
© International Journal of Combinatorial Optimization Problems and Informatics, Vol. 10, No. 1, Jan-April

2019, pp. 6-15. ISSN: 2007-1558.

Received May 24, 2016 / Accepted Sep 11, 2017

 Editorial Académica Dragón Azteca (EDITADA.ORG)

A Hybrid Simulated Annealing for Job Shop Scheduling Problem

Leonor Hernández-Ramírez1, Juan Frausto-Solis1, Guadalupe Castilla-Valdez1, Juan Javier

González-Barbosa1, David Terán-Villanueva1, M. Lucila Morales-Rodríguez1

1TECNM/INSTITUTO TECNOLÓGICO DE CIUDAD MADERO

iscleo1@gmail.com, juan.frausto@gmail.com, gpe_cas@yahoo.com.mx,

jjgonzalezbarbosa@hotmail.com, david_teran01@yahoo.com.mx,

lmoralesrdz@gmail.com

The Job Shop Scheduling Problem (JSSP) arises in the context of high-performance computing and

belongs to the NP-hard combinatorial optimization problems. The purpose of JSSP is to find the order of

execution of a set of jobs on a group of machines, subject to certain precedence and resource availability

constraints. The objective in this problem is minimizing the makespan that is the time elapsed from the

starting time of the first job until the completion time of the last job. In this paper, a novel hybrid

algorithm named AntGenSA for solving JSSP is proposed. AntGenSA uses Ant Colony System (ACS),

Simulated Annealing (SA), and Genetic Algorithm (GA). To assess the performance of this algorithm, it is

executed in a parallel computer, using a set of instances proposed by Fisher-Thompson, Yamada-Nakano,

Taillard, Lawrence, and Applegate-Cook. The evaluation of this algorithm was performed mainly by the

quality of the solution but the execution time was measuring as well. The experimental results show that

the performance of the parallel execution of AntGenSA is highly competitive with the state-of-the-art

algorithms.

Keywords: JSSP, Simulated Annealing, Ant Colony System, Genetic Algorithm, OpenMP.

1. Introduction

The objective of the JSSP is to find an optimal sequence for executing a finite set of operations without violating constraints.

JSSP is common in the manufacturing industry; an optimal solution reduces lead times, costs, and optimizes machine utilization.

JSSP is one of the most difficult NP-hard problems. Consequently, exact methods (as Branch and Bound) cannot solve it in an

efficient way; because these algorithms may require a prohibitive processing time for solving JSSP instances. For this reason,

heuristic methods are used, which provide approximate solutions to the optimum in reasonable times.

JSSP has been solved using a wide range of metaheuristic algorithms; nevertheless, all of them have strengths and weaknesses

[1]. The current tendency for solve JSSP is to combine two or more metaheuristics; in this way, weaknesses of one method can

be supplemented by the strengths of another interacting synergistically to search the optimal solution. Experiments show that

these hybrid methods perform better than their corresponding single methods because they help each other to escape from local

optima [1]. Tabu Search with Path Relinking (TS/PR) is an example of hybrid algorithms for JSSP [2]. This algorithm solved a

JSSP instance that had remained unsolved for twenty years [2]. Furthermore, another hybrid algorithm based on Simulated

Annealing (SA) surpassed TS/PR by using a semi-local search method and a Cauchy’s probability density function [3]. This

algorithm was evaluated using 88 instances obtaining an excellent performance with instances taken from Fisher-Thompson [4];

Lawrence [5], and Applegate-Cook[6]. These instances are frequently used for comparative analysis of JSSP algorithms. In

addition, let us to mention that other instances taken for testing JSSP algorithms are those published by Yamada & Nakano [7]

and Barnes and Chambers [8]. Even though the efficiency of SA for JSSP, only a few publications use the parallel approach [9].

In contrast, there are some hybrid parallel algorithms based on Tabu Search (TS), tested with Barnes-Chambers instances and

implemented with CUDA and MPI [9]. Another hybrid parallel algorithm named Neuro-Tabu based on TS and neural networks

for JSSP was published in 2013 [10]; in this algorithm, MPI was used to distribute the calculations of the GPUs. A very natural

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

7

way to implement hybrid parallel algorithms is the use of Ant Colony Optimization (ACO) with some metaheuristics; this kind

of hybridizations algorithms can improve the performance of the individual metaheuristics[11]. Besides, it is well known that

Genetic Algorithms obtain very good results when they are used in parallel implementations for JSSP.

There are not only theoretical reasons for using a hybrid approach when JSSP algorithms are designed; in addition, experimental

results show that the hybrid algorithms perform better than its corresponding individual model. This is because the hybridization

convergence rate is usually high and it helps to escape from local optima[1]. Therefore, researchers are constantly searching new

algorithms and a lot of efforts have been made to improve existing methods.

In this work a hybrid metaheuristic algorithm Ant Colony System/Genetic Algorithm/Simulated Annealing (AntGenSA) for

solving JSSP is proposed. This algorithm uses Simulated Annealing because this metaheuristic has obtained competitive results

for JSSP [3], uses population algorithms (Ant Colony and Genetic Algorithm) which have the characteristic of working with

several solutions at the same time and this was used to develop the parallel model for the proposed algorithm.

The paper is organized as follows: In section 2, a general background is presented and the JSSP formulation and the disjunctive

graph representation are explained. In section 3, the sequential and the parallel variants of the proposed algorithm are presented.

These algorithms are a hybridization of Ant Colony System, GA, and SA. In section 4 the proposed algorithms are evaluated

using a set of benchmark instances. In this section, sequential and parallel versions are compared considering the state-of-art

algorithms as a reference. Finally, general conclusions are presented at the end of the paper.

2. Background

In this section is shown the theoretical foundations on which this paper is sustained.

2.1 The Job Shop Scheduling Problem (JSSP)

We have a set of J jobs to be processed in a set of M machines, in a previously established order, under given constraints. The

objective of JSSP is to organize these jobs optimally without violating any restrictions. In this problem, there are two types of

constraints: a) Sequence constraints, which indicate that the precedence relationships between the operations of a job must be

guaranteed; b) Constraints of resources indicate that no more than one job can be executed on a machine at the same time.

A scheduling problem is considered completely solved if the starting times of all operations are determined and the sequence and

resource constraints are not violated [10] [11] [12]. The size of the JSSP is defined by 𝑗 × 𝑚, where j is the jobs number in 𝐽 =

{𝐽1, 𝐽2, 𝐽3, … 𝐽𝑗} and m is the machines number of the problem in 𝑀 = {𝑀1, 𝑀2, 𝑀3, . . . 𝑀𝑚}. Each element of the set J must be

related with an element of the set M of machines. The relation that associates the jobs in J with the machines in M conforms a

binary relation J→M, called Operation (j,m) [13]. The total number of operations of the problem is denoted by 𝑂𝐽𝑀 =

{𝑂1,1, 𝑂1,2, 𝑂1,3, … 𝑂𝑗,𝑚}, where 𝑂𝐽𝑀 = {(𝑗, 𝑚)|𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀}. The set of operations O corresponding to the same job has a

processing sequence called technological sequence S, such that 𝑆 = {𝑆1, 𝑆2, 𝑆3, … 𝑆𝑚} where m is the number of machines in the

problem. Therefore, each job j has the technological sequence: 𝑂𝐽𝑆 = {𝑂𝑗,1, 𝑂𝑗,2, 𝑂𝑗,3, … 𝑂𝑗,𝑠}. Each operation (j, m) has associated

a processing time (p) that indicates the required time of that j job in the m machine.

In summary, JSSP is defined with:

Set of machines 𝑀 = {𝑀1, 𝑀2, 𝑀3, … 𝑀𝑚}

Set of jobs 𝐽 = {𝐽1, 𝐽2, 𝐽3, … 𝐽𝑗}

Set of operations 𝑂𝐽𝑀 = {𝑂1,1, 𝑂1,2, 𝑂1,3, … 𝑂𝑗,𝑚}

Technological sequence 𝑂𝐽𝑆 = {𝑂𝑗,1, 𝑂𝑗,2, 𝑂𝑗,3, … 𝑂𝑗,𝑠}

Each operation 𝑖 ∈ 𝑂 is linked to a job 𝑗𝑖 ∈ 𝐽 to which belongs and a machine 𝑚𝑖 ∈ 𝑀 in which it must be done, consuming an

uninterrupted time 𝑝𝑖 ∈ ℝ. In addition, we have a binary precedence relation PREC that partitioning O in sequences, one for

each job. JSSP is to find a start time 𝑡𝑖 for each operation 𝑖 ∈ 𝑂 trying to minimize the makespan. There are several variants of

JSSP depending on the objective; the most common is to minimize the makespan, which is the completion time of the last task

subject to the established precedence constraints. The makespan is denoted by Cmax and is the objective function in this paper.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

8

Job Shop Scheduling Problem consists in:

Minimize 𝐶𝑚𝑎𝑥 = 𝑀𝑎𝑥 (𝑡𝑖 + 𝑝𝑖): ∀ 𝐽𝑖 ∈ 𝐽, 𝑀𝑖 ∈ 𝑀

Subject to:

𝑡𝑗 ≥ 𝑡𝑖 + 𝑝𝑖 For all 𝑖, 𝑗 ∈ 𝑂 with i PREC j (1)

𝑡𝑗 ≥ 𝑡𝑖 + 𝑝𝑖 𝑜 𝑡𝑖 ≥ 𝑡𝑗 + 𝑝𝑗 For all i, j O with mi = mj (2)

Where:

t: Start time of task i and pi is its duration.

𝐶𝑚𝑎𝑥: Makespan of the set of tasks.

PREC: Indicates that the operations of a job must be done in a precise order for the problem, such

that if i PREC j then j cannot start before i ends.

Constraint (1) indicates the precedence relation of the operations, that the operations of a job must be performed in a precise

order for the problem, such that if i PREC j then j cannot start before i ends. Constraint (2) implies that the machine can process

only one operation at the same time.

2.2 Complexity of the problem

There are many combinatorial optimization problems whose models are relatively easy to build, but the algorithms to find the

best solutions are not easy to define. This is the case of JSSP, that as we mentioned before this problem belongs to NP-hard

Problem class [14]. In fact, it is too difficult to find a very good solution for many instances of JSSP. In addition, so far, there is

not a deterministic algorithm that solves the problem in a polynomial time. Consequently, to design heuristic methods is up to

now the best alternative to solve them. A good representation of the problem useful for design this algorithm is the disjunctive

graph presented in the next section.

2.3 Graphical representation of the problem

The Job Shop Scheduling Problem (JSSP) can be formally represented by a disjunctive graph G = (V; C ∪ D) [7]. Where:

 V is a set of nodes that represents operations of the jobs with special nodes, the source and the sink nodes. In Figure 1,

these are identified with a “0” and a “*” respectively.

 C is a set of conjunctive arcs that represents the technological sequences of machines for each job.

 D is a set of disjunctive arcs that represents pairs of operations that must be performed on the same machine.

The disjunctive graph showed at Figure 1 and taken from Yamada has 3 tasks [7]. In this graph, each task has several operations

that are numbered within the circles of this figure. Besides, source and sink nodes represent dummy operations but should be

added to the graph to identify the starting and final states of JSSP. In Figure 1, the processing time for each operation is the value

written aside all nodes except the dummy operations because their processing tine is zero. The arrows of the disjunctive graph

represent precedence’s constraints that must be satisfied. There are two types of arrows [7]: a) Arrows in a single direction and

for which there is no doubt that operation i precedes operation j; b) Arrows in two directions and for which the precedence can

be presented in a way that i precedes j or j precedes i.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

9

Figure 1. Disjunctive graph of a 3x3 problem.

3 AntGenSA: The Proposed Algorithm

SA was developed by Cerny and Kirkpatrick adapting strategies from the field of the statistical mechanics for solving the

combinatorial optimization problems [15] , [16]. In these problems the minimum value of a function that depends on several

parameters is sought. SA explores the neighborhood of the current randomly generated solution searching for the best solution;

the new solution is accepted if its fitness is lower than the current solution fitness; however, worse solutions still could be

accepted with a probability of acceptance p determined by the Boltzmann distribution. The Boltzmann probability of acceptance

decreases as the temperature decreases.

To solve the problem a hybrid algorithm based on Simulated Annealing (SA) with Ant Colony and Genetic Algorithm was

developed (AntGenSA). The AntGenSA method generates a set of n solutions (initial population) using Ant System algorithm.

These solutions evolve along the algorithm iterations. Afterward, an iterative process randomly selects two solutions from the n

initial solutions at each iteration that will be the parent solutions, and then go in the SA outermost cycle controlled by the final

temperature parameter. Inside this cycle controlled by temperature, a Markov perturbation cycle is performed using the

crossover genetic operator. The parent solutions are combined to produce two offspring solutions with a crossover operation. In

the acceptance phase, each child is compared with a parent through its fitness value, if it is better than its parent, then the

corresponding child replaces to its parent. Otherwise, the child has another replacing chance according to the Boltzmann

probability. When the algorithm reaches the final temperature, the current temperature is reset and two new solutions are

selected. The process continues until all the solutions are processed. The parallelization model designed for AntGenSA uses

independent cycles for each pair of solutions that evolve through Markov perturbations and the genetic operators allows an

efficient distribution in the processing threads used. In this way, it is possible to reduce the processing time of the algorithm,

which now solely depends on the time that it takes to process the thread that requires the longest processing time. For

parallelization were used OpenMP directives. In Figure 2 AntGenSA is shown:

p11=3

p12=3

p13=3

Oij : an operation of job i on machine j pij : processing time of Oij

O11 O12 O13

O21 O23 O22

O32 O31 O33

* 0

p21=4

p23=3

p22=2

p32=3

p31=2

p33=1

sink

source

conjunctive arc (technological sequence)

disjunctive arc (pair of operations on the same machine)

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

10

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

sOlds[] ← Generate initial population with Ant System

makespanOld(Ki) ← CalculateMakespan(Ant(Ki))

BestMakespan = Min(MakespanOld(Ki)) // Get best Makespan

For i = 0 to K do (i++2)

 While(Tcurrent>Tfinal) do

 For j = 0 to Lk do

 sNews[i] ← Generate 2 news ants with crossover selecting sOlds(2/2)

 MakespanNew(Ki) ← CalculateMakespan(ant(Ki))

 For m = i to i+2 do

 ∆ Em= MakespanNew(Km) - MakespanOld(Km)

 if (∆ Em<0) then
 sOlds(Km) ←sNews(Km)
 MakespanOld(Km) ← MakespanNew(Km)

 BestMakespan = Min{BestMakespan, Min((MakespanNew(Km)}

 else

 r← random(0,1)

 if (r<e -∆Em/Tcurrent) then

 sOld(Km) ← sNew(Km)

 MakespanOld(Km) ← MakespanNew(Km)

 endif

 endif

 endFor

 endFor

 Tcurrent = α*Tcurrent

 EndWhile

 Tcurrent = Tinitial

EndFor

Return sOlds[],MakespanOld[], sOlds*, MakespanOld*, BestMakespan

Figure 2. AntGenSA Algorithm.

4 Experimental Design

The methodology applied in experimentation, as well as the characteristics of hardware and software used in the experiments are

described in this section.

To assess the algorithm performance 25 instances were used. These were taken from five sources:

 ft06, ft10 and ft20 [4]

 yn1, yn2, yn3 y yn4 [7]

 ta01, ta11, ta21, ta31, ta41, ta51, ta61 and ta71 [17]

 la01, la06, la16, la21 and la26 [5]

 orb01, orb02, orb03, orb04 and orb05 [6]

Each instance was solved using different processing time according to its size, that is, for smaller instances, the used

processing time was shorter than the processing time used for larger instances. For each instance, the same processing time was

used with each one of the assessed algorithms. That is, the sequential and parallel versions.

The following performance indicators were assessed as follows:

a) Runtime expressed in minutes

b) Quality of the solution; measured by the makespan value.

To compare the performance in time and quality, the average was calculated, also the best solution (lowest makespan) obtained

by each algorithm was recorded. Results are shown in next section.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

11

In order to improve the performance of the AntGenSA, a new variant of the hybrid algorithm was implemented. Given that

during the tests for tuning the algorithm’s parameters, it was observed that the crossover process was highly resource

consuming. Then it was considered the possibility of omitting this process so that the algorithm would expand the search in the

regions close to good solutions.

Basically, this new variant of the algorithm omits the crossover process in order to improve performance, reducing exploration

diversification with and increasing intensification. It should be mentioned that the algorithm maintains a good level of

diversification because it still has processes aimed at diversifying, such as Boltzmann's probabilistic function of simulated

annealing, as well as genetic mutation.

Both programs, the sequential and parallel program were implemented in C language. Parallel version was developed using

OpenMP directives. The execution of the programs was made in a terminal of the Ehecatl cluster of the Technological Institute

of Ciudad Madero, with the following characteristics: Intel® Xeon® processor at 2.30 GHz, Memory 64GB (4x16GB) ddr4-

2133 and Linux CentOS operating system.

4.1 Results

Table 1 shows the solutions average and the best solution obtained for AntGenSA compared with the best known solution

(BKS) for each instance. Columns 1, 2 and 3 show the instance name, instance size and his BKS, next columns show results

obtained by AntGenSA with crossover in sequential and parallel versions and without crossover respectively.

In Table 1, the smallest error values for each instance have been marked. Notice that the parallel version of AntGenSA without

crossover obtains the best results; it obtains the smaller percentage of error in twenty-one instances. On the other hand, the

sequential version of AntGenSA using crossover obtains the worst results; this version only achieves the smaller errors in four

instances.

Table 2 has the same content as table 1 in columns 1, 2 and 3. In the next eight columns, the results obtained for two algorithms

of the state of the art are shown. It shows results obtained by a hybrid Tabu Search/Path Relinking (TS/PR) [2], and for a Hybrid

Algorithm of Fast Simulated Annealing with Quenching (HFSAQ) [3]. Last columns show results obtained for the version of the

AntGenSA without crossover.

In Table 2 have been marked eight values that overcome or ties the results obtained by the algorithms of the state-of-the-art.

Notice that AntGenSA obtains fourteen solutions with error less than 1% respect to the best known solution (BKS), with error

less than 2 % respect to BKS and twenty-three with error less than 3 % respect to BKS. In general AntGenSA algorithm obtains

competitive results in comparison with the state of the art algorithms. Notice that obtains an average relative error (ARE) of

1.1% for the twenty five analyzed instances.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

12

Table 1. Results with AntGenSA with crossover and without crossover.

AntGenSA with Crossover

AntGenSA without Crossover

Sequential Parallel

Sequential Parallel

Instance Size BKS

Average Best Average Best

Average Best Average Best

MKS
RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)

ft06 6x6 55 55.0 0.0 55 0.0 55.0 0.0 55 0.0

55.0 0.0 55 0.0 55.0 0.0 55 0.0

ft10 10x10 930 955.3 2.7 950 2.2 954.5 2.6 938 0.9

952.0 2.4 947 1.8 945.0 1.6 938 0.9

ft20 20x5 1165 1177.3 1.1 1176 0.9 1169.0 0.3 1165 0.0

1178.9 1.2 1167 0.2 1170.5 0.5 1165 0.0

yn01 20x20 884 910.8 3.0 907 2.6 906.3 2.5 899 1.7

910.3 3.0 901 1.9 898.7 1.7 896 1.4

yn02 20x20 904 949.3 5.0 944 4.4 937.3 3.7 922 2.0

956.7 5.8 952 5.3 924.3 2.2 915 1.2

yn03 20x20 892 918.0 2.9 918 2.9 909.0 1.9 904 1.3

908.5 1.8 904 1.3 905.0 1.5 900 0.9

yn04 20x20 968 1035.0 6.9 1031 6.5 1020.5 5.4 1012 4.5

991.7 2.4 988 2.1 988.3 2.1 984 1.7

ta01 15x15 1231 1301.1 5.7 1290 4.8 1264.5 2.7 1256 2.0

1287.3 4.6 1269 3.1 1251.3 1.6 1241 0.8

ta11 20x15 1357 1465.0 8.0 1453 7.1 1428.3 5.3 1419 4.6

1405.9 3.6 1398 3.0 1398.5 3.1 1383 1.9

ta21 20x20 1642 1734.7 5.6 1725 5.1 1722.5 4.9 1710 4.1

1685.5 2.6 1685 2.6 1679.0 2.3 1671 1.8

ta31 30x15 1764 1865.6 5.8 1854 5.1 1804.5 2.3 1794 1.7

1870.3 6.0 1863 5.6 1767.3 0.2 1766 0.1

ta41 30x20 2005 2342.0 16.8 2342 16.8 2231.5 11.3 2227 11.1

2085.0 4.0 2076 3.5 2081.0 3.8 2072 3.3

ta51 50x15 2760 3169.0 14.8 3102 12.4 3163.3 14.6 3139 13.7

2920.0 5.8 2920 5.8 2762.5 0.1 2760 0.0

ta61 50x20 2868 3230.0 12.6 3230 12.6 2932.0 2.2 2929 2.1

2868.0 0.0 2868 0.0 2868.0 0.0 2868 0.0

ta71 100x20 5464 6194.0 13.4 6130 12.2 6154.2 12.6 6130 12.2

5464.0 0.0 5464 0.0 5464.0 0.0 5464 0.0

orb01 10x10 1059 1085.5 2.5 1059 0.0 1081.7 2.1 1059 0.0

1079.3 1.9 1059 0.0 1077.8 1.8 1059 0.0

orb02 10x10 888 898.7 1.2 889 0.1 895.5 0.8 889 0.1

889.7 0.2 889 0.1 890.2 0.2 889 0.1

orb03 10x10 1005 1044.3 3.9 1024 1.9 1039.1 3.4 1018 1.3

1023.9 1.9 1017 1.2 1022.4 1.7 1005 0.0

orb04 10x10 1005 1018.4 1.3 1006 0.1 1015.3 1.0 1006 0.1

1012.4 0.7 1005 0.0 1013.7 0.9 1005 0.0

orb05 10x10 887 894.1 0.8 890 0.3 893.0 0.7 889 0.2

893.0 0.7 887 0.0 891.4 0.5 887 0.0

la01 10x5 666 666.0 0.0 666 0.0 666.0 0.0 666 0.0

666.0 0.0 666 0.0 666.0 0.0 666 0.0

la06 15x5 926 926.0 0.0 926 0.0 926.0 0.0 926 0.0

926.0 0.0 926 0.0 926.0 0.0 926 0.0

la16 10x10 945 975.7 3.3 946 0.1 950.2 0.6 946 0.1

947.1 0.2 945 0.0 950.2 0.6 945 0.0

la21 15x10 1046 1071.9 2.5 1059 1.2 1076.7 2.9 1053 0.7

1073.2 2.6 1046 0.0 1053.4 0.7 1046 0.0

la26 20x10 1218 1218.0 0.0 1218 0.0 1218.0 0.0 1218 0.0

1218.0 0.0 1218 0.0 1218.0 0.0 1218 0.0

 AntGenSA: Ant System/Genetic/Simulated Annealing

MKS: Makespan

 BKS: Best Known Solution

RE: Relative Error

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

13

Table 2. Results with TS/PR, HFSAQ and AntGenSA parallel version without crossover.

TS/PR

HFSAQ

AntGenSA Parallel without

crossover

Instance Size BKS

Average Best

Average Best

Average Best

MKS
RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)
MKS

RE

(%)

ft06 6x6 55 55.0 0.0 55 0.0

55.0 0.0 55 0.0

55.0 0.0 55 0.0

ft10 10x10 930 930.0 0.0 930 0.0

932.4 0.3 930 0.0

945.0 1.6 938 0.9

ft20 20x5 1165 1165.0 0.0 1165 0.0

1167.6 0.2 1165 0.0

1170.5 0.5 1165 0.0

yn01 20x20 884 885.5 0.2 884 0.0

- - - -

898.7 1.7 896 1.4

yn02 20x20 904 907.7 0.4 904 0.0

- - - -

924.3 2.2 915 1.2

yn03 20x20 892 893.8 0.2 892 0.0

- - - -

905.0 1.5 900 0.9

yn04 20x20 968 969.1 0.1 968 0.0

- - - -

988.3 2.1 984 1.7

ta01 15x15 1231 - - - -

- - - -

1251.3 1.6 1241 0.8

ta11 20x15 1357 - - - -

1370.4 1.0 1361 0.3

1398.5 3.1 1383 1.9

ta21 20x20 1642 - - - -

1652.7 0.7 1646 0.2

1679.0 2.3 1671 1.8

ta31 30x15 1764 - - - -

1775.0 0.6 1767 0.2

1767.3 0.2 1766 0.1

ta41 30x20 2005 - - - -

2035.7 1.5 2022 0.8

2081.0 3.8 2072 3.3

ta51 50x15 2760 - - - -

- - - -

2762.5 0.1 2760 0.0

ta61 50x20 2868 - - - -

- - - -

2868.0 0.0 2868 0.0

ta71 100x20 5464 - - - -

- - - -

5464.0 0.0 5464 0.0

orb01 10x10 1059 1059.0 0.0 1059 0.0

1060.0 0.1 1059 0.0

1077.8 1.8 1059 0.0

orb02 10x10 888 888.0 0.0 888 0.0

888.6 0.1 888 0.0

890.2 0.2 889 0.1

orb03 10x10 1005 1005.0 0.0 1005 0.0

1005.0 0.0 1005 0.0

1022.4 1.7 1005 0.0

orb04 10x10 1005 1005.0 0.0 1005 0.0

1005.4 0.0 1005 0.0

1013.7 0.9 1005 0.0

orb05 10x10 887 887.0 0.0 887 0.0

887.6 0.1 887 0.0

891.4 0.5 887 0.0

la01 10x5 666 666.0 0.0 666 0.0

666.0 0.0 666 0.0

666.0 0.0 666 0.0

la06 15x5 926 926.0 0.0 926 0.0

926.0 0.0 926 0.0

926.0 0.0 926 0.0

la16 10x10 945 945.0 0.0 945 0.0

945.0 0.0 945 0.0

950.2 0.6 945 0.0

la21 15x10 1046 1046.0 0.0 1046 0.0

1046.8 0.1 1046 0.0

1053.4 0.7 1046 0.0

la26 20x10 1218 1218.0 0.0 1218 0.0

1218.0 0.0 1218 0.0

1218.0 0.0 1218 0.0

ARE

0.1

0.3

1.1

 TS/PR: Tabu Search/Path Relinking

ARE: Average Relative Error
HFSAQ: Hybridization of Fast Simulated Annealing with

Quenching

Table 3 has the same content as table 1 and 2 in the first two columns; the last columns show runtimes and percentage of

improvement for the sequential and parallel algorithm with crossover and without crossover.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

14

Table 3. Runtime for AntGenSA sequential and parallel with crossover and without crossover

Instance Size

Runtime (Minutes) With

Crossover Improvement

(%)

Runtime (Minutes) Without

Crossover Improvement

(%)
Sequential Parallel

Sequential Parallel

ft06 6x6 0.11 0.09 23.93

0.13 0.11 15.53

ft10 10x10 9.28 6.79 26.81

3.02 1.72 42.83

ft20 20x5 7.72 5.87 23.96

2.11 1.97 6.67

yn01 20x20 263.10 216.59 17.68

84.48 64.79 23.31

yn02 20x20 243.25 197.25 18.91

86.23 77.58 10.03

yn03 20x20 277.70 130.09 53.15

98.04 67.57 31.07

yn04 20x20 245.86 157.23 36.05

102.01 78.90 22.65

ta01 15x15 46.47 39.27 15.50

20.05 12.54 37.44

ta11 20x15 99.80 68.27 31.60

41.87 38.39 8.32

ta21 20x20 217.19 138.52 36.22

103.05 65.00 36.92

ta31 30x15 303.43 263.74 13.08

76.61 83.75 -9.33

ta41 30x20 665.91 328.52 50.67

231.05 183.62 20.53

ta51 50x15 1027.80 653.98 36.37

247.83 141.16 43.04

ta61 50x20 2459.60 1494.90 39.22

524.71 302.46 42.36

ta71 100x20 2389.46 1263.50 47.12

1172.98 838.15 28.54

orb01 10x10 5.74 2.99 47.89

3.87 3.36 13.18

orb02 10x10 5.07 2.52 50.18

3.81 3.09 18.73

orb03 10x10 5.50 2.74 50.09

4.12 3.54 14.20

orb04 10x10 5.08 2.58 49.28

3.74 3.07 17.74

orb05 10x10 6.10 3.15 48.39

4.02 3.43 14.73

la01 10x5 0.61 0.32 47.64

0.37 0.30 17.52

la06 15x5 0.70 0.33 52.39

0.19 0.17 7.57

la16 10x10 5.07 2.54 49.81

2.87 2.67 7.05

la21 15x10 13.04 5.32 59.19

7.19 6.61 8.06

la26 20x10 28.53 10.26 64.04

11.39 10.35 9.15

The parallel version of AntGenSA without crossover obtains smaller processing time in sixteen of the twenty-five analyzed

instances; on the other hand the parallel version with crossover only achieves a smaller processing time in nine instances. For

example, notice that for the instance ta51 the runtime was reduced from 653.98 minutes in the crossover-sequential version up

to 141.16 minutes in the parallel version without crossover. In general, the AntGenSA parallel version uses less processing time

than sequential version.

Hernández-Ramírez et al. / A Hybrid Simulated Annealing for Job Shop Scheduling Problem. IJCOPI Vol.

10, No. 1, Jan-April 2019, pp. 6-15. EDITADA. ISSN: 2007-1558.

15

5 Conclusions

This paper has presented AntGenSA, a novel hybrid simulated annealing algorithm for JSSP in sequential and parallel version;

AntGenSA includes Ant Systems and Genetic Algorithms into the Simulated Annealing algorithm. The new algorithm takes

advantages of the three metaheuristics and maintains the simple structure of the classical Simulated Annealing. Furthermore, the

proposed algorithm uses three metaheuristic algorithms that had not been used for the JSSP solution.

The experimentation shows that the crossover operator implemented for the generation of new solutions uses a lot of processing

time. By omitting this operator, the execution time of the algorithm is reduced and AntGenSA obtains better results in terms of

quality; this is because the makespan improves considerably with respect to the version of the algorithm which uses this

operator. In addition, with the parallel version without the crossover operator, the runtime is reduced as well.

Finally experimental results show that the performance of parallelized AntGenSA is highly competitive with the state-of-the-art

algorithms. AntGenSA obtains an average relative error value of 1.1 % respect to the best known solution of the analyzed

instances, which are commonly used to test algorithms.

Acknowledgments

The authors would like to acknowledge to CONACYT and TECNM for their support. We acknowledge to Laboratorio Nacional

de Tecnologías de la Información del Instituto Tecnológico de Ciudad Madero for let us access the cluster. This work has been

partially supported by CONACYT Project 404048. Finally, the authors would like to thank CONACYT for all the received

support.

References

[1] X. Qiu and H. Y. K. Lau, An AIS-based hybrid algorithm for static job shop scheduling problem, J. Intell.

Manuf., vol. 25, no. 3, pp. 489–503, Jun. 2012.

[2] B. Peng, Z. Lü, and T. C. E. Cheng, A tabu search/path relinking algorithm to solve the job shop scheduling

problem, Comput. Oper. Res., vol. 53, pp. 154–164, 2015.

[3] K. Akram, K. Kamal, and A. Zeb, Fast simulated annealing hybridized with quenching for solving job shop

scheduling problem, Appl. Soft Comput. J., vol. 49, pp. 510–523, 2016.

[4] C. Fisher and G. L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules, in

Industrial Scheduling, Englewood Cliffs: Prentice-Hall, 1963, pp. 225–251.

[5] S. Lawrence, Resource constrained project scheduling–A computational comparison of heuristic scheduling

technique, Pittsburgh, Pennsylvania, 1985.

[6] D. Applegate and W. Cook, A Computational Study of the Job-Shop Scheduling Problem, ORSA J. Comput., vol.

3, no. 2, pp. 149–156, May 1991.

[7] T. Yamada, Studies on Metaheuristics for Jobshop and Flowshop Scheduling Problems, Kyoto University, 2003.

[8] J. Barnes and J. Chambers, Flexible job shop scheduling by tabu search, Austin, 1996.

[9] W. Bozejko, M. Uchronski, and M. Wodecki, Parallel hybrid metaheuristics for the flexible job shop problem,

Comput. Ind. Eng., vol. 59, no. 2, pp. 323–333, 2010.

[10] W. Bozejko, M. Uchronski, and M. Wodecki, Parallel Neuro-Tabu Search Algorithm for the Job Shop

Scheduling Problem, Springer Berlin Heidelberg, 2013, pp. 489–499.

[11] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge Ma: MIT Press, 2004.

[12] W. Bozejko, A new class of parallel scheduling algorithms. Poland: Oficyna Wydawnicza Politechniki

Wrocławskiej, 2010.

[13] S.-C. Lin, E. D. Goodman, and W. F. Punch, Investigating parallel genetic algorithms on job shop scheduling

problems, Springer Berlin Heidelberg, 1997, pp. 383–393.

[14] M. R. Garey, D. S. Johnson, and R. Sethi, The Complexity of Flowshop and Jobshop Scheduling, Math. Oper.

Res., vol. 1, no. 2, pp. 117–129, May 1976.

[15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Sci. New Ser., vol. 220,

no. 4598, pp. 671–680, 1983.

[16] V. Cerny, Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm I,

J. Optim. Theory Appl., vol. 45, no. 41–45, 1985.

[17] É. Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res., vol. 64, pp. 278–285, 1993.

