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Abstract. In this work, a numerical analysis of the mathematical 

model of a single-phase transformer is carried out, integrating a 
complete expression of the mutual magnetic flux to evaluate its 

impact on energy transfer efficiency. Based on Faraday’s and 

Ampère’s equations, the fundamental relationships between 
magnetic flux, currents, and voltages in the windings are 

established. Through numerical simulations, the influence of 

mutual leakage flux is examined, along with structural parameters 
such as resistances, reactances, and the number of turns. The 

obtained results validate the model’s usefulness in predicting the 

transformer's behavior under variations in load and network 

conditions, providing an analytical tool for the design and 

improvement of these electrical machines. This approach not only 

enhances the theoretical understanding of transformers but also 
contributes to the development of more efficient and reliable 

electrical systems. 
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1 Introduction 
 

An electrical transformer is a static electromagnetic machine that enables the transfer of electrical energy between two or more 

circuits through the principle of electromagnetic induction. Its operation is based on the interaction of magnetic fields generated 

by alternating currents in the primary and secondary windings, allowing voltage and current levels to be modified without 

altering the frequency. This transformation capability is fundamental in electrical power generation, transmission, and 

distribution systems, as it enables efficient energy transfer with minimal losses over long distances. 

 

The single-phase transformer plays a crucial role in modern electrical infrastructure, with applications ranging from power 

distribution systems in residential and industrial environments to strategic infrastructures such as hospitals, data centers, and 

telecommunications systems, where a stable and reliable power supply is essential. Additionally, its integration into renewable 

energy systems and smart grids is crucial for improving energy efficiency and facilitating the transition toward more sustainable 

generation and consumption systems. 

 

Despite its importance, the design and construction of electrical transformers present various technical challenges. Among the 

most relevant issues are energy losses due to nonlinear phenomena such as hysteresis and eddy currents in the ferromagnetic 

core, leakage flux losses, variations in transformer performance due to load fluctuations and voltage changes, as well as the 

identification of its parameters for characterizing transformer losses. Addressing these challenges requires the formulation of 

rigorous mathematical models that accurately describe the electromagnetic behavior of the transformer, enabling its analysis and 

optimization under different operating conditions. 

 

Ćalasan et al. (2020) analyzed parameter estimation in single-phase transformers, considering different mathematical 

approaches. Meanwhile, Yarymbash et al. (2019) developed a unified mathematical model of the single-phase transformer, 
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incorporating effects such as hysteresis and eddy currents. In their work, Ketabi and Naseh (2012) developed a single-phase 

transformer modeling method for inrush current estimation, considering core saturation and residual flux. Similarly, Wilk (2015) 

developed a mathematical model to represent the hysteresis phenomenon in a single-phase transformer with multiple windings. 

His study proposed a set of differential loop equations that account for the common flux linking all windings as a function of 

magnetomotive force. Huang et al. (2003) developed a harmonic model to represent nonlinearities in a single-phase transformer 

using descriptive functions. Their study proposed mathematical formulas for excitation current under no-load conditions, 

allowing the Fourier series to be obtained and, consequently, calculating the magnitudes and phase angles of different harmonic 

orders. Additionally, they validated the model’s accuracy through experimental measurements, highlighting its simplicity in 

calculations and high precision in harmonic estimation. Furthermore, Martínez Figueroa (2024) developed and validated 

mathematical models for single-phase and three-phase transformers, estimating their parameters based on laboratory tests and 

field measurements. His study addressed transformer core saturation and the impact of inrush current on power system 

protection. Additionally, he explored methodologies to mitigate these effects and emphasized the importance of accurately 

modeling the nonlinearity of the magnetic circuit, considering models such as Jiles-Atherton and Preisach. Krishan et al. (2016) 

proposed a real-time algorithm for estimating electrical parameters in single-phase transformers using LabVIEW-FPGA. In their 

study, they measured and sampled input and output voltages and currents to recalculate series winding parameters through a 

differential equation algorithm. Furthermore, they employed the Fast Fourier Transform (FFT) with a Hanning window to 

extract fundamental components and applied the Least Squares Error (LSE) method for core loss curve fitting. The validity of 

their method was confirmed through simulations in LabVIEW and Multisim, as well as experimental results. In their work, 

García et al. (2000) presented a state-space model of a single-phase transformer incorporating nonlinear phenomena such as 

magnetic saturation and hysteresis. Their analysis covered transient and periodically steady state operating conditions, utilizing 

a novel and simplified formulation to represent these nonlinearities. Additionally, they applied Newton algorithms to accelerate 

time-domain computations, achieving rapid steady-state solutions. They compared their method with conventional numerical 

approaches for solving ordinary differential equations (ODEs), evaluating efficiency in terms of complete cycles and CPU times 

required. Similarly, Hernández-Romero et al. (2020) addressed the optimization problem in designing the active part of a 10 

MVA, 115/13.8 kV three-phase power transformer, aiming to minimize total acquisition cost considering losses. To achieve 

this, they implemented a method based on Genetic Algorithms (GA), enabling the calculation of dimensions, core mass, 

windings, losses, and transformer impedances. The obtained results demonstrated that the optimized model meets specified 

constraints and minimizes cost function, which is crucial during the bidding stage for transformer manufacturers. 

 

The mathematical model of the single-phase transformer presented in this study is formulated based on the fundamental 

principles of electromagnetism, as established by Faraday, Ampère, Lenz, and Maxwell. These principles define the linear 

relationships governing voltages, currents, and magnetic flux in the transformer windings. A key variable in this model is the 

mutual magnetic flux, which quantifies the portion of flux generated by one winding that links with the other, thereby directly 

influencing energy transfer efficiency. A precise mathematical representation of this parameter enables the minimization of 

losses, enhancement of operational efficiency, and optimization of electromagnetic coupling between windings. 

 

Irrespective of the specific transformer configuration, its operation relies on energy transfer through magnetic coupling between 

the primary and secondary windings, both wound around a ferromagnetic core. Typically composed of laminated silicon steel, 

this core is essential in mitigating eddy current losses induced by time-varying magnetic fields. Lamination increases the core’s 

effective electrical resistance, thereby reducing eddy currents and enhancing overall efficiency. 

 

Structurally, the primary and secondary windings are arranged concentrically, with the lower-voltage winding positioned closer 

to the core. This design facilitates electrical isolation from high voltage winding and minimizes stray magnetic flux, thereby 

improving magnetic coupling and energy transfer. Stray flux, representing the portion of the generated flux that does not 

effectively link both windings, contributes to leakage reactance and impacts overall transformer performance. 

 

Mathematical modeling serves as a crucial tool for analyzing and optimizing transformer operation. This model integrates 

Maxwell’s equations with circuit theory to describe electromagnetic interactions. Faraday’s law dictates that the induced voltage 

in a coil is proportional to the temporal variation of the magnetic flux passing through it, forming the foundation of 

electromagnetic energy conversion. Ampère’s law establishes the relationship between current in the windings and the resulting 

magnetic field, while Lenz’s law ensures energy conservation by enforcing opposition between the induced current and the flux 

variation that generates it. 

 

An accurate transformer model must incorporate mutual and stray flux components. Magnetizing inductance, governed by core 

permeability and winding geometry, determines the extent of coupled flux, whereas leakage inductances represent flux 

components that fail to link both windings. These leakage effects are modeled using series inductances in the equivalent circuit. 
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Core losses, arising from hysteresis and eddy currents, are typically represented by a parallel resistor in the magnetizing branch, 

capturing energy dissipation due to alternating magnetization cycles. 

 

Mathematical formulation results in a system of coupled differential equations that describes the temporal evolution of voltages 

and currents within the windings. In the time domain, these equations characterize the dynamic interplay between electrical and 

magnetic parameters, offering a robust analytical framework for assessing transformer behavior under varying operating 

conditions, such as load fluctuations, connection transients, and short-circuit events. 

 

By implementing this mathematical model in computational simulation environments, transformer response can be predicted 

across a broad spectrum of scenarios, reducing reliance on physical testing and thereby minimizing costs. Such simulations 

facilitate the quantification of efficiency, evaluation of loss reduction strategies, and design optimization for enhanced 

performance. This study develops a model based on fundamental physical laws governing electrical and magnetic circuits. The 

resulting system of differential equations is implemented in a block diagram simulation framework, enabling comprehensive 

analysis of transformer behavior under diverse operating conditions and design configurations. This approach not only deepens 

the theoretical understanding of transformer operation but also serves as a valuable tool for the development of more efficient 

and reliable electrical systems. 

 

Advanced numerical simulations are indispensable for evaluating transformer performance under various conditions, allowing 

the examination of core saturation, load variations, and supply voltage fluctuations. This study introduces a mathematical model 

incorporating a rigorous formulation of mutual flux to achieve a more accurate representation of the transformer’s 

electromagnetic behavior. The model is subsequently implemented in a numerical simulation, providing a robust analytical tool 

for transformer design and optimization, ultimately contributing to the development of high-efficiency and high-reliability 

electrical power systems. 

 

2 Methodology 

 
The mathematical modeling analyzed in this work, which is related to the behavior of a single-phase transformer, is based on the 

fundamental laws of electromagnetism formulated from Maxwell's principles, as well as the electrical circuit equations applied 

to electrical machines. These laws allow the description of magnetic flux behavior, electromagnetic induction, and the 

relationships between current and voltage (Chapman, 2012). The operation of the transformer is based on Faraday's law, which 

states that the induced voltage in a coil is proportional to the time variation of the magnetic flux passing through it, enabling 

energy transfer through the variation of magnetic flux in the primary and secondary windings magnetically coupled through the 

ferromagnetic core. The relationship between the current in the windings and the magnitude of the magnetic field is described 

by Ampère's law, which links the magnetic field to the current that generates it through the number of turns in the winding, 

thereby allowing the modeling of the electromagnetic coupling of the transformer (Kosow, 2021). The polarity of the induced 

voltage in the secondary winding is determined by Lenz's law, which states that the induced current opposes the variation of the 

magnetic flux that causes it, ensuring the conservation of energy in the system. Maxwell's equations provide a more general 

basis for describing the propagation of the electromagnetic field within the transformer, particularly the Maxwell-Faraday 

equation, which explains how a time-varying electric field generates a time-varying magnetic field, thus grounding 

electromagnetic induction in the transformer. Since the magnetic flux coupling both windings is not completely ideal, a portion 

of the flux is dispersed and is called leakage flux, in addition to the fact that the ferromagnetic core exhibits losses due to 

hysteresis and eddy currents, which affect the transformer's efficiency and are often modeled by an equivalent resistance in the 

magnetic circuit and a frequency-dependent loss term (Fraile Mora, 2008). In mathematical terms, the transformer's T-model 

represents these effects through parameters such as winding resistance, self-inductances, and magnetizing inductance, allowing 

the formulation of a system of coupled differential equations that describe the time evolution of voltages and currents in the 

transformer. The time-domain equations express the relationship between input and output voltages, currents in the windings, 

and variations of the magnetic flux in the core, thereby providing a fundamental analytical tool for the simulation and 

optimization of the transformer's behavior under different operating conditions. 

 

Faraday's law is a fundamental law describing how voltage is generated in transformer windings due to changes in magnetic 

flux. It states that the magnitude of the induced voltage in a conductor is proportional to the rate of change of the magnetic flux 

passing through it: 

( )
( )

ind

d t
e t

dt


=  
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Where λ(t) is the linked flux of the coil through which the voltage eind(t) is induced. The linked flux is the sum of the flux 

passing through each turn in all the turns of a coil. 

 

 
Fig. 1. Diagram of an ideal electrical transformer. 

 

The transformation ratio is key to modeling how the transformer adjusts the voltage levels between primary and secondary and 

is obtained from Ampere's law as (Kosow, 2021): 

( ) ( )
,        p p s s

d t d t
V N V N

dt dt

 
= =  

 

If the variation of the magnetic flux density φ is isolated in both expressions, we have: 

( ) ( )
,        

p s

p s

Vd t d t V

dt N dt N

 
= =  

 

 

Although an ideal transformer model assumes that the magnetic flux is uniformly distributed throughout the core at every 

instant, this condition is not strictly met in practical scenarios. Nevertheless, such an assumption proves sufficiently accurate for 

steady-state analysis. In real-world operation, a transient response in the magnetic flux arises when the transformer transitions 

from one load condition to another. The current drawn by the load induces an increase in magnetic flux, which also links to the 

primary winding, necessitating a corresponding rise in the primary current. Therefore, under steady-state conditions, the time-

dependent magnetic flux φ(t) can be reasonably considered uniform throughout the transformer core, leading to the following 

conclusion: 

=
p s

p s

V V

N N
 

 

From this expression we can obtain the next assumption: 

p p

s s

V N

V N
=  

 

Now, if we consider that the power in primary and secondary is equal, given the assumption that the losses in the electrical 

machine are zero, said power can be represented according to the expressions: 

 

,        p p p s s sP V I P V I= =  

 

,        p s p p s sP P V I V I= =  

 

 

Therefore, the current ratio is, as seen in Figure (1): 

s s s

p p p

I V N

I V N
= =  

 

Since φ1(t) and φ2(t) are the leakage fluxs in the primary and secondary circuits, respectively. Under this consideration and using 

Kirchhoff's voltage law applied to the primary and secondary electrical circuit, the following is obtained: 
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( ) ( ) ( )p p s

p p p p p pp ps

d t di t di t
V R I R I L L

dt dt dt


= + = + +  

 

With: 

( ) ( )p p

p

di t d t
L

dt dt


=  

 

and for the secondary side 

( ) ( ) ( )ps s

s s s s s ss sp

di td t di t
V R I R I L L

dt dt dt


= + = + +  

 

Where: 

( ) ( )s s

s

di t d t
L

dt dt


=  

 

Where λp(t) is the primary linked flux, defined as: 

( ) ( ) ( )p pp pst t t  = +  

( ) ( ) ( )p pp p ps st L i t L i t = +  

 

 

and λs(t) is the secondary linked flux, defined as: 

 

( ) ( ) ( )s ss spt t t  = +  

( ) ( ) ( )s ss s sp pt L i t L i t = +  

 

 

From these expressions, a phasor form associated with the single-phase transformer model can be rewritten. To do this, the 

Laplace transform is applied to the set of differential equations obtained above, assuming that the initial conditions are zero, 

where s = jw, with angular frequency w = 2πf and f known as the power supply frequency in Hertz. Therefore, we have: 

 

( )p p pp p ps sV R jwL I jwL I= + +  

 

( )1s sp s ps sV jwL I R jwL I= + +  

 

 

where the impedances can be defined as: 

,    pp p p ps psZ R jwL Z jwL= + =  

,  sp sp ss s ssZ jwL Z R jwL= = +  

 

 

Now, from the previous phasor expressions and with the proposed change of variable, it is possible to represent the phasor 

dynamics of the single-phase electrical transformer in a matrix form, which allows the currents Ip, Is to be evaluated in a phasor 

form, as follows: 

pp psp p

sp sss s

Z ZV I

Z ZV I

    
=     

    
 

 

In this sense, Cramer's rule can be applied to said phasor representation, to obtain the equations of Ip, Is' as: 
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p ss s ps

p

pp ss sp ps

V Z V Z
I

Z Z Z Z

−
=

−
 

 

p pp s sp

s

pp ss sp ps

V Z V Z
I

Z Z Z Z

−
=

−
 

 

 

Now, if the equations of the single-phase transformer are rewritten in terms of the leakage flux, we have the following: 

 

( )1 p

p p p

d t
V R i

w dt


= +  

 

( )'1
' ' '

s

s s s

d t
V R i

w dt


= +  

  

 

The above equations represent the voltages of the primary and secondary windings of the transformer, as a function of the 

currents and the variations of the leakage flux. The term (1/w) (dφ(t))/dt is due to inductance, and represents the change in 

magnetic flux φ(t), which affects the behavior of a transformer, where: 

 

( ) ( ) ( ) ( )p p p p mt w t X i t t  = = +  

 

( ) ( ) ( ) ( )' ' ' 's s s s mt w t X i t t  = = +  

 

 

The currents i1(t) and is'(t) are: 

( )
( ) ( )p m

p

p

t t
i t

X

 −
=  

 

( )
( ) ( )'

'
'

s m

s

s

t t
i t

X

 −
=  

 

 

Where: φp(t) and φs(t) define the magnetic flux as a function of the currents ip and is' in the transformer windings. Xp and Xs' 

represent the primary and secondary reactances, respectively. φm (t) is the mutual flux between the primary and secondary 

windings due to magnetic coupling. This is responsible for the electromagnetic induction that allows the transformer to operate. 

The magnetic link between the primary and secondary windings ensures efficient energy transfer between them. It is defined as: 

( ) ( ) ( )' 'm m p s m p st wL i i X i i = + = +  
 

The above equation describes the mutual magnetic flux φm(t), where we have the mutual reactance Xm, the mutual inductance 

Lm in addition to the currents and the frequency 

( )p

p p p

d t
wV wR i

dt


= −  

 

Now, it is represented by φp (t) which is the magnetic flux in the primary winding influenced by the voltage applied to the 

primary winding Vp, in addition it is known that the resistive voltage drop losses are Rpip, with b defined as the coefficient that 

indicates the proportion of the voltage in the change of flux. 

 

The following equation is the derivative of the flux φp(t) with the mutual component: 
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( ) ( ) ( )p p

p p

p

md t t t
wV wR

dt X

   −
= −  

  

 

(1) 

Then the derivative of the flux φs(t)' is represented: 

( )'
' ' '

s

s s s

d t
wV wR i

dt


= −  

 

in the same way: 

( ) ( ) ( )'
' '

'
'

s s m

s s

s

d t t t
wV wR

dt X

   −
= −  

 
 

(2) 

Given φm(t) in the form: 

( ) ( )'m m p st X i i = +  
 

The primary and secondary currents are replaced, as follows: 

 

( )
( ) ( ) ( ) ( )'

'

mp m s

m m

p s

t t t t
t X

X X

   


 − −
= + 

  

 

 

( )
( ) ( ) ( ) ( )( )'( )

'

m s mm p m

m

p s

X t tX t t
t

X X

  


 −−
= + 
  

 

 

 

These equations describe the behavior of a single-phase transformer under the influence of voltage in the primary and the 

construction parameters of the electrical machine (Fraile Mora, 2008). 

 

Since the currents are a function of the mutual flux φm(t), we proceed to find the expression for the mutual flux linkage φm(t), as 

a function of the leakage fluxs in the primary winding and the secondary winding φp(t) and φs(t), respectively: 

( )
( ) ( ) ( ) ( )( )'( )

'

m s mm p m

m

p s

X t tX t t
t

X X

  


−−
= +  

 

subsequently 

( )
( ) ( ) ( ) ( )( )' ( ) '

'

s m p m p m s m

m

p s

X X t t X X t t
t

X X

   


− + −
=  

 

 

then it is obtained that: 

( ) ( ) ( ) ( ) ( )' ' ' 'p s m s m p s m m p m s p m mX X t X X t X X t X X t X X t    = − + −  

( ) ( ) ( ) ( ) ( )' ' ' 'p s m s m m p m m s m p p m sX X t X X t X X t X X t X X t    + + = +  

 

 

grouping common terms, we obtain that 
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( ) ( ) ( )' ' '( ) 'm p s s m p m s m p p m st X X X X X X X X t X X t  + + = +   

In this way if the mutual dispersion flux φm(t) is: 

( )
( ) ( )'

' '

's m p p m s

m

p s s m p m

X X t X X t
t

X X X X X X

 


+
=

+ +
 

(3) 

This system of equations characterizes the behavior of a single-phase transformer as a function of mutual and leakage fluxs, 

enabling the reconstruction of primary and secondary currents. The mathematical model, incorporating leakage fluxs and their 

derivatives, exhibits critical attributes that are essential for analyzing and comprehending transformer operation. By integrating 

electromagnetic and electrical aspects, this model serves as an indispensable tool for transformer design, simulation, and control 

across various applications. In a transformer, the voltages induced in the primary and secondary windings are directly governed 

by the time variation of the mutual flux φm(t), as dictated by Faraday’s law. Incorporating φm(t) into the mathematical model 

enhances the accuracy of induced voltage predictions under diverse operating conditions. This is essential for determining the 

correct transformation ratios between the primary and secondary windings. 

 

3 Results 
 

The development of a mathematical model for a single-phase transformer necessitates the rigorous application of fundamental 

principles of electromagnetism, circuit theory, and the behavior of magnetic materials. These principles enable the precise 

representation of transformer operation, providing analytical tools for understanding its performance under various operating 

conditions and optimizing its design based on energy efficiency and stability criteria. 

 

Simulating the mathematical model of a single-phase transformer offers significant advantages in design, analysis, and 

operational optimization. By implementing differential equations that describe the relationships among voltages, currents, and 

magnetic flux in the windings, detailed studies can be conducted without the need for costly and repetitive experimental testing. 

This approach facilitates the prediction of transformer behavior under diverse operating scenarios, enhances energy efficiency, 

and improves operational safety. Moreover, mathematical modeling allows for the anticipation of nonlinear effects such as core 

saturation, hysteresis losses, and eddy currents—key considerations for the development of more efficient and reliable electrical 

machines. 

 

Incorporating mutual magnetic flux into the transformer model is essential for evaluating the magnetic coupling between the 

primary and secondary windings. The efficiency of this coupling depends on factors such as core geometry, ferromagnetic 

material properties, and winding configuration. A precise mathematical representation of mutual flux enables the optimization 

of core design to minimize leakage losses, thereby improving energy transfer and mitigating the adverse effects of stray flux. 

 

Moreover, the mutual magnetic flux plays a critical role in accurately simulating transient phenomena, such as transformer 

energization, abrupt load changes, and responses to electrical faults. Rapid variations in magnetic flux during these events 

induce overvoltage’s and transient currents that can compromise both the stability of the transformer and the integrity of the 

power system. Incorporating the core’s nonlinear behavior into the mathematical model significantly enhances the accuracy of 

transient response predictions and observations, including internal capacitive effects between windings and between windings 

and ground. This modeling approach supports the development of advanced control and protection strategies that ensure reliable 

and efficient transformer operation under dynamic conditions. 

 

Thus, the mathematical formulation of the single-phase transformer not only serves as a fundamental analytical tool for the 

design of these static electrical machines but also contributes to the advancement of more efficient and sustainable power 

systems. Based on equations (1), (2), and (3), an analog machine model is constructed, where the system is solved using 

integrators implemented through block-based representations, as illustrated in Figure (2). 
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Fig. 2. Block diagram of the single-phase transformer model. 

 

To define the transformer parameters, a MATLAB command-line interface is developed to assign the corresponding values to 

the single-phase transformer parameters. By simulating the mathematical model, it is possible to determine the secondary 

current and analyze the leakage fluxes within the machine. 

 

The following section details the parameters, and their respective values used in the simulation of the single-phase transformer 

model. Each parameter is crucial, as it directly influences the transformer's performance and efficiency under various design and 

operating conditions 

 

The simulation of the single-phase transformer model is conducted under specific electrical and operational parameters that 

significantly influence its performance and efficiency. The primary winding resistance Rp=0.25Ω determines the extent of 

energy loss in the form of heat, where a lower resistance reduces thermal dissipation and enhances overall efficiency. Similarly, 

the secondary winding resistance Rs=0.25Ω plays a crucial role in minimizing power losses and optimizing energy transfer to 

the load side. 

 

The reactance of the primary winding Xp=0.056Ω contributes to the total impedance of the transformer, affecting voltage 

regulation and its response to variations in load conditions. Likewise, the secondary winding reactance Xs=0.056Ω influences 

the impedance characteristics of the transformer, making its precise determination essential for the proper design of circuits that 

incorporate the transformer. Mutual reactance Xm=0.028Ω, which quantifies the electromagnetic coupling between the 

windings, plays a fundamental role in improving energy transfer efficiency and ensuring system stability. 

 

The number of turns in the primary winding Np=1000 is a critical factor in defining the transformation ratio and electromagnetic 

induction. An increase in the number of turns generally leads to a higher voltage on the secondary side. Similarly, the number of 

turns in the secondary winding Ns=2000 directly affects the transformation ratio, with a greater number of turns resulting in an 

increased secondary voltage. The applied voltage on the primary winding Vp=120V determines the output voltage of the 

secondary, making it essential to accurately define this parameter to evaluate the transformer's ability to handle different load 

conditions. 

 

The frequency of the primary voltage waveform has a direct impact on reactance and, consequently, on the overall performance 

of the transformer. In this simulation, a frequency of 60 Hz is considered, corresponding to standard industrial applications. 

Additionally, multiple cycles are graphed in the analysis to observe the transformer’s dynamic behavior, enabling a 

comprehensive evaluation of its performance over time. These conditions establish a rigorous framework for analyzing the 

electrical and magnetic characteristics of the transformer, ensuring the accuracy and reliability of the simulation results. 

 

The comparative analysis is presented through a series of graphs that illustrate the currents in both the primary and secondary 

windings, along with their corresponding magnetic flux, including mutual magnetic flux. These graphical representations are 

derived from the differential equations formulated in the previous section, incorporating an explicitly nonlinear (recursive) 

formulation of mutual flux as well as its conventional representation found in the literature (Ong, C. M. 1998, Grainger et al., 

1996), defined as: 
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The block diagram representing the dynamics of the single-phase transformer, incorporating a linear formulation of mutual 

magnetic flux as defined by equation (4), is shown in Figure (4). This diagram clearly illustrates the non-recursive nature of the 

mutual magnetic flux representation. 

 

 
Fig. 3. Block diagram of the single-phase transformer model, with linear mutual flux. 

 

Figure (4) presents the primary winding current, obtained by solving differential equations (1) and (2). The numerical 

approximation is performed using the Runge-Kutta algorithm with an integration step of 0.1×10-6 seconds, ensuring high 

computational accuracy in the simulation. This graph illustrates a higher magnitude of electric current in the primary winding 

when influenced by a non-explicitly linear mutual magnetic flux, compared to its counterpart induced by a linearly shaped 

mutual flux. This phenomenon indicates that the transformer is operating in a regime where core saturation reduces the 

magnetization impedance, thereby forcing a higher current flux. Such behavior provides a more accurate representation of the 

static electrical machine’s performance under varying operational conditions. 

 

 
Fig. 4. Primary winding current in single-phase transformer. 
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Figure (5) presents the secondary winding current, obtained by solving differential equations (1) and (2). The numerical 

approximation is performed using the Runge-Kutta algorithm with an integration step of 0.1×10−6 seconds. This Figure 

demonstrates a higher magnitude of electric current in the secondary winding when influenced by a non-explicitly linear mutual 

magnetic flux, compared to its counterpart induced by a linear mutual flux. This phenomenon can be attributed to the 

transformer operating in a regime where core saturation reduces the magnetization impedance, thereby increasing the current 

flux. Such behavior provides a more accurate representation of the performance of the static electrical machine under varying 

operational conditions. 

 

 
Fig. 5. Secondary winding current in single-phase transformer. 

 

As illustrated in Figure (6), the magnetic fluxes within the transformer windings, along with the mutual magnetic flux, exhibit 

relatively lower magnitudes in the simulated dynamics when a non-explicitly linear representation of the mutual magnetic flux 

is employed. This contrasts with the behavior observed under a linear mutual flux assumption. This difference highlights the 

influence of flux nonlinearity on the electromagnetic interactions within the transformer, impacting its overall performance and 

operational characteristics. 

 

 
Fig. 6. Magnetic dispersion fluxes. 

 

Among the key effects, a reduction in core losses stands out, as lower-magnitude magnetic fluxes decrease the likelihood of core 

saturation. This mitigates hysteresis and eddy current losses, thereby enhancing the transformer’s energy efficiency. 

Additionally, reduced magnetic induction leads to lower thermal stress, minimizing heat-related losses in the core. This extends 

the lifespan of the ferromagnetic material and reduces the need for supplementary cooling systems. Furthermore, maintaining an 
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optimally controlled magnetic flux improves voltage regulation under normal operating conditions, preventing excessive 

fluctuations in output voltage and ensuring stable performance across varying load demands. In contrast, certain drawbacks 

become evident when the magnetic flux is insufficient. Reducing energy transfer efficiency can result from inadequate coupling 

between the primary and secondary windings, limiting the power transmission and decreasing the overall efficiency of energy 

conversion. Additionally, an increased influence of leakage reactances arises when leakage flux becomes significant compared 

to mutual flux, leading to a higher transformer impedance that restricts energy transfer and negatively impacts dynamic 

performance. Furthermore, an insufficient magnetic flux constrains the transformer’s load-handling capability, preventing it 

from operating at maximum power without experiencing substantial voltage drops (Chapman, 2012, Kosow, 2021 and Fraile 

Mora, 2008). 

 

4 Conclusions 
 

This study presents a numerical evaluation of the mathematical model of a single-phase transformer, emphasizing the critical 

role of incorporating the inherent nonlinearities of its operation, particularly the mutual magnetic flux. Through simulation, it 

has been demonstrated that conventional models, which often assume a simplified linear representation of the magnetic circuit, 

may underestimate key effects that significantly influence transformer performance, especially under variable load conditions. 

 

The findings highlight that integrating nonlinear terms into mathematical formulation provides a more accurate representation of 

the transformer's real behavior. This approach enhances the precision of design, diagnostics, and operational analyses in 

practical applications. Furthermore, the methodology employed in this research can be extended to the modeling and simulation 

of other electrical machines, contributing to the development of more robust characterization strategies. 

 

In conclusion, incorporating a nonlinear representation of the mutual magnetic flux, along with other inherent nonlinearities, 

into transformer models is not only theoretically relevant but also essential for practical analysis and design. The findings 

highlight the critical need to develop more refined and accurate models that provide a faithful representation of the 

electromagnetic behavior of transformers under a wide range of operating conditions. 
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