
 

 
www.editada.org 

International Journal of Combinatorial Optimization Problems and 

Informatics, 16(4), Sep-Dec 2025, 32-43. ISSN: 2007-1558. 

https://doi.org/10.61467/2007.1558.2025.v16i4.1160 

_______________________________________________________________________________________ 

 

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved. 

Fuzzy Model for Power Transformer Condition Monitoring and Fault Detection 
 

Gustavo Angel Huerta Perez1, Alberto Alfonso Aguilar Lasserre1, Marco Julio Del Moral Argumedo1,  

Gustavo Arroyo Figueroa 2,  
1 National Technological Institute of Mexico / Technological Institute of Orizaba, Orizaba, Veracruz, México 
2 National Institute of Electricity and Clean Energies (INEEL), Cuernavaca, Morelos, México. 

E-mails: gusstvo_17angl@hotmail.com, albertoaal@hotmail.com, marcojulioarg@gmail.com, 

garroyo@ineel.mx 
 

Abstract. Power transformers are equipment of great 

importance, and their availability is crucial for the security 

and continuity of the electricity supply for domestic and 

industrial users. During their life cycle, transformers are 

exposed to various environmental and operational 

conditions that affect their performance, especially when 

these exceed the operational design limits. This paper 

describes the use of Fuzzy Logic models as supporting 

tools for the automatic classification of power transformer 

operating conditions. The proposed methodology involves 

a binary classification (failure or no failure), followed by a 

multi-classification into seven types of failures. For this 

purpose, a power transformer fault database was 

developed, compiling information from operational data 

curated by power transformer experts. The results show a 

high predictive capacity for transformer fault conditions, 

with 96% balanced accuracy, and acceptable effectiveness 

in detecting different faults. This approach may serve as 

useful guidance in power transformer condition 

monitoring, helping engineers to reduce the time required 

to detect and repair incipient faults. 
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1 Introduction 
 

Power transformers are primary equipment in the distribution of electricity. It is therefore of the utmost importance to provide 

adequate maintenance to avoid rapid deterioration or to make it irreparable, as this affects both social and economic aspects to a 

great extent. An electricity company will be prepared to address the challenges presented, only if it has a methodology for the 

optimal management of its assets, that is, if it can make the right and timely decisions. In this regard, the level of risk for each 

unit should be assessed. When assessing the risk, a classification by merit and condition of transformers can be established, 

allowing action planning for the medium and long term (Ceron, et al., 2015). Currently there are more than 100,000 power 

transformers operating in the United States and more than 400,000 worldwide (U.S. Department of Energy, 2014). In Mexico, 

the electricity company of the Federal Electricity Commission operates more than 60,000 transformers of different types and 

power in the National Transmission Networks and General Distribution Networks (Comision Federal de Electricidad, 2023).  

 

The transformer is an efficient and reliable machine that, under normal operating conditions, is designed and constructed to have 

a service life of close to 40 years. The transformer experiences changes over time. Consequently, as it ages, the likelihood of 

faults increases. According to Hartffor Steam Boiler, one of the largest transformers insurers in the United States, 3 out of every 

100 transformers installed in the 1960’s is prone to failure, the average replacement cost of a 100 MVA transformer can reach  

$2 million and can take 18 to 24 months to build (U.S. Department of Energy, 2014). Various diagnostic strategies have been 

used using intelligent techniques to identify possible failures in power transformers. Although these methods yield positive 

results, their practical implementation is complicated, and they face limitations with regard to the detection of failures. This is 
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why, with historical data obtained from standardized health tests, models based on artificial intelligence techniques can be fed 

and thus the condition of the transformer can be determined without affecting the continuity of service.  

 

With that in mind, this paper proposes the development of a fuzzy model for Power Transformer Fault Detection, using a 

database provided by different bibliographic sources. These samples were obtained from a specialized database and technical 

literature: from the technical brochure of CIGRE (CIGRE, 2014), technical report of IEEE (IEEE, 2013), technical papers 

(Golarz, 2016), and expert curation; the which includes the concentration of five oil-dissolved gases from 741 cases of power 

transformers, with the purpose of determining the state of health of transformers through the diagnosis of failures and which 

subsequently serves as a decision support to the experts and can make relevant decisions. 

 

2 Background 
 

2.1 Power Transformers 
 

A power transformer is a machine composed of several subsystems, the condition of which can be monitored and evaluated 

independently (Ceron, et al., 2015). They are critical elements for the transmission of electricity from power generation plants to 

residential and industrial end consumers (Zorrilla, 2020). Several works have successfully identified the main subsystems of a 

transformer, but one of the more complete is developed in IEEE C57.140 (IEEE, 2013), where the transformer is divided into 

eight main subsystems and twenty-five components. 

 

2.2 Monitoring and diagnosis 
 

Transformer failures generally have origins and are mixed with each other, i.e. several causes can create a single effect. Possible 

causes of failures include design or manufacturing errors, damage to the auxiliary equipment of the transformer, human error 

during the maintenance and operation processes of the equipment and failures in the protection circuits (Zorrilla, 2020). The 

eight subsystems that make up power transformers, two of them make up the active part of the unit, i.e. the core and the welds 

(Ceron, et al., 2015).  

 

It is precisely these two subsystems that are most difficult to maintain as they constitute the internal part of the equipment, are 

immersed in the oil, are not easily replaced and an intervention involves putting the unit out of service, action of high risk and 

undesirable by the owners of the asset since it facilitates the entry of moisture, involves long time out of use, can produce oil 

losses and spills, among other consequences. 

 

2.3 Dissolved Gas Analysis (DGA) 
 

Overloads, partial discharges (PD) and arches inside the transformer chemically degrade the oil-paper insulation, generating 

various gases that dissolve in the oil according to the energy associated with the failure (Azcarraga, 2014). Accordingly, it is 

possible to diagnose a particular type of failure by measuring the concentration of certain gases. The time-based trend analysis 

of these concentrations, combined with acoustic PD detection, oil physicochemical analysis and furfural detection make the 

DGA a standardized, cost-effective, and low-cost diagnostic tool. The preferred analysis methods for DGA are maximum 

concentration criteria, the Duval triangle, and Dornenburg and Rogers methods (Azcarraga, 2014). 

 

2.4 Rogers Method 
 

In 1978, Rogers observed that the concentration of each gas varies with the temperature of the failure and introduced a new 

relationship between the concentrations of the gases (Ethylene and Acetylene) that require a higher temperature to be generated 

(Sarria-Arias et al., 2014). He concludes that ethane and methane do not help in the identification of the malfunction, and 

therefore removes them from the relations used for this technique. Relationships are shown in Eq. (1-3). Table 1 shows the 

interpretation of the Rogers method. 
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Table 1. Rogers method failure interpretation 

Ratio range R1 (CH4/H2) R2 (C2H2/C2H4) R3 (C2H4/C2H6) 

<0.1 1 0 0 

0.1-1.0 0 1 0 

1.0-3.0 2 1 1 

>3.0 2 2 2 

Case Failure Code 

1 Low intensity partial discharge 1 1 0 

2 High intensity partial discharges 1 1 0 

3 Low energy discharge (splash)  0 1-2 1-2 

4 High energy discharge (arcing) 0 1 2 

5 Thermal fault below 150°C 0 0 1 

6 Thermal fault between 150-300°C 2 0 0 

7 Thermal fault between 300-700°C 2 0 1 

8 Thermal fault above 700°C 2 0 2 

 

2.5 Fuzzy Logic 
 

Artificial Intelligence (AI) is a field of study that includes computational technologies to perform tasks that seem to require 

intelligence when carried out by humans (Tanimoto, 1990). Much of AI is related to the design and understanding of schemes 

that represent knowledge. Within the various techniques of AI is fuzzy logic. 

 

Fuzzy logic (FL) was described by Zadeh in 1965 and has been applied to problems in several areas (Pérez-Gallardo et al., 

2008). The fuzzy logic model allows to represent the system under consideration of the input and output variables, by means of 

fuzzy sets represented by linguistic terms (Purroy Vasquez, 2019). There are two types of models, the one based on the 

mamdani type and the other on the sugeno type (Estrada-García et al., 2023). The mamdani type is composed of three stages, the 

first stage is the fuzzification which is the graphical representation of the input variables by means of fuzzy sets, the second 

stage is an inference mechanism which consists of rules of inference of the resulting model from the fuzzy sets of the entry 

variables, finally the third stage is about the defuzzification, which is a graphical presentation of the output variables through 

fuzzy groups (Purroy Vasquez, 2019). 

 

2.6 Literature Review 
 

For this work, articles have been reviewed that apply conventional and Artificial Intelligence techniques such as fuzzy logic, 

machine learning, neural networks, among others, to facilitate decision-making and the resolution of problems related to the 

diagnosis of power transformer failures.  

 

In conventional techniques such as the DGA (Huo-Ching et al., 2012) performs a real data sampling with the portable 

TransportX meter and performs an analysis of the dissolved gases for failure diagnosis, allowing to determine the state of the 

transformer and reduce failure rates. On the other hand, Perez et al. (2012) propose a real-time monitoring system for the 

diagnosis of the main power transformers of the company ENELBAR-CORPOELEC-Venezuela using DGA among others. 

Žarković Mileta and Stojković Zlatan (2017) carry out a hierarchical signal processing methodology for monitoring generator 
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condition and failure diagnosis based on unprocessed electrical waveform data in electrical networks, which can often be 

measured using wave-shaped sensors strategically. 

 

In the study conducted by Žarković Mileta and Stojković Zlatan (2017), analyze the application of the mamdani model to create 

a fault diagnosis system based on the current state of the power transformer. The study presents two cases, with a single 

controller and five independent ones; in the first case the controller inputs are the results of online and off-line transformer tests 

such as age, temperature, frequency, response analysis, insulation temperature, DGA and polarization index; and in the second 

case, in addition to the existing entries include prior measurements. The results obtained show an acceptable effectiveness in the 

detection of different failures and could serve as a good guidance in the monitoring of the condition of power transformers. In 

Fernández Blanco et al., (2021) propose a method for the diagnosis of failures in a 40 MVA transformer using FL from DGA. 

The proposal is simple, easy to implement and has a good accuracy of multiple failure detection. With reliable dissolved gas 

samples guarantees a total accuracy rate in the detection of early failures of 91.6%. Finally, Mateus et al. (2024) creates a 

diagnostic system for comparison with the results of standardized methods of historical data using fuzzy logic. Cheim, L. (2018) 

presents a work that consists of training 12 machine learning algorithms with real data from a thousand transformers that were 

individually analyzed by human experts. Cadena et al., (2008) presents a diagnostic tool based on artificial intelligence 

methodologies such as probabilistic neural networks for the detection of failures in transformers, using the results delivered by 

tests carried out on the oil of a transformer, through the analysis of dissolved gases (DGA).  

 

3 Materials and Methods. 
 

This work proposes a comprehensive model based on two fuzzy logic models for determining the health index of transformer 

oil, where the concentrations of the five gases dissolved in the oil of the transformer are used to provide an assessment of the 

same by faults. The first is a binary FL model, where the model is able to classify whether the transformer is in a normal 

condition or if it suffers from a failure, without specifying what type of failure it is; the second model is a multiclass output, 

where by means of the first model it is corroborated that the transformer presents a fault and therefore it is required to know 

what kind of fault it corresponds to. FL models were developed in Matlab with the Fuzzy tool under a structure of a Mamdani 

model.  

 

3.1 Fault binary classification model 
 

The binary model is developed with the concentrations of the different gases, i.e. with the concentrations in parts per million as 

provided in the database. The database consists of 741 cases of power transformer curated by power transformer experts. The 

DGA uses the concentrations of several dissolved gases. For the binary model, the standard established by IEEEC57 is taken, 

where gas concentrations are divided into four ranges. The considers the standards of gas concentrations in ppm, established by 

the IEEE. The schematization of the binary model is presented in Figure 1. Table 2 shows the variables used for the binary 

model, while table 3 and 4 show the fuzzy sets established based on the above-mentioned standard. The model considers the 

standards of gas concentrations in ppm, established by the IEEE. 

 
Fig. 1. Schematization of the fuzzy binary classification model. 
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Table 2. Input and output variables for the binary fuzzy logic model. 

Variable Definition Unit 

H2 Dissolved hydrogen in transformer oil ppm 

CH4 Dissolved methane in transformer oil  ppm 

C2H2 Dissolved acetylene in transformer oil ppm 

C2H4 Dissolved ethylene in transformer oil ppm 

C2H6 Dissolved ethane in transformer oil  ppm  

Normal Normal condition of the transformer -- 

Failure Failure present in the transformer  -- 

 

Table 3. Input linguistic variables of the fuzzy sets of the binary fuzzy logic model. 

Input Variable 
Linguistic    

Variables     

Membership 

Function 
Interval 

H2 

Low 

Trapezoidal 

[0, 0, 100, 101] 

Medium [100, 101, 700, 701] 

High [700, 701, 1800, 1801] 

Very high [1800, 1801, 3000, 3000] 

CH4 

Low 

Trapezoidal 

[0, 0, 120, 121] 

Medium [120, 121, 400, 401] 

High [400, 401, 1000, 1001] 

Very high [1000, 1001, 3000, 3000] 

C2H2 

Low 

Trapezoidal 

[0, 0, 1, 2] 

Medium [1, 2, 9, 10] 

High [9, 10, 35, 36] 

Very high [35, 36, 200, 200] 

C2H4 

Low 

Trapezoidal 

[0, 0, 50, 51] 

Medium [50, 51, 100, 101] 

High [100, 101, 200, 201] 

Very high [199, 200, 1000, 1000] 

C2H6 

Low 

Trapezoidal 

[0, 0, 65, 66] 

Medium [65, 66, 100, 101] 

High [100, 101, 150, 151] 

Very high [150, 151, 500, 500] 

 
Table 4. Fuzzy sets output linguistic variables of the binary fuzzy logic model 

Output Variable  Linguistic Variable Membership Function  Interval 

Diagnostic 
Normal 

Triangular 
[1, 1, 1] 

Failure [3, 3, 3] 

 

For the binary model 268 inference rules were obtained, which were subsequently fed to the model in Matlab. Table 5 presents 

some of the established inference rules. Figure 2 shows how the inference rules are finally visualized in conjunction with the 

membership functions, where the case prediction is also carried out by introducing the input variables. 
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Table 5. Binary fuzzy logic model inference rules 

H2 CH4 C2H2 C2H4 C2H6 Diagnóstico 

Low Low Low Low Low 1 Normal 

Medium Medium Low High Very High 3 Failure 

Medium High High Very High Very High 3 Failure 

Low Medium Low Very High Medium 3 Failure 

Low Low Medium Very High Medium 3 Failure 

Low Medium Medium Very High Medium 3 Failure 

Low Low Low High High 3 Failure 

Medium Very High Low Very High Very High 3 Failure 

Low Low Low Very High Very High 3 Failure 

High High Very High High Very High 3 Failure 

Very High High High Very High Very High 3 Failure 

Low Low Very High Very High High 3 Failure 

Low High High High Medium 3 Failure 

High Medium Very High Medium Medium 3 Failure 

Medium High Very High Medium High 3 Failure 

Very High Very High Low Low Very High 3 Failure 

Very High Very High Medium Low Very High 3 Failure 

Medium Low Very High Very High Low 3 Failure 

Very High Very High Low Very High Very High 3 Failure 

High Very High High Very High Very High 3 Failure 

Very High Very High Medium Very High Very High 3 Failure 

 

 

 

 
Fig. 2. Fault binary model inference rule viewer. 
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3.2 Fault multi-classification model 
 

The binary classification model aims to determine whether the transformers are in a normal condition, or whether they present 

some kind of failure. If the model determines a normal condition the problem ends, however, if the model detects the opposite 

and indicates that it is a failure, a second model is tested. The schematization of the fault classification model is presented in 

Figure 3. 

 

 
Fig. 3. Schematization of the fault multi-classification model. 

 

The first model considers the standards of gas concentrations in ppm, established by the IEEE. The second fault classification 

model is based on the Rogers ratio method. The Rogers ratio method consists of three ratios or, three relations which considers 

the five gases obtained in the DGA test. Both models are divided into four trapezoidal-type membership functions, as this 

function allows to establish a constant belonging value equal to 1 in a defined range and not just in a point value. Table 6 shows 

the variables used for the fault classification model, while Table 7 and 8 show the fuzzy sets established based on the failure 

interpretation of the above-mentioned Rogers method. 

 
Table 6. Input and output variables for the fault multi-classification model. 

Variable Definition 

CH4/H2 Rogers method first ratio  

C2H2/ C2H4 Rogers method second ratio 

C2H4/ C2H6 Rogers method third ratio  

PD Partial discharge 

D Energy Discharge 

T1 O Thermal fault below 300°C with overheating 

T2 C Thermal fault between 300°C-700°C with carbonization  

T3 C Thermal fault above 700°C with carbonization  

T3 H Thermal fault above 700°C involving only oil 

S Stray gassing 

 

For the fault classification model, 49 inference rules were obtained, which are subsequently fed to the Matlab model. Table 9 

presents some of the established inference rules. Once established, the linguistic variables and membership functions are 

modeled in Matlab. Figure 4 shows how the inference rules are finally visualized in conjunction with the membership functions, 

where the case prediction is also carried out by introducing the input variables. 
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Table 7. Input linguistic variables of the fuzzy sets of the fault multi-classification model. 

Input Variable 
Linguistic   

Variables   

Membership 

Function  
Intervals 

CH4/H2 

Low 

Trapezoidal 

[0, 0 ,0.099, 0.1] 

Medium [0.099, 0.1, 0.99, 1] 

High [0.99, 1, 2.99, 3] 

Very High [2.99, 3, 10, 10] 

C2H2/C2H4 

Low 

Trapezoidal 

[0, 0 ,0.099, 0.1] 

Medium [0.099, 0.1, 0.99, 1] 

High [0.99, 1, 2.99, 3] 

Very High [2.99, 3, 10, 10] 

C2H4/C2H6 

Low 

Trapezoidal 

[0, 0 ,0.099, 0.1] 

Medium [0.099, 0.1, 0.99, 1] 

High [0.99, 1, 2.99, 3] 

Very High [2.99, 3, 10, 10] 

 

 
Table 8. Fuzzy sets output linguistic variables of the fault multi-classification model. 

Output Variable Linguistic Variable Membership Function Interval 

Diagnostic 

PD 

Triangular 

[1, 1, 1] 

D [2, 2, 2] 

T1 O [3, 3, 3] 

T2 C [4, 4 ,4] 

T3 C [5, 5, 5] 

T3 H [6, 6, 6] 

S [7, 7, 7] 

 

 
Table 9. Fault classification fuzzy logic model inference rules 

CH4/H2 C2H2/C2H4 C2H4/C2H6 Diagnostic 

Low Medium Low 1 PD 

Low High Medium 1 PD 

Low Medium Medium 1 PD 

Medium Medium High 9 S  

Medium Medium Very High 2 D1 

Medium High High 2 D1 

Medium High Very High 3 D2 

Medium Low High 9 S  

High Low Low 9 S  

Very High Low Medium 4 T1 O 

High Low High 6 T2 C    

High Low Very High 8 T3 H    

Very High Low Very High 8 T3 H    

Low Medium High 1 PD 

Low Low Medium 1 PD 
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Fig. 4. Fault multi-classification model inference rule viewer. 

 

4 Results and Discussions 
 

The first fuzzy logic model was tested with the full database, that is, 741 cases were tested. For the second model, cases with 

output equal to normal condition are excluded, as well as cases where no values are obtained in the Rogers ratio method, leaving 

a total of 467 cases to test the model. 

 

Once the models are tested, the prediction data is counted, as are the actual labels. These data are evaluated with performance 

metrics to measure and evaluate the performance of models. Phyton programming was used to evaluate metrics, most used for 

multiclass classification models with accuracy score, balanced accuracy and confusion matrix. However, other performance 

metrics for the models such as the Matthews Correlation Coefficient, Cohen Kappa and Jaccard Coefficient were evaluated. 

 

4.1 Binary Model 
 

For binary model 741 cases were predicted, and their performance evaluated against actual labels or outputs, with an accuracy 

of 0.96 representing the proportion of correct predictions to the total. Meanwhile, that the Balanced Accuracy metric considers 

the distribution of the classes, that is, provides a more equitable measure of the performance of the model, which obtained a 

result of 0.97. The results obtained from the different metric tests are shown in Table 10. 

 

Figure 5 shows the confusion matrix obtained by the metric matrix. The model correctly predicted 714 cases out of 741: where 

class 1 represents the normal condition and classified all cases correctly, while class 3 represents failure, and it can be observed 

that 3 cases classified them as class 1, and 24 cases could not classify them correctly. The latter means that the model did not 

find any inference rule by which it could classify that instance and therefore classifies it as the average value of the established 

range, in this case 2 being the average of the range 0-4. 

 

 
Table 10. Results obtained from binary model performance metrics 

Model Accuracy score Balanced Accuracy Matthews CC Cohen Kappa Jaccard C 

Binary 0.96 0.97 0.92 0.92 0.92 
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Fig. 5. Confusion matrix of true label vs predicted label of binary fuzzy logic model 

 

4.2 Fault Multi-Classification Model 
 

Following the same logic as the previous model, the prediction of the 463 cases of the multiclass FL model was carried out and 

its performance was evaluated against the actual labels, where an accuracy score of 0.80 was obtained, while the balanced 

accuracy metric obtaining 0.67. The results obtained by the different metrics tested in this model are shown in Table 11. 

 
Table 11. Results obtained from fault classification model performance metrics 

Model Accuracy score Balanced Accuracy Matthews CC Cohen Kappa Jaccard C 

Fault C. 0.80 0.68 0.74 0.74 0.66 

 

Figure 6 shows the confusion matrix for the fault classification model. It can be observed that the model correctly predicted 371 

cases out of 463, where classes 2,3 and 6 are the best performers. Class 7 is classified 12 times as Class 3, 9 as Class 1 and 8 as 

Class 2. Meanwhile, Class 3 is classified 10 times as Class 7.  

 

 
Fig. 6. Confusion matrix of true label vs predicted label of fault classification fuzzy logic model. 
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Class 5 is classified incorrectly in all instances, being classified mostly as Class 6. These errors are because there are inference 

rules that match more than one tag, that is, that within the established ranges of inference rule there are cases where the same 

combination of inferential rules has as its output 2 different errors. However, this is due to the nature of the database and the 

Rogers interpretation method on which this study was based. 

 

In Table 12. The results obtained from each FL model evaluated with the different metrics are shown. As can be seen, the binary 

model obtained the best ratings from the tested metrics, exceeding 90% accuracy even in the balanced accuracy, which indicates 

the ease for the model to classify with high accurateness between normal condition and a failure present in power transformers. 

The values obtained for the fault classification model presented some limitations as seen above, however, in most metrics their 

accuracy is above 70%, and being the overall accurateness, the best performance achieved being 80%. 

 

Table 12. Results obtained from FL models performance metrics. 

 

Model Accuracy score Balanced Accuracy Matthews CC Cohen Kappa Jaccard C 

Binary 0.96 0.97 0.92 0.92 0.92 

Fault C  0.80 0.68 0.74 0.74 0.66 

 

The fuzzy logic model of binary classification stands out in obtaining outstanding results with a general and balanced accuracy 

of more than 95%, meaning that it is very likely that the model will correctly classify the normal state of a transformer or 

whether it is suffering some type of failure. On the other hand, the fault classification model obtained an overall accuracy of 

80% and balanced of 68%, that is, that in general, the model correctly classifies around 80% of the data 6 of the 7 faults 

established of a power transformer. 

 

This study was carried out only with the gases obtained by the DGA test, it shows very good results when determining whether 

a transformer is in good condition for its operation or whether it has some kind of failure. This, as a first instance, is crucial for 

failure monitoring and diagnosis. However, this equipment is important for the distribution of electricity, so it is important to 

avoid rapid deterioration. The fault classification with FL model was able to classify with very good accuracy six out of seven 

failures. Since FL models are knowledge-based and experience-based, they have an advantage in terms of the explicability of 

their development and behavior, otherwise it happens with ML models, which are practically encoded to train the labelled data 

entered and create behavioral patterns that determine the classification of new labelling data. Therefore, this work took the 

knowledge and experience provided by technicians and interpreters such as the DGA and the Rogers method for the 

development of two FL models that together determine in the first instance whether the power transformer is in good condition 

to continue operating or otherwise whether it requires rigorous monitoring after having presented some type of fault, therefore 

the second model determine the type of failure that the transformer may be presenting and therefore carry out the relevant 

measures of evaluation. 

 

5 Conclusions 

Fault diagnosis and asset maintenance are a suitable area for the application of AI techniques, as demonstrated by the accuracy 

in predicting faults in power transformers. The development of an model for fault diagnosis in power transformers, supported by 

artificial intelligence techniques, has proven effective in identifying faults in these assets. This approach confirms that the 

application of AI can provide decisive support for transformer management, reducing the risks and damage associated with 

undetected faults. 

 

Fuzzy logic emerges as a valuable technique in the diagnosis of failures in power transformers, especially in the classification 

and evaluation of the health of this equipment. FL-based models offer a more transparent and understandable interpretation of 

results, allowing more informed decision-making by power transformer experts. The inclusion of FL models together with some 

other AI model can improve the robustness and versatility of the diagnostic system. 

 

The comparison between traditional fault diagnosis models and AI-based models highlights the superiority of the AI models in 

terms of accuracy and efficiency. While traditional methods such as the analysis of dissolved gases in oil have been useful, AI 

models make the most of the vast amount of data available and are able to identify subtle patterns that may go unnoticed for 

conventional approaches. The integration of AI models into electrical asset management promises to significantly improve the 

reliability and efficiency of electrical systems. 
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The focus of this study is to obtain solid results using only DGA data, suggesting an effective and simplified methodology for 

fault diagnosis. By combining the knowledge and experience provided by techniques such as the DGA and the Rogers Method, 

in the development of Fuzzy Logic models, it has been possible to effectively determine whether a transformer is in optimal 

operating conditions or if it has any failure, as well as identify the specific type of failure it may be experiencing. This 

comprehensive approach, which integrates both expert expertise and advanced data analysis methods, represents a significant 

contribution to the state of the art in power transformer failure diagnosis. 

 

As future work, we propose to enrich the database to create a more comprehensive learning database for the development of AI 

models, considering offline parameters such as transformer operation characteristics (age, temperature, operating hours, 

frequency, and response analysis); the physical characteristics of the insulating oil (acidity, humidity, corrosion, power factor), 

among others. 
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