the interactions among tumor and 

normal cells, a consequence of the chemotherapy treatment are considered in these models. These are very helpful to acquire the 

optimum cancer chemotherapy protocols able to minimize the amount of the tumor cells during the treatment. These protocols 

can also minimize the drug doses to the minimum level with fewer side effects under a series of constraints utilizing optimization 

methods. 

In recent years, many methods have been presented for treatment and optimal control of cancerous tumor [9-15]. Calzada et al. 

[12] and De Pillis and Radunskaya [9] introduced a performance index based on the number of tumor cells and optimal measured 

dose of a drug in order to minimize tumor density. El-Gohary [10] studied optimal control of tumor and irregularities behavior of 

its model before and after drug injection and have investigated system stability in balance points. Shuo Wang and Heinz Schattler 

[14] introduced an optimal treatment of cancer to minimize the density of tumor and its malicious effects during a certain period 
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of time. Urszula Ledzewicz, et al. [15] discussed the bout effects of irregularities of growth of tumor and drug resistance on the 

treatment process and optimal control of a mathematical model. 

Evolutionary computation gives exact sensible solutions for hard optimization problems. Evolutionary Algorithms (EAs) own 

many exclusive advantages: generality, reliability and robustness performance, and just low data required for the problem to be 

resolved by a simple implementation. Hence, these algorithms have a widespread and successful application for solving COPs 

[16]. Tes et al. [17], proposed an ideal treatment of cancer to minimize the drug density in chemotherapy treatment by utilizing a 

genetic algorithm (GA). Liang et al. [18] applied GA for designing the Pharmaceutical planning of the non-specific cancer 

chemotherapy treatment. In another study conducted by McCall and Co-worker [19], MOOPs were utilized for designing 

chemotherapy treatment scheduling with constraints of toxic side effect and drug doses. Alam et al. [20] offered a way of phase-

specific drug scheduling by applying MOPSO and designed a closed-loop control method, which gives other options to exchanging 

off between the toxic side effects and cell killing. 

 In this study, because minimizing number of cancerous cells with the lowest prescribed drug is considered as a type of Np-hard 

problem, we utilize efficient meta-heuristic algorithms of MOPSO and NSGA-II which have high convergence for solving large 

scale problems. Several Pareto analyzing criteria are considered to make a comparison between these two meta-heuristic 

algorithms [21, 22].  

The organization of the remaining paper is as follows. The mathematical model of tumor growth is presented in part 2. MOPSO 

and NSGA-II are recalled briefly in part 3. The presented methodology is discussed in detail in part 4. The results graphically are 

shown in part 5, and finally, in part 6, a conclusion is made. 

 

2 Mathematical modeling of tumor growth 
 

As treating malignancy tumor is vital, this kind of expanding technology has absorbed the interest of specialized medical experts, 

mathematicians, and technicians. Many models for tumor expansion are improvement by applying numerical tools. The model 

that we study to build up an optimal medication methodology for malignancy tumor remedy is deduced from [23, 24]. In such a 

model, tumor expansion is recognized as a society dynamics problem, which will not reach the goal to focus on a particular type 

of tumors [23, 24]. 

The model targets the tissue nearby the tumor location and consists of three dissimilar cell crowds and the normal cells, tumor 

cells and immune cells at time 𝑡 are specified by 𝑁(𝑡), 𝑇(𝑡) and 𝐼(𝑡), respectively. The next model provides the dynamics of 

tumors interplays keeping between cells and drug result [24]. 

�̇�(𝑡) =  𝑟2𝑁(𝑡)(1 − 𝑏2𝑁(𝑡)) − 𝑐4𝑇(𝑡)𝑁(𝑡) − 𝐹1(𝑢(𝑡))𝑁(𝑡);  (1) 

�̇�(𝑡) = 𝑟1𝑇(𝑡)(1 − 𝑏1𝑇(𝑡)) − 𝑐2𝐼(𝑡)𝑇(𝑡) − 𝑐3𝑇(𝑡)𝑁(𝑡) − 𝐹2(𝑢(𝑡))𝑇(𝑡); (2) 

𝐼(̇t) = s +
𝜌𝐼(𝑡)𝑇(𝑡)

𝛼 + 𝑇(𝑡)
− 𝑐1𝐼(𝑡)𝑇(𝑡) − 𝑑1𝐼(𝑡) − 𝐹3(𝑢(𝑡))𝐼(𝑡),  

(3) 

The result of the drug is distributed by  𝐹𝑖(𝑢(𝑡)), where 𝑖 = 1,2,3. It is added up to all equations since chemotherapy eliminates 

different types of cells with a dissimilar exterminate proportion. The chemotherapy influencing the system is in fact as follow 

[24]: 

 𝐹𝑖(𝑢(𝑡)) = 𝑎𝑖(1 − 𝑒−𝑢(𝑡)) = 𝑎𝑖 (1 − (1 − 𝑢(𝑡))) = 𝑎𝑖𝑢(𝑡)  (4) 

 

The variables 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3, are the several answer coefficients of normal, tumor and immune system cells to the used medication, 

all at once. In the formula, 𝑖 = 1 is associated with tumor cells and 𝑖 = 2 with normal cells. These cells compete with each other 

for available resources growing logistically with parameters 𝑟𝑖 and 𝑏𝑖 . This parameters indicates per capita growth rates and 

reciprocal carrying capacity, respectively. The parameters  𝑐1, 𝑐2 , 𝑐3and 𝑐4 are competition terms. Also 𝜌 and 𝛼 are positive 
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constants. Actually, 𝑢 denotes the drug focus in the tissues or blood. However, the value of medication dose prescribed for the 

sick by oral, injections or in the future technology by some type of lightweight pumps or straps that could proffer drug consistently 

to blood flow could be determined as described below[24]: 

�̇�(t) = 𝑣(𝑡) − 𝑑2𝑢    (5) 
Where 𝜐(𝑡) is the used drug amount by oral or injections before influencing the bloodstream and 𝑑2  is the per capita death count 

of the drug [24]. 

3 Solution Strategies 
 

The optimality strategy of the MOOP [30] differs from one-goal optimization. In the MOOP, finding a single-purpose solution 

serving all other purposes is not possible. However, a set of optimal solutions are required that are named pareto optimal front 

[31]. 

A general formula for MOOP that simultaneously reduces several target functions is expressed as the following mathematical 

model [30]: 

Minimize 𝑓(𝑥) ={𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)},    𝑥𝜖𝐷  (6) 
where 𝑓(𝑥)  denotes the objectives vector and The decision variable x is mapped by 𝑓𝑖 = 𝑅𝑛 → 𝑅, 𝑖 = 1,2, … , 𝑚,  into the target 

space. The feasible region 𝐷 is constrained by 𝐽 + 𝑘 equality and inequality constraints, and the decision variable x is restricted 

in this region. i.e. 

𝐷 = {𝑥: 𝑔𝑗(𝑥) ≤ 0, ℎ𝑘(𝑥) = 0, 𝑘 = 1,2, … , 𝑘;  𝑗 = 1,2, … , 𝐽 }  (7) 

  

The decision variable 𝑥 could be expressed more properly as 𝑥 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  ]𝑇, that  𝑥𝑖 are limited to lower 𝑥𝑖
(min)

and 

upper 𝑥𝑖
(max)

 bounds. These bounds are called the decision space [30]. In Tumor treatment problem 𝑚 = 2. So, (6) is expressed 

as described below: 

Minimize 𝑓(𝑥) ={𝑓1(𝑥), 𝑓2(𝑥)}, 𝑥𝜖𝐷    (8) 
The function 𝑓1(𝑥) represents the minimization of the concentration of cancer cells, and the function 𝑓2(𝑥) represents the 

minimization of the drug volume given to the patient. In the following provides a summary description of the history and 

explanations of the two compared methods for solving the defined mathematical model.  

3.1. MOPSO Algorithm 

The PSO was initially composed and presented by Eberhart and Kennedy [25-26]. This novel algorithm was used in many 

engineering, medical and science usages [27, 38-44]. In this algorithm, every particle refreshes its velocity based on its current 

velocity and its best location (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 ), also the best all particle location (𝑔𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 ). At the 𝑡- th  iteration, according to the 𝑖 − 𝑡ℎ 

particle, the location vector and the vector of speed are 𝑋𝑖
𝑡 = (𝑥𝑖,1

𝑡 , … , 𝑥𝑖,𝑛
𝑡 ) and 𝑉𝑖

𝑡 = (𝑣𝑖,1
𝑡 , … , 𝑣𝑖,𝑛

𝑡 ). The speed and location 

updating rules are given by 

𝑣𝑖,𝑗
𝑡+1 = 𝜔𝑣𝑖,𝑗

𝑡 + 𝛼1𝑅1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝛼2𝑅2(𝑔𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ),  (9) 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 +𝑣𝑖,𝑗
𝑡+1 

  𝑗 ∈ {1,2, … , 𝑛},    

(10) 

 

 

,  
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where 𝛼1 and 𝛼2 are positive constants, 𝑅1and 𝑅2are two monotonously distributed random numbers in the domain [0,1] and 𝜔 ∈

[0,1] is the inertia factor. 

𝜔 =
𝜔𝑚𝑎𝑥 − [(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) × 𝑖𝑡𝑒𝑟]

max 𝑖𝑡𝑒𝑟
   

 
𝜔𝑚𝑎𝑥 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡,    

𝜔𝑚𝑖𝑛 =  𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡, 
𝑚𝑎𝑥 𝑖𝑡𝑒𝑟 =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, 

𝑖𝑡𝑒𝑟 = Current iteration number. 

(11) 

The variable 𝑉𝑖
𝑡 is limited to the range±𝑉𝑚𝑎𝑥 in this version. As a particle finds a situation that is superior to its previous positions, 

the new position is considered as pbest. The velocity regulation is presented by Clerc and Kennedy [28] as follows: 

𝑣𝑖,𝑗
𝑡+1 = 𝜒(𝑣𝑖,𝑗

𝑡 + 𝛼1𝑅1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝛼2𝑅2(𝑔𝑏𝑒𝑠𝑡𝑖,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 )), 

where 𝜒 =
2𝜅

|2−𝜑−√𝜑2−4𝜑|
  with 𝜑 = 𝛼1  + 𝛼2 >4. 

(12) 

Because of the constriction coefficient 𝜒, the algorithm needs no clear restriction 𝑉𝑚𝑎𝑥. An analysis was conducted on Eq. (9) By 

Krohling and dos Santos Coelho [29] and they concluded that the interval [0.72, 0.86] could be a possibly proper select for 𝜒. 

Therefore, rather than 𝜒, the absolute value of the Gaussian likelihood giving out with zero average and unit variance 𝑎𝑏𝑠(𝑁(0,1)) 

is brought into the velocity equation. 

𝑣𝑖,𝑗
𝑡+1 = 𝛽1(𝑝𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 )+𝛽2(𝑔𝑏𝑒𝑠𝑡𝑖,𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 )), (13) 

Where 𝛽1 and 𝛽2are generated by using 𝑎𝑏𝑠(𝑁(0,1)). Due to the statistical knowledge, the median of 𝑎𝑏𝑠(𝑁(0,1)) is 0.789, and 

the variance is 0.34. 

Moore and Chapman [32], introduced the initial improvement of the PSO methodology to solve MOOPs, which is diagnosed as 

the main MOPSO. In MOPSO, a series of unbeatable solutions have to supplant the single overall best solution in the PSO case. 

Furthermore, it might be no single local best particular for every swarm particle, also the choice of the international best and 

regional best to direct the swarm particles turns into a non-trivial duty in the multi-objective space. In the displayed methodology, 

elitism is additionally regarded by duplicating any non-dominated solution got to an outside put for holding the latest unbeatable 

solutions acquired during generations and the outside set is refreshed normally to retain just the unbeatable solutions. The steps 

of the MOPSO algorithm are displayed in Figure 1 [22, 33 and 34]. 

3.2. NSGA-II Algorithm  

Genetic algorithms were enlightened by Holland [35] in the 1960s and further represented by Goldberg [36]. GA is defined as a 

stochastic global search method which solves problems during natural evolution by imitating processes observed. According to 

the survival and reproduction of the fitness, GA continuously employs new and more appropriate solutions without any pre-

assumptions, including continuity and unimodality.  

The NSGA-II introduced by Deb et al. (2002) [34] is an indicator algorithm that is widely applied in multi-objective optimization 

Since it applies the rapid non dominated sorting style to ordering and choice the population ahead. Then the algorithm employs 

the standard crossover and mutation to compound the current crowd and its offspring generated as the next output. The NSGA-II 

will preserve diversity and improve the solutions without adding new parameters to NSGA. The process of selection by applying 

the crowding distance operator, uniformly spread out to Pareto optimal front.Eventually, the best group in terms of non-dominance 

and variety are elected as the solutions. A summary of the NSGA-II process is shown in Figures 2 [22, 34].  
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4 Methodology 
 

In this study, the values that control variable u of (the amount of consumed medicine) adopts over specific time intervals (𝑢𝑚𝑎𝑥 

or 𝑢𝑚𝑖𝑛). Suppose the period 𝑡 ∈ [𝑡0, 𝑡𝑓] be divided into 𝑁𝑡 subintervals, such that 𝑡0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁𝑡 = 𝑡𝑓 ,  which for 

each 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1], 𝑖 = 1,2, … , 𝑁𝑡, let the control variable be estimated as follows [21]: 

𝑢 = 𝑢𝑖(𝑢𝑚𝑖𝑛 𝑜𝑟 𝑢𝑚𝑎𝑥) for   𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 (14) 
 

Therefore, we show that the values of the control variable for each 𝑡 ∈ [𝑡0, 𝑡𝑓]with the unknown  𝑢1, 𝑢2, … , 𝑢𝑁𝑡 follow the bang-

bang control, and each of them represents the amount of prescription medicine to the patient's body in the related time interval. 

Therefore, there are a total of  2𝑁𝑡 − 1 variables that are optimized by random algorithms, where 𝑁𝑡 is 15. In this study, 

minimizing the tumor cells concentration and the amount of drug consumed by the sick are considered as a two objective 

optimization problem which is represented as follows: 

min ∫ 𝑇𝑑𝑡    and    min ∫ 𝑢𝑑𝑡  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Heydarpoor et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(3) 2020, 61-75. 

66 

 

 

Fig. 1  The MOPSO Flow chart 

 



Heydarpoor et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(3) 2020, 61-75. 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The NSGA-II Flow chart 
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5 Experiments and Results Analysis 
 

This part consists of two segments. Firstly, original parameters applied in the mathematical model, MOPSO and NSGA-II are 

presented. Secondly, the results of the mathematical model are displayed. Also, a comparison is made between the ability of these 

two metaheuristics. 

5.1. Input parameters 

We utilize the same model parameters in [23, 37].They are given as:  

𝑎1 = 0.1   𝑎2 = 0.3   𝑎3 = 0.2   𝑏1 = 𝑏2 = 1   𝛼 = 0.3     𝑐1 = 𝑐3 = 𝑐4 = 1    

𝑐2 = 1      𝑑1 = 0.2    𝑑2 = 1      𝑟1 = 1.5           𝑟2 = 1    s = 0.33   𝜌 = 0.01 

Also, the main parameters of NSGA-II and MOPSO and parameters related to the stop criterion are shown in Table 1.  

Table 1 MOPSO (a) and NSGA-II (b) Parameters 

Explanation Symbol Value Explanation Symbol   Value 

Number of 

population 

𝑁𝑃 50 Number of 

particles 

𝑁𝑃 50 

Cognitive 

acceleration 

constant 

𝑅1 1 Crossover rate  0.8 

Social 

acceleration 

constant 

𝑅2 2 Mutation rate  0.02 

Inertia weight                                    𝜔 0.5 Maximum 

iteration 

 200 

Maximum 

iteration 

 200 (b) 

Maximum 

velocity of the 

particle          

 𝑉𝑚𝑎𝑥         = 𝑢𝑏    

(a)    

 

5.2. Final solutions  

The results acquired after the processing of the NSGA-II and MOPSO algorithms are indicated in this part. MATLAB 7.0 software 

is applied to run the algorithms using a computer with Intel(R) Core(TM) i7-2330M CPU 2.67 GHz 4 GB RAM. The proposed 

approaches are applied for minimizing both cancerous cells attentiveness and the approved drug amount. The initial positions are 

considered as: 𝑁(0) = 0.9, 𝑇(0) = 𝑂. 25, 𝑎𝑛𝑑 𝐼(0) = 0.25. The size of the population and the number of generations is 50. The 

values of other parameters are determined in Table 1. 

In this research, three case studies are taken into account for the desired issue which in the first of these, applied the parameters 

given in Table 1. The parameters for case studies II and III are the same with those in case study I. Except for s = 0.3 as well as ρ 
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= 0.02 for case studies II and III, respectively. For each of the three case studies of I, II and III, the proposed algorithms are 

performed, and the results are presented by figures and table, and they are compared together.  

 
 

  
Fig. 3. Pareto optimal front for a case study I. 

  
(a)                                                                                  (b) 

Fig. 4. Control variable (a) and cells concentration (b) for case study I. 
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Figures 3, 5 and 7 indicate the Pareto fronts obtained for each of the algorithms for cases I, II, and III, respectively, which the 

superiority of the MOPSO algorithm to NSGA-II and MODE is obviously observed in terms of the convergence of responses. 

  

  
Fig. 5. Pareto optimal front for case study II. 

  

  

(a)                                                                                  (b) 

Fig. 6. Control variable (a) and cells concentration (b) for case study II. 
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Table 2 Results for a case study I 

Algorithm Distance Tumor cell 

concentration 

Drug volume 

MOPSO 12.5327 9.639 8.01 

NSGA-II 18.7215 17.88 5.55 

MODE 12.5789 10.18 7.389 

 

Table 3 Results for case study II 

Algorithm Distance Tumor cell 

concentration 

Drug volume 

MOPSO 25.1357 22.07 12.03 

NSGA-II 25.9466 24.01 9.836 

MODE 26.2616 24.3 9.959 

 

Figures 14 (a), 16 (a) and 18 (a) show the amount of medicine consumed for different time intervals during treatment and Figures 

14 (b), 16 (b) and 18 (b) show the effect of the medicine on tumor , normal and immune cells for cases I, II, and, III, respectively. 

From Figure 14 (a), it can be seen that the medicine is consumed in the first eight days of treatment, but it is discontinued. Hence, 

it is obviously observed in Figure 14 (b), that normal and tumors cells are simultaneously reduced due to the medicine usage in 

the first eight days of treatment. However, after that, only the number of tumor cells decreases due to the presence of immune 

cells. Figures 16 and 18 related to II and III also has the same pattern in Figure 14, but, the duration of medicine usage increases 

because of the low number of immune cells in case study II. Also, regarding case study III, the duration of medicine usage 

decreases due to the increased immune cells. 
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Fig. 7. Pareto optimal front for case study III. 

 

  
(a)                                                                                 (b) 

Fig. 8. Control variable (a) and cells concentration (b) for case study III. 
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In tables 2, 3 and 4, we compare the proposed algorithms with the assistance of the amount of medicine usage criteria, the number 

of tumor cells and the smallest Euclidean distance of Pareto front obtained by the algorithms and the point of (0, 0). Except for 

case III, in the two cases of I and II, the MOPSO algorithm has a smaller Euclidean distance compared to two other algorithms. 

Also, the MOPSO algorithm has the lowest amount of cancer cells than two other algorithms in all three cases. The NSGA-II 

algorithm has the lowest amount of drug cells than two other algorithms in the two cases of I and II.  

Table 4 Results for case study V 

Algorithm Distance Tumor cell 

concentration 

Drug volume 

MOPSO 11.7917 8.319 8.357 

NSGA-II 11.6094 8.865 7.496 

MODE 12.9408 11.26 6.378 

 

6 Conclusion                                                                                         
 

In this context, we introduce (MOOP) to synchronically minimize the targets of cancerous cells density as well as the approved 

medicine amount in order to medically remedy the tumor. The main aim of this study is gaining a proper pattern for medical 

supervision to sick people with malignant cancer. Since this problem is considered as a type of Np-hard problem, we utilize 

efficient meta-heuristic algorithms of MOPSO, MODE and NSGA-II which have high convergence for solving large-scale 

problems. A set of optimal protocols is gained that is called Pareto's Curve. A desired optimal technique is then selected from 

these optimal protocols for drug supervision, relating to an under consideration criterion. Several Pareto analyzing criteria are 

considered to make a comparison between these three meta-heuristic algorithms. The results gained for the three case studies show 

that in both criteria of the convergence as well as the expansion of Pareto optimal fronts the performance of the MOPSO method 

is better compared to the other two algorithms, especially the NSGA algorithm.  

Utilizing a mathematical model related to optimization tools may help to develop optimal protocols for using in real patients in 

the future. These protocols do not guarantee the optimal optimization, and other protocols may be found to have the same 

effectiveness but utilize less total drug administration.  
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