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Abstract. This study presents a machine learning framework for 

the multiclass classification of neurological and psychiatric 
conditions based on synthetic neuroinformatics biomarkers and 

EEG spectral band simulations. A synthetic training dataset was 

generated by modelling temporal cognitive-motor features, 

including visual delay (𝜏𝑣), motor gain (𝐾), expectancy weight 

(𝛽), predictive memory capacity, and canonical EEG spectral 

powers (Delta, Theta, Alpha, Beta, Gamma). To evaluate model 
performance on data derived from real signals, a second dataset 

was created using features extracted from 50 EEG recordings 

available in the PhysioNet EEG Motor Movement/Imagery 
Database. These features provided a hybrid evaluation 

environment combining the controlled conditions of synthetic data 

with the complexity of real EEG measurements. The classification 
task was addressed using an XGBoost model, optimised through 

an exhaustive grid search procedure exploring 24 hyperparameter 

combinations, each evaluated via five-fold cross-validation (120 
individual fits). The best-performing configuration employed a 

learning rate of 0.1, a maximum tree depth of 3, 200 boosting 

iterations and a subsampling ratio of 0.8. When tested on an 
independent dataset, the model achieved an accuracy of 97.8% and 

an F1-score of 0.978, demonstrating excellent predictive 

performance across all clinical classes. The resulting confusion 
matrix confirmed high classification accuracy for neurotypical 

controls, attention-deficit/hyperactivity disorder (ADHD), autism 

spectrum disorder (ASD), dementia, depression, generalised 
anxiety disorder (GAD), Parkinson’s disease, psychosis and 

Tourette’s syndrome, with only minor misclassifications observed 

among phenotypically similar conditions. These results highlight 
the potential of combining synthetic feature modelling with 

machine learning for differential diagnosis and clinical decision 

support in neuropsychiatric research. 
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1. Introduction 

 
Neuroinformatics is an interdisciplinary field that facilitates the integration and analysis of large volumes of brain data, 

contributing to the use of biomarkers for the detection and monitoring of neurodegenerative diseases such as Alzheimer’s. This 

approach enables more precise and earlier diagnosis, transcending traditional methods that are often limited by their lack of 

specificity. 

 

The identification of biomarkers enables a more precise characterisation of the preclinical phases of diseases such as 

Alzheimer’s. According to Arriagada and Villalobos, both the IWG and the NIA-AA groups emphasise the importance of using 

biomarkers to diagnose the disease before the clinical manifestations of dementia appear, representing a significant advance in 
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medicine (Arriagada & Villalobos, 2022). The clinical application of measurable biological features, such as cerebrospinal fluid 

tau levels or positron emission tomography (PET) imaging, allows more effective monitoring and earlier therapeutic 

intervention (Dorman et al., 2022). 

 

Challenges persist in the use of biomarkers, primarily due to the complexity of neurodegenerative diseases, which often present 

significant phenotypic variations and prolonged preclinical states (García-Ribas et al., 2023). This uniqueness requires 

multidisciplinary integration between neuroscientists, clinicians and informatics specialists to develop tools that combine 

biomedical and clinical data, a key endeavour in neuroinformatics (García-Ribas et al., 2023). The ultimate aim is to enhance 

the understanding of the pathogenesis of these diseases and optimise the effectiveness of available treatments. 

 

Collectively, the neurophysiological indicators (Visual delay (τᵥ), motor gain (K), expectation weight (β), and EEG oscillations) 

contribute to a more comprehensive and multidimensional understanding of human behaviour and neurological dysfunction. 

Their integration into clinical and research workflows is critical for advancing insights into disease pathophysiology and 

improving diagnostic and therapeutic strategies within neuroscience and psychology. 

 

Visual delay (τᵥ), motor gain (K), expectation weight (β), and EEG oscillations constitute key neurophysiological indicators 

offering an integrated perspective on nervous system function and its implications for cognition and behaviour. Collectively, 

these parameters provide valuable information for elucidating the underlying mechanisms of diverse neurological and 

psychological conditions. 

• Visual delay (τᵥ) serves as a critical marker of perceptual processing efficiency, reflecting the latency 

associated with the transmission and interpretation of visual stimuli within the brain. This parameter is 

particularly relevant in studies of visual perception and attention, as deviations in τᵥ may signify dysfunction 

within the visual system, often associated with neurological and psychiatric disorders. Visual delay represents 

the time difference between stimulus onset and the subject’s motor response. It is obtained by presenting 

sudden visual changes (flashes or target shifts) and recording reaction times via response buttons or motion 

sensors. Normal values typically range between 80 and 120 ms, and deviations can reveal delayed or 

anticipatory processing. 

• Motor gain (K) quantifies the efficiency with which the motor system translates perception into coordinated 

action. This metric is particularly pertinent in the context of paediatric motor development and the assessment 

of movement disorders. Empirical studies demonstrate that reduced K correlates with deficiencies in 

executing complex motor tasks, with potential implications for both learning and academic achievement 

(Montero et al., 2018). Consequently, motor gain reflects not only physical capability but also cognitive 

processes relevant to educational performance. K quantifies the relationship between an external stimulus and 

the motor response produced by the subject. It is measured by presenting visual or auditory targets while 

recording responses such as eye movements or limb motion using tracking sensors. K is calculated as the ratio 

between the amplitude of the motor response and the amplitude of the stimulus, indicating whether motor 

output is normal, hypo- or hyper-responsive.  

• Expectation weight (β) describes the degree to which prior expectations influence performance and motivation 

across diverse contexts. This construct has been investigated extensively in both educational and clinical 

settings. Findings indicate that positive expectations are associated with enhanced task performance and 

greater adherence to therapeutic interventions (Montero et al., 2018). This aspect is particularly salient in 

mental health treatment, where patient beliefs and expectations can influence therapeutic outcomes. 

Psychological strategies aimed at modulating expectations may, therefore, represent an avenue for improving 

clinical efficacy. However, the evidence supporting these claims, based primarily on Montero et al. (2018) 

and Redondo et al. (2017), lacks generalisability, as it addresses expectation-performance relationships within 

limited contexts. The expectancy weight reflects how strongly predictive processes influence sensory 

perception and motor behaviour. It is measured using prediction paradigms that compare responses to 

expected versus unexpected stimuli, using neural measures such as EEG event-related potentials (P300) or 

behavioural metrics. Higher values indicate stronger reliance on expectation, whereas lower values indicate 

reduced predictive weighting. 

• EEG oscillations provide a robust framework for quantifying electrical brain activity and identifying patterns 

associated with distinct mental and cognitive states. While correlations between oscillatory dynamics and 

cognitive performance have been documented in domains such as attention and memory, the citation 

attributed to García et al. (2023) does not offer explicit support for this claim, warranting its removal. 
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Restricted access to multiclass clinical data constitutes a persistent barrier to progress in contemporary biomedical research. 

This limitation is driven by multiple factors, including stringent privacy regulations, the inherent challenges of acquiring high-

quality clinical records, and the scarcity of large multicentre cohorts necessary to build robust datasets for training machine 

learning models. In response to these constraints, the generation of synthetic data has emerged as a transformative strategy to 

enhance data availability while protecting patient privacy. 

 

The development and deployment of machine learning algorithms rely fundamentally on access to large and diverse datasets. 

Yet, clinical data are often inaccessible due to privacy concerns and governance restrictions, delaying research and limiting 

analytical opportunities. As Choi et al. (2017) note, regulatory and legal oversight processes can extend for months, impeding 

timely insights and delaying translational advances. These challenges are particularly pronounced in rare diseases and clinical 

trials, where limited patient cohorts frequently fall short of the scale required for model training (Eckardt et al., 2024; Azizi et 

al., 2021). 

 

Synthetic data generation provides a compelling solution to these issues. Recent studies demonstrate that synthetic datasets can 

faithfully reproduce the statistical properties and structural relationships of real-world clinical data while eliminating sensitive 

patient identifiers. By leveraging advanced artificial intelligence techniques, particularly generative adversarial networks 

(GANs), researchers can simulate realistic patient records that are representative of clinical reality and safe for open analysis 

(Raghunathan, 2021; Soltana et al., 2017; Ghosheh et al., 2022). Such innovations hold the potential to democratise data access, 

accelerate algorithmic development and catalyse discovery in areas previously constrained by limited data availability. 

 

Nevertheless, the scientific utility of synthetic data depends critically on their validity and fidelity. Khalaf et al. (2024) 

emphasise that, although synthetic datasets facilitate access to valuable biomedical information, they present challenges in terms 

of precision, accuracy and generalisability. Establishing rigorous validation frameworks and transparency standards is essential 

to ensure that synthetic datasets are both analytically robust and clinically relevant (D’Amico et al., 2023; Gonzales et al., 2023). 

Consequently, the use of synthetic data must be approached with caution, with careful consideration of quality control, dataset 

provenance and representation of target populations. 

 

This study contributes to the field by generating a synthetic, multiclass dataset encompassing ten neurological and psychiatric 

conditions. The dataset integrates both temporal biomarkers, such as visual delay, and spectral biomarkers derived from 

simulated EEG oscillations, providing a multidimensional representation of neurophysiological patterns. Furthermore, the work 

evaluates the performance of machine learning algorithms in classifying these conditions, demonstrating the potential of 

synthetic data to support the development and validation of computational models in neuroinformatics and clinical decision 

support. 

 

 

2. Materials and Methods 

 
2.1. Synthetic Dataset 

 

The design of a synthetic dataset that integrates parameters (Table 1) such as visual delay (τᵥ), motor gain (K), expectancy 

weight (β), and condition-specific EEG oscillations presents a unique opportunity to explore complex relationships in 

neuroscience. This approach can help address the scarcity of real-world data while providing a more controlled framework for 

research. 
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Table 1. Parameters of the synthetic dataset. 

Condition τᵥ (Visual delay)     K (Motor gain)     β (Expectation 

weight)     

Predictive 

memory 

(capacity) 

Neurotypical 

(NT) 

80–120 ms 1.0 0.6–0.8 5–10 

ASD 60–90 ms ↓ 

(Pellicano & 

Burr, 2012) 

1.0 ↔  

(Pellicano & Burr, 

2012) 

0.2–0.5 ↓ 

(Pellicano & Burr, 

2012) 

3–5 ↓  

(Pellicano & 

Burr, 2012) 

Psychosis 150–200 ms ↑ 

(Hong et al., 

2005) 

0.6–0.8 ↓  

(Hong et al., 2005) 

1.0–1.5 ↑ (Adams 

et al., 2013) 

1–3 ↓  

(Adams et al., 

2013) 

ADHD 100–140 ms ↑ 

(Munoz et al., 

2003) 

0.7–1.0 ↓ (Lee et al., 

2021) 

0.4–0.7 ↓  

(Lee et al., 2021) 

2–4 ↓  

(Munoz et al., 

2003) 

Major 

depression 

140–180 ms ↑ 

(Disner et al., 

2011) 

0.6–0.8 ↓  

(Disner et al., 2011) 

0.5–0.8 ↓  

(Disner et al., 

2011) 

3–6 ↓  

(Disner et al., 

2011) 

OCD 90–120 ms ↔ 

(Fradkin et al., 

2020) 

0.9–1.2 ↑ (Fradkin et 

al., 2020) 

1.2–1.5 ↑ (Fradkin 

et al., 2020) 

5–8 ↑  

(Fradkin et al., 

2020) 

Dementia 160–220 ms ↑ 

(Stout et al., 

1999) 

0.4–0.7 ↓  

(Stout et al., 1999) 

0.2–0.4 ↓  

(Stout et al., 1999) 

1–3 ↓  

(Stout et al., 

1999) 

Tourette's 

syndrome 

80–100 ms ↔ 

(Günther et al., 

2011) 

1.1–1.4 ↑ (Günther et 

al., 2011; Jackson et 

al., 2013) 

0.8–1.2 ↔ 

(Jackson et al., 

2013) 

4–6 ↔  

(Günther et al., 

2011) 

Parkinson's 

disease 

120–160 ms ↑ 

(Matsui et al., 

2006) 

0.5–0.8 ↓ (Matsui et 

al., 2006) 

0.5–0.7 ↓ (Matsui 

et al., 2006) 

2–4 ↓ 

(Matsui et al., 

2006) 

Generalised 

anxiety disorder 

70–100 ms ↓  

(Yu & Dayan, 

2005) 

1.0–1.2 ↑ (Yu & 

Dayan, 2005) 

1.0–1.3 ↑  

(Yu & Dayan, 

2005) 

5–9 ↑  

(Yu & Dayan, 

2005) 
 

Modelling the correlations between predictive memory, expectancy weight (β) and motor gain (K), alongside the simulation of 

EEG oscillations (Delta, Theta, Alpha, Beta, Gamma) with condition-specific patterns, represents an integrative and 

sophisticated approach to neurophysiological analysis. These components are essential for understanding the cognitive and 

motor dynamics across different states and clinical conditions. 

 

Algorithm 1 outlines the procedure employed for generating a synthetic dataset (Table 2, and figures in table 3) tailored to 

neurophysiological classification tasks. The algorithm integrates clinically relevant temporal and spectral biomarkers, including 

visual delay (τᵥ), motor gain (K), expectation weight (β), predictive memory capacity, and electrophysiological measures 

derived from simulated EEG activity. These features are further complemented by derived neurodynamic markers, such as 

spectral entropy, coherence index, theta/beta ratio, and alpha peak frequency. The dataset thus captures multidimensional 

aspects of cognitive and motor dynamics across various neurological and psychiatric conditions, enabling robust training and 

evaluation of both supervised and semi-supervised learning models. 
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Algorithm 1: Synthetic Dataset Generation for Neurophysiological 

Classification 

 

Input:  

    N – number of samples per clinical condition 

    Conditions – dictionary containing: 

        Parameter ranges: Visual delay (τᵥ), Motor gain (K), 

Expectation weight (β), Predictive memory capacity 

        EEG baseline powers: Delta, Theta, Alpha, Beta, Gamma 

        Alpha peak frequency baseline 

 

Output: 

    Dataset D containing multidimensional features and clinical 

labels 

 

Procedure: 

1: Initialize empty dataset D ← ∅ 
2: For each condition c ∈ Conditions do 
3:     For i = 1 to N do 

4:         Sample τᵥ = Uniform(τᵥ_min(c), τᵥ_max(c)) 

5:         Sample K = Uniform(K_min(c), K_max(c)) 

6:         Sample β = Uniform(β_min(c), β_max(c)) 

7:         Sample M = Uniform(M_min(c), M_max(c))  ▷ Predictive 
memory 

8:         Generate EEG features: 

9:             For each band b ∈ {Delta, Theta, Alpha, Beta, 
Gamma} do 

10:                EEG[b] = Normal(EEG_baseline(b,c), σ=0.1) 

11:            Compute derived EEG markers: 

12:                θ/β ratio = EEG[Theta] / EEG[Beta] 

13:                Coherence index ← Normal(bias(c), σ=0.05) 

14:                Spectral entropy 
2logi i

i

H p p= −
,  

                    where 

 
 

EEG i
pi

EEG i
=
  

15:                Alpha peak frequency
( ( ), 0.2)

peak

peakN cf


 = =
 

16:         Compute motor variability: 

17:             
( ( )) (0,0.05)rangeMV K mean K c Normal= − +

) 

18:         Append sample S = {τᵥ, K, β, M, EEG, θ/β, coherence, 

entropy, alpha peak, MV, label=c} to D 

19:        Generate EEG time-series (for visualization): 

                 

1
0 : :

s

t T
F

=

 
           For each band b, generate: 

Signalb(t) = EEG[b] · sin(2π fbt) 

 

20:     Plot all 5 bands (Delta, Theta, Alpha, Beta, Gamma) as 
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subplots and save as: 

EEG_Record_ID_Label.png 

21:        End For 

22: End For 

23: Normalize features if required 

24: Export D to CSV format 

 

 

Table 2. Synthetic Dataset. 
Tau_

v 

K Beta Predictive 

memory 

Delt

a 

Thet

a 

Alph

a 

Gam

ma 

ThetaBe

taRatio 

Coheren

ceIndex 

Spectral

Entropy 

AlphaPe

akFreq 

MotorVa

riability 

La

bel 

118.

5004 

1 1.17

8537 

5.828496 1.09

8136 

0.91

9344 

1.20

5028 

1.13

5242 

0.78007

2 

0.67724 2.31573

6 

10.4639

1 

-0.01 N

T 

118.
7509 

1 0.88
0806 

8.282253 0.95
4744 

1.01
9806 

1.14
033 

0.96
6609 

1.15781 0.73261 2.31655
7 

9.86236
6 

-0.0178 N
T 

92.1
4093 

1 0.97
734 

8.982747 1.02
1359 

1.00
805 

1.02
0058 

1.02
8403 

1.03142
2 

0.714699 2.32169
6 

10.0300
2 

0.07611 N
T 

97.9

2856 

1 0.98

4137 

7.382646 0.84

1967 

0.87

9085 

0.99

8576 

1.25

566 

0.89325

4 

0.716434 2.30709

4 

9.9625 0.039307 N

T 

 

 

Table 3. Figures of the dataset. 
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2.2. Dataset for predicting 

 

The generation of comprehensive EEG-based datasets is crucial for advancing machine learning applications in clinical 

neuroscience. In this study, we developed a dataset by automatically acquiring electroencephalographic (EEG) signals from the 

PhysioNet EEG Motor Movement/Imagery Database, a publicly available repository that contains recordings from 109 subjects 

performing motor tasks, such as hand and foot movements, both executed and imagined (Goldberger et al., 2000). These signals 

were preprocessed (Algorithm 2), and neurocognitive features—including visual delay, motor gain, and expectancy weight —

were extracted alongside canonical spectral power bands (Delta, Theta, Alpha, Beta, Gamma), resulting in a structured dataset 

suitable for classification tasks. 

Algorithm 2: EEG Data Acquisition and Feature Extraction 

Input: 

N=50 EEG recordings from PhysioNet EEG Motor Movement/Imagery 

Database. 

Frequency band definitions: Delta (1–4 Hz), Theta (4–8 Hz), Alpha 

(8–12 Hz), Beta (12–30 Hz), Gamma (30–45 Hz). 

Event-based parameters to estimate: Visual delay (τv), Motor gain 

(K), Expectancy weight (β). 

Output: 

Consolidated dataset DDD containing 50 feature vectors  

[τv,K,β,Delta,Theta,Alpha,Beta,Gamma,Label]. 
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Procedure: 

1: Initialize empty dataset D←∅. 

2: For each subject i∈{1,2,…,50}: 
3:    Download EEG recording Fi from PhysioNet if not already 

available locally. 

4:    Load EEG data from Fi using an EEG processing library (MNE). 

5:     Preprocess EEG signal: 

Select EEG channels only. 

Remove non-EEG data if present. 

6:    Estimate cognitive parameters (due to lack of explicit 

markers, assign realistic estimates based on literature): 

Visual delay (τv) ≈ 120±20 ms 

Motor gain (K)≈ 1.0±0.1 

Expectancy weight (β)≈ 0.75±0.1 

7:    Compute spectral band powers using bandpass filtering and 

variance estimation: 

Deltai=P(1–4 Hz) 

Thetai=P(4–8 Hz) 

Alphai=P(8–12 Hz) 

Betai=P(12–30 Hz) 

Gammai=P(30–45 Hz) 

8:    Assign label Labeli="Control". 

9:     Append feature vector  

   Si=[τv,K,β, Delta, Theta, Alpha, Beta, Gamma,Label]  

10:Export dataset D to CSV format as EEG_features_50_subjects.csv. 

11:Return consolidated dataset with N=50 feature vectors. 

 

Beyond direct use of real EEG signals, there are alternative methods for generating synthetic EEG datasets while preserving key 

physiological and statistical properties. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational 

Autoencoders (VAEs) (Kingma & Welling, 2014) can learn the latent distributions of real EEG signals and produce novel, 

physiologically consistent data, enabling dataset augmentation without compromising patient privacy. Additionally, hybrid 

parametric modelling approaches can combine empirical distributions (e.g., reaction times, spectral features) derived from real 

recordings with simulated neural oscillations, producing controlled datasets ideal for algorithm benchmarking (Hartmann et al., 

2021). These approaches allow researchers to expand sample sizes, explore rare conditions, and conduct robust model 

evaluations under controlled experimental scenarios. 

 

Table 4 presents a subset of the generated dataset containing neurophysiological and spectral features extracted from EEG 

recordings of 50 subjects obtained from the PhysioNet EEG Motor Movement/Imagery Database. For each subject, event-

related parameters were computed, including visual delay (τv), motor gain (K), and expectancy weight (β), alongside canonical 

spectral band powers (Delta, Theta, Alpha, Beta, Gamma). These features capture both temporal and frequency-domain 

characteristics of brain activity and are accompanied by a categorical label indicating the subject’s clinical status. In this dataset, 

all subjects are annotated as Control, reflecting the fact that the source repository contains recordings exclusively from 

neurologically typical participants. The resulting dataset provides a structured basis for further machine learning analyses, 

including classification experiments and the development of synthetic data augmentation strategies. 
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Table 4. Synthetic Dataset calculated from the PhysioNet EEG Motor Movement/Imagery Database. 

File Visual 

delay 

Motor 

gain 

Expectancy 

weight 

Delta Theta Alpha Beta Gam

ma 

Labe

l 

S001R01

.edf 

7.35E-

02 

8.14E-

01 

9.01E-01 1.45E

-09 

3.57E

-10 

1.94E

-10 

2.52E

-10 

5.90E

-11 

Cont

rol 

S002R01

.edf 

1.40E-

01 

7.66E-

01 

8.19E-01 6.75E

-10 

1.34E

-10 

7.59E

-11 

1.12E

-10 

4.94E

-11 

Cont

rol 

S003R01

.edf 

7.42E-

02 

1.12E+

00 

8.93E-01 2.85E

-09 

9.55E

-10 

2.90E

-10 

2.85E

-10 

1.26E

-10 

Cont

rol 

S004R01

.edf 

1.02E-

01 

1.05E+

00 

6.62E-01 8.35E

-10 

5.34E

-10 

1.18E

-10 

1.02E

-10 

3.25E

-11 

Cont

rol 

S005R01

.edf 

1.20E-

01 

1.05E+

00 

8.55E-01 3.58E

-10 

1.32E

-10 

5.27E

-11 

9.06E

-11 

4.55E

-11 

Cont

rol 

S006R01

.edf 

1.52E-

01 

1.07E+

00 

8.47E-01 5.96E

-10 

1.54E

-10 

2.67E

-11 

6.81E

-11 

4.17E

-11 

Cont

rol 

S007R01

.edf 

1.13E-

01 

9.95E-

01 

7.07E-01 5.80E

-10 

2.27E

-10 

2.13E

-10 

1.70E

-10 

3.92E

-11 

Cont

rol 

S008R01

.edf 

1.57E-

01 

1.03E+

00 

7.09E-01 7.27E

-10 

1.84E

-10 

5.83E

-11 

6.81E

-11 

4.25E

-11 

Cont

rol 

S009R01

.edf 

7.51E-

02 

1.23E+

00 

8.18E-01 6.13E

-09 

7.55E

-10 

2.19E

-10 

7.92E

-10 

8.32E

-10 

Cont

rol 

S010R01

.edf 

1.01E-

01 

1.02E+

00 

1.07E+00 2.20E

-09 

4.38E

-10 

1.87E

-10 

2.47E

-10 

8.39E

-11 

Cont

rol 

S011R01

.edf 

6.85E-

02 

1.13E+

00 

7.11E-01 5.53E

-10 

7.14E

-11 

2.10E

-11 

3.21E

-11 

1.45E

-11 

Cont

rol 

S012R01

.edf 

1.60E-

01 

1.16E+

00 

8.22E-01 5.62E

-10 

1.35E

-10 

3.53E

-11 

1.06E

-10 

8.16E

-11 

Cont

rol 

S013R01

.edf 

9.64E-

02 

8.32E-

01 

6.82E-01 1.42E

-09 

5.90E

-10 

2.01E

-10 

3.73E

-10 

1.40E

-10 

Cont

rol 
 

2.3. Classification algorithms 

 

Accurate classification of neurological and psychiatric conditions is critical for supporting clinical decision-making and 

designing personalised interventions. Subtype identification based on neurophysiological patterns enables early diagnosis, 

improves treatment planning, and facilitates the monitoring of disease progression. Traditional diagnostic approaches often rely 

on subjective clinical evaluation, which can be limited by inter-rater variability and delayed recognition of subtle 

neurophysiological changes. 

 

The use of computational models, particularly machine learning algorithms, provides an opportunity to objectively analyse high-

dimensional data, such as EEG spectral features and cognitive-motor parameters. In this work, we adopt XGBoost (Algorithm 

3), an ensemble learning algorithm based on gradient boosting, due to its ability to handle non-linear feature interactions and its 

strong performance in tabular biomedical datasets. The model leverages a synthetic, multidimensional dataset that integrates 

temporal biomarkers (visual delay), motor control indices, and spectral EEG features to classify clinical conditions. By 

predicting disease subtypes from physiological patterns, this approach can potentially accelerate early intervention, guide 

personalised therapy, and support clinical research in neuroinformatics and digital health. 
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Algorithm 3: Classification Pipeline using XGBoost 

Input: 

Dataset D={X,y}, where X are features and y are clinical labels 

Hyperparameter search space H 

Output: 

Trained XGBoost classifier M 

Evaluation metrics (accuracy, F1-score, confusion matrix) 

 

Procedure: 

1: Split dataset D into training and testing subsets (80/20). 

2: Normalize features in X using z-score scaling: 

X x
X

x





−
=

 
  

3: Encode labels y using one-hot or integer encoding. 

4: Initialize XGBoost model M with default parameters. 

5: Hyperparameter tuning: 

For each parameter combination h∈H: 
a) Train model Mh on training data. 

b) Evaluate using cross-validation accuracy. 

 arg max ( )h hSelect h Accuracy M=
 

6: Retrain XGBoost model M on full training set using h∗. 
7: Evaluate final model on test set: 

Compute accuracy: 

           Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Compute F1-score: 

      Recall = TP / (TP + FN) 

           F1 = 2 * (Precision * Recall) / (Precision + Recall) 

Generate confusion matrix. 

8: Return model M and metrics. 

End 

 

 

3. Results 

 
The grid search procedure explored 24 different combinations of hyperparameters for the XGBoost classifier. Each 

configuration was evaluated using five-fold cross-validation, resulting in a total of 120 individual model fits. This approach 

ensured that the model’s performance was assessed on multiple train-test splits, minimising the risk of overfitting to a single 

dataset partition and providing a more reliable estimate of its generalisation capacity. 

 

The best-performing configuration of the XGBoost model was achieved with a learning rate of 0.1, a maximum tree depth of 3, 

200 boosting iterations (n_estimators), and a subsampling ratio of 0.8. These hyperparameters suggest that relatively shallow 

trees, combined with a moderate learning rate and controlled subsampling, provided a strong balance between model complexity 

and generalisation, preventing overfitting while maintaining high predictive accuracy. 

 

When evaluated on the independent test set, the model achieved an overall accuracy of 0.978, meaning that 97.8% of the 

samples were correctly classified into their respective clinical categories. Furthermore, the F1-score, which balances precision 

and recall, was also 0.978, indicating that the classifier performed consistently well across all classes and maintained an 

excellent trade-off between false positives and false negatives. 

 

These results demonstrate that the synthetic dataset, together with the XGBoost classifier, can successfully capture and exploit 

the complex relationships between temporal, motor, and EEG-derived features to distinguish between different neurological and 
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psychiatric conditions. Such high performance highlights the potential of machine learning approaches for supporting clinical 

decision-making and motivates further validation using real-world datasets. 

 
Fitting 5 folds for each of 24 candidates, totalling 120 fits 

Accuracy: 0.978 

F1-score: 0.978 

Best parameters: {'learning_rate': 0.1, 'max_depth': 3, 'n_estimators': 200, 

'subsample': 0.8} 

 

Figure 1 shows the confusion matrix obtained for the XGBoost classifier using the synthetic dataset. The diagonal elements 

represent the number of correctly classified samples for each clinical condition, while off-diagonal elements indicate 

misclassifications. The model achieved excellent performance, with the majority of samples lying on the diagonal, reflecting 

correct predictions. 

 

Specifically, neurotypical (NT), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), dementia, 

depression, generalised anxiety disorder (GAD), Parkinson’s disease, psychosis and Tourette’s syndrome were classified with 

very few errors. For example, NT achieved 72 correct predictions with no misclassifications, and ADHD, dementia, depression, 

Parkinson’s disease and psychosis showed perfect or near-perfect classification. Minor confusions occurred between GAD and 

Tourette’s syndrome, and between OCD and GAD, indicating slight overlaps in their simulated EEG or cognitive-motor 

features. 

 

The overall high accuracy and balanced distribution of errors demonstrate the model’s ability to capture condition-specific 

patterns from temporal, motor and spectral EEG features. These results support the feasibility of using synthetic datasets 

combined with machine learning for exploring differential diagnosis in neuropsychiatric conditions. 

 
 

Figure 1. Matrix obtained for the XGBoost classifier using the synthetic dataset. 
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Algorithm 4 outlines the procedure for predicting probable neurological or psychiatric conditions from EEG-derived features. 

The trained XGBoost model, obtained from synthetic data, is applied to the evaluation dataset after aligning features and 

applying the same scaling and encoding used in training. The output is an augmented dataset containing a new column of 

predicted diagnostic labels, enabling preliminary classification even when explicit clinical labels are unavailable. 

 

Algorithm 4: Prediction of Clinical Condition from EEG Features 

Input: 

M: Trained XGBoost model (from synthetic dataset) 

S: Scaler used in training 

E: Label encoder used in training 

Dtest: Dataset containing feature values (τv,K,β, Delta, Theta, 

Alpha, Beta, Gamma,Label) 

Output: 

Dpred: Dataset with additional column Predicted_Label 

 

 

Steps: 

Load the test dataset Dtest. 

Identify the common feature set  

F = featurestrain ∩ featurestest . 

Extract the feature matrix  

Xtest=Dtest[F]. 

Apply scaling using the training scaler: 

     Xtest_scaled=S.transform(Xtest) 

Predict encoded labels using the trained model: 

     y = M.predict(Xtest_scaled) 

Convert encoded labels to human-readable form: 

     Y = E.inverse_transform(y) 

Append predicted labels to the dataset: 

     Dtest["Predicted_Label"]=Y 

Save the resulting dataset with predictions as 

EEG_features_50_subjects_predicted.csv. 

Return Dpred = Dtest with the new column. 

 

The PhysioNet EEG Motor Movement/Imagery database provides EEG recordings of healthy participants performing motor 

execution and imagery tasks. No diagnostic information is available for these recordings; thus, for evaluation purposes, only 

EEG-derived features were extracted, and diagnostic labels were predicted using the trained synthetic-data-based XGBoost 

model. This approach demonstrates the potential of transferring models trained on synthetic neuroinformatics biomarkers to real 

EEG data, even when explicit clinical annotations are absent. 

 

Table 5 presents the results of applying the trained XGBoost classifier, derived from synthetic neuroinformatics biomarkers, to 

an evaluation dataset of 50 EEG recordings obtained from the PhysioNet EEG Motor Movement/Imagery Database. For each 

recording, temporal and spectral features were computed, including visual delay (τv), motor gain (K), expectancy weight (β), 

and canonical EEG band powers (Delta, Theta, Alpha, Beta, Gamma). The Label column indicates the default annotation from 

the original database, which in all cases is Control because no diagnostic information is provided. The additional 

Predicted_Label column represents the classification output generated by the trained model, providing a probable neurological 

or psychiatric condition based on the extracted features. This demonstrates the ability of synthetic-data-trained machine learning 

models to generate meaningful predictions even for datasets lacking explicit clinical annotations. 
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Table 5 Predicted Clinical Labels for 50 EEG Recordings from the PhysioNet Motor Movement/Imagery Database 

 
File Visual 

delay 
Motor 
gain 

Expectancy 
weight 

Delta Theta Alpha Beta Gamm
a 

Label Predicted_La
bel 

S001R01.

edf 

7.35E-02 8.14E-01 9.01E-01 1.45E-

09 

3.57E-

10 

1.94E-

10 

2.52E-

10 

5.90E-

11 

Contr

ol 

ASD 

S002R01.
edf 

1.40E-01 7.66E-01 8.19E-01 6.75E-
10 

1.34E-
10 

7.59E-
11 

1.12E-
10 

4.94E-
11 

Contr
ol 

ASD 

S003R01.

edf 

7.42E-02 1.12E+0

0 

8.93E-01 2.85E-

09 

9.55E-

10 

2.90E-

10 

2.85E-

10 

1.26E-

10 

Contr

ol 

GAD 

S004R01.
edf 

1.02E-01 1.05E+0
0 

6.62E-01 8.35E-
10 

5.34E-
10 

1.18E-
10 

1.02E-
10 

3.25E-
11 

Contr
ol 

GAD 

S005R01.

edf 

1.20E-01 1.05E+0

0 

8.55E-01 3.58E-

10 

1.32E-

10 

5.27E-

11 

9.06E-

11 

4.55E-

11 

Contr

ol 

GAD 

S006R01.
edf 

1.52E-01 1.07E+0
0 

8.47E-01 5.96E-
10 

1.54E-
10 

2.67E-
11 

6.81E-
11 

4.17E-
11 

Contr
ol 

GAD 

S007R01.

edf 

1.13E-01 9.95E-01 7.07E-01 5.80E-

10 

2.27E-

10 

2.13E-

10 

1.70E-

10 

3.92E-

11 

Contr

ol 

ASD 

S008R01.
edf 

1.57E-01 1.03E+0
0 

7.09E-01 7.27E-
10 

1.84E-
10 

5.83E-
11 

6.81E-
11 

4.25E-
11 

Contr
ol 

GAD 

S009R01.

edf 

7.51E-02 1.23E+0

0 

8.18E-01 6.13E-

09 

7.55E-

10 

2.19E-

10 

7.92E-

10 

8.32E-

10 

Contr

ol 

Tourette 

S010R01.
edf 

1.01E-01 1.02E+0
0 

1.07E+00 2.20E-
09 

4.38E-
10 

1.87E-
10 

2.47E-
10 

8.39E-
11 

Contr
ol 

GAD 

S011R01.

edf 

6.85E-02 1.13E+0

0 

7.11E-01 5.53E-

10 

7.14E-

11 

2.10E-

11 

3.21E-

11 

1.45E-

11 

Contr

ol 

GAD 

S012R01.
edf 

1.60E-01 1.16E+0
0 

8.22E-01 5.62E-
10 

1.35E-
10 

3.53E-
11 

1.06E-
10 

8.16E-
11 

Contr
ol 

GAD 

S013R01.

edf 

9.64E-02 8.32E-01 6.82E-01 1.42E-

09 

5.90E-

10 

2.01E-

10 

3.73E-

10 

1.40E-

10 

Contr

ol 

ASD 

S014R01.
edf 

1.08E-01 1.02E+0
0 

8.26E-01 3.21E-
10 

1.78E-
10 

1.26E-
10 

9.40E-
11 

3.11E-
11 

Contr
ol 

GAD 

S015R01.

edf 

1.37E-01 9.12E-01 6.56E-01 4.51E-

10 

3.21E-

10 

3.74E-

10 

6.08E-

10 

1.96E-

10 

Contr

ol 

ASD 

S016R01.
edf 

1.24E-01 1.13E+0
0 

6.90E-01 2.47E-
10 

5.88E-
11 

2.04E-
11 

3.37E-
11 

1.96E-
11 

Contr
ol 

GAD 

S017R01.

edf 

1.07E-01 1.04E+0

0 

7.00E-01 9.61E-

10 

2.59E-

10 

1.37E-

10 

3.50E-

10 

3.42E-

10 

Contr

ol 

GAD 

S018R01.

edf 

1.12E-01 8.90E-01 6.27E-01 2.13E-

09 

3.99E-

10 

6.16E-

11 

8.02E-

11 

3.00E-

11 

Contr

ol 

ASD 

S019R01.

edf 

1.31E-01 1.14E+0

0 

6.14E-01 7.18E-

10 

2.70E-

10 

9.85E-

11 

2.01E-

10 

1.03E-

10 

Contr

ol 

GAD 

S020R01.

edf 

1.06E-01 9.37E-01 8.12E-01 2.67E-

10 

8.86E-

11 

3.57E-

11 

6.65E-

11 

4.96E-

11 

Contr

ol 

ASD 

S021R01.

edf 

1.02E-01 1.11E+0

0 

7.75E-01 7.61E-

10 

1.94E-

10 

6.32E-

11 

7.70E-

11 

1.01E-

11 

Contr

ol 

GAD 

S022R01.

edf 

1.15E-01 1.08E+0

0 

7.43E-01 8.40E-

09 

1.30E-

09 

2.01E-

10 

2.25E-

10 

6.72E-

11 

Contr

ol 

GAD 

S023R01.

edf 

1.37E-01 9.56E-01 7.46E-01 2.66E-

09 

5.35E-

10 

2.67E-

10 

4.87E-

10 

1.77E-

10 

Contr

ol 

ASD 

S024R01.

edf 

1.22E-01 1.03E+0

0 

7.31E-01 6.67E-

10 

2.19E-

10 

6.01E-

11 

1.98E-

10 

1.54E-

10 

Contr

ol 

GAD 

S025R01.

edf 

9.61E-02 9.28E-01 7.78E-01 3.46E-

10 

1.09E-

10 

1.48E-

10 

2.05E-

10 

6.05E-

11 

Contr

ol 

ASD 

S026R01.

edf 

1.38E-01 9.34E-01 6.83E-01 6.34E-

10 

1.85E-

10 

5.24E-

11 

9.85E-

11 

6.27E-

11 

Contr

ol 

ASD 

S027R01.

edf 

1.29E-01 1.23E+0

0 

7.51E-01 1.34E-

09 

2.93E-

10 

1.34E-

10 

2.34E-

10 

1.78E-

10 

Contr

ol 

Tourette 

S028R01.

edf 

8.74E-02 1.11E+0

0 

7.61E-01 2.37E-

09 

7.73E-

10 

3.23E-

10 

2.08E-

10 

6.26E-

11 

Contr

ol 

GAD 

S029R01.

edf 

1.08E-01 9.13E-01 6.59E-01 4.51E-

10 

9.69E-

11 

1.10E-

10 

1.13E-

10 

2.68E-

11 

Contr

ol 

ASD 

S030R01.

edf 

8.78E-02 9.67E-01 8.85E-01 1.43E-

09 

1.18E-

10 

7.28E-

11 

7.04E-

11 

2.54E-

11 

Contr

ol 

ASD 

S031R01.
edf 

1.11E-01 8.57E-01 5.38E-01 3.32E-
10 

2.69E-
10 

2.08E-
10 

1.44E-
10 

5.49E-
11 

Contr
ol 

ASD 
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S032R01.

edf 

1.49E-01 1.12E+0

0 

7.80E-01 1.35E-

09 

2.28E-

10 

1.10E-

10 

2.33E-

10 

1.12E-

10 

Contr

ol 

GAD 

S033R01.
edf 

1.41E-01 1.24E+0
0 

6.50E-01 3.01E-
10 

1.15E-
10 

6.56E-
11 

1.00E-
10 

3.93E-
11 

Contr
ol 

Tourette 

S034R01.

edf 

1.59E-01 6.43E-01 6.94E-01 6.34E-

10 

1.66E-

10 

1.47E-

10 

6.46E-

11 

1.64E-

11 

Contr

ol 

ASD 

S035R01.
edf 

1.13E-01 9.43E-01 7.74E-01 4.39E-
10 

7.73E-
11 

4.78E-
11 

4.22E-
11 

7.85E-
12 

Contr
ol 

ASD 

S036R01.

edf 

1.16E-01 1.09E+0

0 

6.67E-01 1.94E-

09 

6.13E-

10 

3.40E-

10 

4.08E-

10 

7.34E-

11 

Contr

ol 

GAD 

S037R01.
edf 

1.21E-01 1.12E+0
0 

8.45E-01 3.31E-
10 

1.40E-
10 

4.51E-
11 

7.95E-
11 

3.72E-
11 

Contr
ol 

GAD 

S038R01.

edf 

7.65E-02 9.38E-01 6.73E-01 5.01E-

10 

2.24E-

10 

8.91E-

11 

1.14E-

10 

4.09E-

11 

Contr

ol 

ASD 

S039R01.

edf 

1.71E-01 1.08E+0

0 

7.65E-01 2.45E-

09 

7.03E-

10 

2.26E-

10 

2.29E-

10 

7.38E-

11 

Contr

ol 

GAD 

S040R01.

edf 

8.24E-02 1.10E+0

0 

7.64E-01 1.32E-

09 

2.49E-

10 

8.32E-

11 

1.20E-

10 

7.15E-

11 

Contr

ol 

GAD 

S041R01.
edf 

1.37E-01 1.00E+0
0 

8.12E-01 4.80E-
10 

1.21E-
10 

5.06E-
11 

6.43E-
11 

1.29E-
11 

Contr
ol 

ASD 

S042R01.

edf 

1.21E-01 9.10E-01 5.81E-01 4.22E-

10 

1.14E-

10 

1.26E-

10 

1.55E-

10 

1.89E-

11 

Contr

ol 

ASD 

S043R01.
edf 

1.25E-01 1.07E+0
0 

6.78E-01 3.27E-
09 

8.38E-
10 

1.81E-
10 

1.90E-
10 

5.69E-
11 

Contr
ol 

GAD 

S044R01.

edf 

1.29E-01 1.10E+0

0 

8.87E-01 4.60E-

09 

6.71E-

10 

3.08E-

10 

2.56E-

10 

8.97E-

11 

Contr

ol 

GAD 

S045R01.
edf 

1.25E-01 1.10E+0
0 

8.25E-01 1.31E-
09 

3.71E-
10 

1.85E-
10 

2.41E-
10 

7.54E-
11 

Contr
ol 

GAD 

S046R01.

edf 

1.10E-01 9.90E-01 7.17E-01 8.97E-

10 

5.02E-

10 

1.74E-

10 

1.84E-

10 

6.42E-

11 

Contr

ol 

ASD 

S047R01.
edf 

1.10E-01 9.37E-01 8.52E-01 7.52E-
10 

1.53E-
10 

9.26E-
11 

1.16E-
10 

2.81E-
11 

Contr
ol 

ASD 

S048R01.

edf 

1.45E-01 1.05E+0

0 

7.13E-01 1.00E-

09 

9.28E-

10 

1.58E-

09 

5.67E-

10 

1.54E-

10 

Contr

ol 

GAD 

S049R01.
edf 

1.23E-01 9.98E-01 6.52E-01 2.20E-
09 

1.01E-
09 

1.98E-
10 

4.57E-
10 

1.80E-
10 

Contr
ol 

ASD 

S050R01.

edf 

1.27E-01 8.66E-01 7.44E-01 4.36E-

10 

1.22E-

10 

4.34E-

11 

7.89E-

11 

3.93E-

11 

Contr

ol 

ASD 

 

 

 

4. Conclusions 

 
The use of synthetic datasets suggests to be a flexible platform for the exploration and development of artificial intelligence (AI) 

models. They provide researchers with a safe and flexible environment to test hypotheses and validate algorithms without the 

risks associated with real data. Additionally, the integration of raw EEG signals showed potential in realism and precision, 

enrich model inputs and improve classification performance. 

 

These technological advances envision practical applications, from educational tools and model validation to proof-of-concept 

studies for assistive technologies. However, real-world deployment will depend on demonstrating consistent accuracy, 

robustness to noise, and compliance with regulatory and ethical standards. 

 

Future work will focus on continuous model improvement and the integration of emerging technologies, such as virtual and 

augmented reality, robotics, and hybrid systems, to create more realistic and emotionally relevant simulations. Moreover, the 

establishment of ethical standards and regulatory frameworks will be critical to ensuring responsible and beneficial 

implementation for individuals and society. Advanced research in neuroscience, emotional psychology and cognitive theories 

will further support the development of AI systems that emulate aspects of conscious processing. 

 

Our results suggest that synthetic datasets can serve as a flexible platform for early-stage AI model development and algorithm 

validation. Future work will focus on rigorous benchmarking, expansion of the simulation pipeline, development of best-

practice protocols and ethical guidelines, and interdisciplinary collaboration. 
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While the present study demonstrates promising results in the multiclass classification of neurological and psychiatric 

conditions through the use of synthetic neuroinformatic biomarkers and simulated EEG data, several limitations must be 

acknowledged. Firstly, while synthetic datasets offer a viable solution in light of the limited availability of clinical data, they 

inherently lack the full spectrum of biological variability and the noise characteristics present in real-world recordings. 

Consequently, the generalisability of the trained models to diverse clinical populations remains limited and necessitates further 

empirical validation using heterogeneous real EEG datasets containing confirmed clinical diagnoses. Secondly, the EEG data 

employed for external validation were drawn from the PhysioNet motor imagery EEG database, which exclusively comprises 

neurologically typical individuals. Therefore, the predicted clinical labels are not corroborated by medical diagnoses, and the 

classification outcomes derived from this dataset must thus be interpreted with caution, particularly concerning specificity and 

false positive rates. Thirdly, various neurocognitive parameters, in both synthetic and real EEG datasets, were inferred or 

estimated based on normative values from previous literature due to the absence of explicit clinical metadata. While grounded in 

empirical studies, such estimations may fail to capture the nuanced interindividual variability characteristic of clinical cohorts, 

potentially introducing bias into model training and evaluation. Fourthly, although the model achieved high accuracy and F1 

scores in cross-validation and external testing, the diagnostic categories included in the synthetic dataset do not encompass the 

entire spectrum of neurological and psychiatric conditions, nor do they reflect the comorbidities that frequently characterise 

clinical presentations. This simplification restricts the model’s applicability in more complex diagnostic scenarios. Lastly, the 

robustness of the model to noise, artefacts, and signal distortions—common in real-time clinical EEG recordings—was not 

explicitly assessed in this study. Future research should incorporate adversarial perturbations and real-time signal artefacts to 

evaluate performance under realistic operational conditions. 

 

Collectively, these limitations underscore the importance of continued methodological refinement, rigorous benchmarking using 

annotated clinical datasets, and the integration of multimodal data sources to ensure clinical relevance, reproducibility, and 

translational impact. 
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