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Abstract. Air quality in Guadalajara has deteriorated in recent 

years, becoming a serious health concern for the local population. 

In response, this project seeks to mitigate the impact of pollution 
by developing a prediction platform based on ARIMA models 

implemented in Python. The system will analyse historical 

pollutant levels—including PM₂.₅, PM₁₀, SO₂, NO₂, O₃ and CO—
enabling the anticipation of high-pollution episodes. Armed with 

this information, both citizens and authorities will be able to take 

timely preventative measures. Given the growing interest in air 
quality and its implications for health, this tool will furnish 

valuable data for informed decision-making. Moreover, it will 

facilitate trend analysis and permit short-term forecasts, helping to 
identify potential pollution episodes before they occur. 

Keywords: Air quality, Environment, ARIMA, Predictive model, 

Public health, Pollution, Guadalajara. 

Article Info 

Received April 26, 2025 

Accepted Jul 1, 2025 
 

 
 

1 Introduction 
 

In recent decades, rapid urbanisation has led to a substantial rise in pollutant emissions, adversely affecting both public health 

and the environment. Guadalajara, one of Mexico’s largest cities, is no exception. Its fast-paced urban and industrial expansion 

has driven increases in pollutants such as ozone (O₃), nitrogen dioxide (NO₂) and particulate matter (PM₂.₅ and PM₁₀). Despite 

improvements in air-quality monitoring and regulation, a critical gap remains: the absence of predictive tools to forecast 

pollution episodes.  

 

Decisions are currently informed by historical data and real-time measurements, which limits the efficacy of mitigation 

strategies. Against this backdrop, the development of a technology-driven platform based on predictive modelling offers a viable 

solution for enhancing air-quality management. AutoRegressive Integrated Moving Average (ARIMA) models have 

demonstrated effectiveness in forecasting various phenomena, including environmental conditions. By analysing historical 

records alongside real-time measurements, ARIMA can produce accurate forecasts for key pollutants in Guadalajara, furnishing 

invaluable insights for both authorities and citizens. 

 

This study proposes the design and implementation of a predictive platform that integrates ARIMA models with data-science 

techniques to forecast air quality across the city. The platform aims to provide accessible, accurate information on atmospheric 

pollution, enabling stakeholders to take timely preventive measures to reduce exposure and its associated health impacts. Such a 

tool would bolster evidence-based decision-making. 

 

The paper is structured as follows: 

• Section I reviews the state of the art in air-quality prediction and the application of ARIMA models. 

• Section II defines the primary research problem. 

• Section III outlines the platform’s development objectives. 

• Section IV describes the methodology, including data selection, pre-processing and ARIMA configuration. 

• Section V presents the results, evaluating their accuracy and reliability. 

• Section VI summarises the conclusions and discusses potential avenues for future research. 
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2 State of the art 

 
 

The use of ARIMA models in air-quality prediction is well documented. For instance, a study in Abu Dhabi employed ARIMA 

to forecast levels of nitrogen dioxide (NO₂) and particulate matter (PM₁₀ and PM₂.₅) using data from 2015 to 2023. The results 

indicated a marked decrease in NO₂ after 2020, alongside an increase in particulate concentrations in 2022, demonstrating the  

model’s capacity to capture air-quality trends (Ramadan, 2024). Similarly, in Chennai, India, univariate ARIMA models were 

developed to predict daily mean pollutant levels, illustrating the method’s versatility across diverse geographical contexts 

(Nadeem et al., 2020). 

 

The ARIMA methodology follows the Box–Jenkins procedure, comprising model identification, parameter estimation and 

diagnostic verification. This approach has been applied not only to air quality but also to other domains such as water quality 

and rainfall forecasting (Hernández et al., 2017; “Short-Term and Long-Term Rainfall Forecasting Using ARIMA Model”, 

2023). For example, a wetland water-quality forecast based on UV–Vis spectrometry demonstrated ARIMA’s effectiveness for 

short-term predictions (Hernández et al., 2017). Moreover, combining ARIMA with other techniques—such as artificial neural 

networks (ANNs)—has enhanced forecast accuracy: a Tunisian study found that a hybrid ARIMA–ANN model delivers a more 

efficient early-warning system for urban air quality (Ayari et al., 2012), suggesting that method integration is a sound strategy 

for tackling complex datasets. 

 

Hybrid strategies pairing ANNs with statistical models like ARIMA have been proposed to further improve prediction accuracy. 

López et al. (2016) noted that many researchers combine ANNs and ARIMA, since pure ARIMA may not fully capture data 

intricacies. This synergy leverages the strengths of both approaches to boost forecasting performance. 

Wireless sensor systems represent a prominent approach in air-quality monitoring. For example, the Smart Air Quality 

Monitoring System (SAQMS) developed by Oyo-Ita measures PM₂.₅, PM₁₀, volatile organic compounds (VOCs) and toxic gases 

via wireless sensor nodes, enabling real-time data collection and prompt environmental responses (Oyo-Ita, 2023). Likewise, 

wireless sensor networks (WSNs) have proven effective in delivering continuous air-quality data, facilitating trend forecasting 

and pollution-control measures (Chang et al., 2016). 

 

The integration of machine-learning algorithms into monitoring platforms has also advanced prediction precision. Akbaba 

(2023), for instance, developed an air-quality detection system using a feedback neural network to link sensors with a control 

board, permitting deeper data analysis. This hardware–software fusion not only improves pollutant detection but also optimises 

emergency responses to air-quality incidents. 

 

Simulation software remains indispensable for studying airborne pollutant dispersion. Zhang and Ryu (2021) employed Airpak 

to model indoor airflow and moisture distribution, essential for designing effective ventilation and purification systems. 

Finally, studies in South America highlight ANNs’ utility in air-quality forecasting. Baena-Salazar et al. (2019) used ANN 

models to predict critical PM₂.₅ events in Colombia’s Aburrá Valley, capturing temporal and spatial pollution patterns. 

Similarly, Quincho and Dionicio (2022) developed ANN architectures to forecast PM₁₀ concentrations in Lima using pollutant 

and meteorological data, demonstrating ANNs’ adaptability to varied environmental conditions. 

 

 

3 Aportation 
 

Figure 1 illustrates the UML diagram of the Air Quality Prediction System, identifying its principal components and their 

interconnections. On the left-hand side, the user interacts with the web interface, which is designed for querying and presenting 

forecasts. This interface issues HTTP requests to the Flask backend, acting as the central controller, organising business logic 

and coordinating communication with the remaining modules. 

 

In the persistence layer, the Flask server connects to the MySQL database, where historical pollutant measurements, user 

configurations and model outputs are stored. Concurrently, the backend periodically queries an external environmental data API 

to obtain real-time readings, which are then integrated into the system to generate up-to-date predictions. This modular 

architecture guarantees scalability, maintainability and rapid response to the varied requirements of both citizens and regulatory 

authorities. 
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Figure 1. UML Diagram of the Air Quality Prediction System. 

It represents the main components of the system, including the interaction between the user, the web interface, the Flask backend, the MySQL database, 

and the external environmental data API. 
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4 Experimentation 

 
Level 1: General Context 
 

The system is designed to forecast air pollution levels in various geographical regions using historical data and ARIMA 

predictive models. 

 

 

Data Source 

 

Data are retrieved from the Mexican Government’s public API: 

https://api.datos.gob.mx/v1/calidadAire 

 

This API supplies up-to-date information on air quality across multiple locations nationwide. 

 

Pollutants Considered 

Only the following pollutants and measurement units are processed: 

• CO (carbon monoxide) → µg/m³ 

• NO₂ (nitrogen dioxide) → µg/m³ 

• O₃ (ozone) → µg/m³ 

• PM₁₀ (particulate matter < 10 µm) → µg/m³ 

• SO₂ (sulphur dioxide) → µg/m³ 

 

Any additional pollutants reported by the API are disregarded. 

 

System Actors 

• User: Views reports and visualisations via a web browser. 

• External API (datos.gob.mx): Supplies raw air-quality data. 

Storage 

Fetched data are converted to CSV format and stored in a MySQL database, which also holds the generated forecasts. 

 

 

Level 2: Containers 

 

Flask Backend (REST API) 

Implemented in Python using Flask, responsible for: 

• Data upload 

• Prediction generation 

• Report creation 

• Result visualization 

 

Web Fronted  

Built with HTML and JavaScript (DataTables), offering: 

• Filters by state, municipality and pollutant 

• Interactive graph visualisations 

• Downloadable reports in PDF and CSV formats 

 

ETL Process 

Developed in Python with Pandas, it: 

1. Extracts JSON data from the API 

2. Filters for the five specified pollutants 

3. Converts data to CSV format 

4. Loads the CSV into the database for analysis 

 

 

https://api.datos.gob.mx/v1/calidadAire
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MySQL Database 

 

Contains two principal tables: 

• informacion: Daily average values by pollutant, state and municipality 

• predicciones: ARIMA outputs with parameters (p, d, q), forecast values and confidence intervals 

 

Level 3: Backend Components 

REST API 

Handles front-end requests and returns structured JSON responses. 

 

Prediction Module 

• Executes an ARIMA (2, 1, 2) model on the latest 30 days of daily averages 

• Generates forecasts solely for the five defined pollutants 

• Pseudocode: 

for pollutant in [CO, NO₂, O₃, PM₁₀, SO₂]:   
    data ← fetch_last_30_days(pollutant)   

    model ← ARIMA(data, order=(2,1,2))   

    forecast, conf_int ← model.forecast(steps, alpha=0.05)   

    store_results(pollutant, forecast, conf_int)   

 

 

This modular architecture ensures clarity, maintainability and scalability for forecasting air quality across Guadalajara and 

beyond. More specific pseudocode: 
Procedure ExecutePrediction(prediction_date): 

 

  1. Validate input   

     If prediction_date is missing Then   

       Exit with message “Date not provided”   

 

  2. Open connection to storage   

 

  3. Check for existing predictions   

     If any prediction for prediction_date exists Then   

       Close connection   

       Exit with message “Prediction already exists”   

 

  4. Fetch pollutant–region combinations with data in the 30 days before 

prediction_date   

     If none found Then   

       Close connection   

       Exit with message “No data available for this date”   

 

  5. Initialize empty list “results”   

 

  6. For each combination in fetched list Do   

       a. Retrieve the last 30 daily values for that pollutant and 

region   

       b. If fewer than 30 values Then   

            Skip to next combination   

       c. Compute first differences of the series   

       d. Fit ARIMA(2,1,2) to the differenced series   

       e. Forecast the next value and compute a 95 % confidence interval   

       f. Round forecast and interval bounds to three decimal places   
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       g. Create a prediction record with:   

          – pollutant, region, prediction_date   

          – forecasted value and units   

          – ARIMA order (2,1,2)   

          – confidence interval   

       h. Save the record to storage   

       i. Add the record to “results”   

 

  7. Commit all changes   

 

  8. Close connection   

 

  9. Return summary containing:   

     – number of predictions made   

     – list of prediction records   

 

End Procedure 

 

 

Reporting Module 

• Generates CSV and PDF files containing: 

o Prediction date 

o Pollutant 

o Actual average value 

o Predicted value 

o Percentage change 

o 95 % confidence interval 

Visualisation Module 

• Creates plots using Matplotlib and Seaborn: 

o Comparative line chart (actual vs. predicted values) 

o Error histogram 

o Scatter plot 

 

 

General System Flow 

1. Data are extracted from the datos.gob.mx API. 

2. The ETL process filters for CO, NO₂, O₃, PM₁₀ and SO₂, then converts the data to CSV. 

3. The CSV files are loaded into the MySQL database’s informacion table. 

4. The system identifies pending dates and runs ARIMA forecasts for each pollutant. 

5. Forecasts are stored in the predicciones table. 

6. Users view results in their web browser, applying filters by region and pollutant. 

7. The system permits export of metrics, reports and graphs in CSV and PDF formats. 

 

 

 

5 Results 

 
This section presents the results obtained from implementing the atmospheric pollutant forecasting model in Guadalajara, 

Jalisco. Five principal pollutants were analysed—CO, NO₂, O₃, PM₁₀ and SO₂—using historical data retrieved from the Mexican 

Government API and processed via an ARIMA model. 
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Analysis of the prediction process and potential errors 

 

The prediction process comprises several essential steps to assess feasibility and ensure result accuracy. Below, the calculation 

flow, error conditions and criteria for a valid prediction are outlined. 

 

Prediction calculation process 

1. Parameter input: The function accepts a specific date for which a forecast is required. 

2. Existing-forecast verification: The database is queried to determine whether a forecast already exists for the 

given date. 

– Potential error: If a forecast is found, the system issues a warning and prevents duplication. 

3. Retrieval of available pollutants: All pollutants with records in the informacion table from the 30 days 

preceding the selected date are retrieved. 

– Potential error: If insufficient data are available for this interval, an error is returned, indicating that the 

forecast cannot be produced. 

4. Extraction of historical data: For each pollutant–state–municipality combination, measured values for the 

last 30 days are queried. 

– Potential error: If fewer than 30 records are obtained, that pollutant is excluded, as the ARIMA model 

requires a minimum dataset for valid forecasting. 

5. ARIMA model application: An ARIMA(2,1,2) model is fitted to the historical series, and a forecast for the 

specified date is generated. 

– Potential error: Failure to converge—due to inconsistent or insufficient data—will result in an unsuccessful 

forecast for that pollutant. 

6. Database storage: Successfully generated forecasts are saved in the predicciones table, together with their 95 

% confidence intervals. 

 

 

Possible causes of error and their impact 

 

Cause of Error Description Impact 

Date not provided 
A date parameter is not received in 

the request 
The prediction is not executed 

Prediction already 

exists 

A prediction for the given date 

already exists 
Avoids duplication of data 

Insufficient data 
No records found in the database 

for the last 30 days 

Prediction cannot be generated 

for that date 

Less than 30 records 

available 

Data exists but is insufficient for 

ARIMA 

The pollutant is excluded from 

the prediction 

ARIMA model 

failure 

Unable to fit due to data 

inconsistencies 

Prediction for the affected 

pollutant is not generated 

 

 

 

Necessary conditions for a valid prediction 

 

To generate a prediction without errors, the following conditions must be satisfied: 

• The date must be provided correctly. 

• No existing prediction should be present for the selected date. 

• At least 30 days’ historical data must be available in the database. 

• Historical data must be properly formatted and free of extreme outliers. 

• The ARIMA model must fit the time series adequately. 



Salas López et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 25-35. 

32 

 

Comparative graphs (Figure 2 and 3) illustrate the progression of actual versus predicted values for each pollutant over the study 

period. Overall, the model captures the underlying trend with moderate variability for certain pollutants. However, particular 

outliers produce significant deviations—especially for PM₁₀ and CO—indicating the need for further model refinement. 

 

  

  
 

Figure 2. a) Comparison of Actual and Predicted Values for CO. b) Comparison of Actual and Predicted Values for PM10. 

c) Comparison of Actual and Predicted Values for O₃. d) Comparison of Actual and Predicted Values for SO₂. 

 

 

  
Figure 3. Comparison of Actual and Predicted Values for NO₂ 

 

 

 

Error distribution 

 

To evaluate the model’s performance, scatter plots (Figure 2) and error histograms (Figures 4 and 5) were produced. The scatter 

plots show that predicted values generally correspond with actual values, albeit with wider dispersion for CO and PM₁₀. The 

error histograms demonstrate that most errors cluster around zero, although notable deviations are observed for some pollutants. 
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Figure 4. Scatter Plot of Actual vs Predicted Values for: 

a) Scatter Plot of Actual vs Predicted Values for NO₂. b) Scatter Plot of Actual vs Predicted Values for O₃. 

c) Scatter Plot of Actual vs Predicted Values for PM10. d) Scatter Plot of Actual vs Predicted Values for SO₂. 

e) Scatter Plot of Actual vs Predicted Values for CO. 
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Figure 5. Error Histogram for: 

a) Error Histogram for O₃. b) Error Histogram for CO. 

c) Error Histogram for NO₂. d) Error Histogram for PM10 

e) Error Histogram for SO₂ 

 

Error metrics: RMSE and MAE 

To quantify the model's accuracy, root mean square error (RMSE) and mean absolute error (MAE) metrics were calculated for 

each pollutant (Figure 4). The results are: 

● CO: RMSE = 0.72, MAE = 0.23 

● NO₂: RMSE = 0.01, MAE = 0.01 
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● O₃: RMSE = 0.01, MAE = 0.01 

● PM10: RMSE = 11.66, MAE = 8 

● SO₂: RMSE = 0, MAE = 0 

 

6 Conclusions 
 

The results of this study indicate that the ARIMA model performs robustly in forecasting air quality for Guadalajara, Jalisco. 

Analysis of time series for CO, NO₂, O₃, PM₁₀ and SO₂ revealed that the model adapts well to sufficiently stable datasets, 

demonstrating particularly high accuracy for NO₂ and O₃, where forecasts correlate strongly with observed values. Conversely,  

predictions for CO and PM₁₀ exhibited significant shortcomings—evident in elevated RMSE and MAE metrics and increased 

variance—likely due to greater volatility and outliers in the historical records. Accordingly, more rigorous data preprocessing 

and exploration of alternative or hybrid modelling approaches that incorporate non-linear dynamics or additional external 

variables are recommended. 

 

These findings underscore the necessity of maintaining a robust database with a minimum of 30 daily records per pollutant, state 

and municipality—the threshold for valid ARIMA implementation. Data insufficiency was a principal factor behind several 

unfulfilled forecasts, emphasising the importance of ensuring consistent, high-quality data streams to enhance model coverage. 

Furthermore, this work demonstrates that integrating technologies such as Flask, Pandas, MySQL and standard statistical 

libraries can yield an effective urban air-quality monitoring and prediction platform. While the ARIMA model proved capable 

of accurately forecasting the trajectories of NO₂ and O₃, further optimisation—such as parameter tuning or hybridisation—is 

advisable to improve accuracy for CO and PM₁₀. 
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