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Abstract. Corrosion causes severe damage to metal surfaces in 

various environments, creating significant economic and safety 

risks. This study introduces a methodology for developing optimal 
binary image classifiers by leveraging LibAUC, a library designed 

to maximize the AUC metric. Three advanced pretrained models, 

namely DenseNet121, ResNet50, and EfficientNetV2s, were fine-
tuned and evaluated on a corrosion image dataset. Data 

augmentation techniques were employed to enhance model 

generalization. Performance was assessed using AUC, accuracy, 
precision, recall, specificity, and F1 score. DenseNet121 achieved 

an exceptional AUC value of 0.996. More importantly, its strong 

generalization capability was confirmed by a Wilcoxon test p 
value of 0.431. This work demonstrates that the LibAUC library 

effectively improves the performance of pre-trained models for 

corrosion detection. 
Keywords: AUC, binary classification, corrosion, deep learning, 
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1 Introduction 
 

Corrosion gradually deteriorates metallic structures through chemical-physical reactions between the material and its environment  

(Soares et al., 2023). This deterioration widely impacts key sectors such as infrastructure, transportation, manufacturing, and 

energy production. According to the National Association of Corrosion Engineers (NACE), these impacts create an annual 

economic loss of $2.5 trillion (Fondevik et al., 2020). The consequences, however, extend beyond economic losses to include 

catastrophic damage to humans and the environment. Corrosion can severely weaken structures like bridges, pipelines, tanks, 

poles, towers, and machinery (Casas et al., 2024). In fact, 20% of all manufactured steel is used to replace corroded equipment, 

structures, or installations (Soares et al., 2023).  

 

Traditionally, inspectors have performed corrosion inspections manually in the field, but this approach is labor-intensive and time-

consuming. These manual techniques are often inefficient, and inspectors cannot access some locations. Now, the development 

of deep learning has revolutionized image analysis, providing unparalleled possibilities for identifying corrosion accurately and 

automatically (Suresh Kumar et al., 2023). 

 

While Convolutional Neural Networks (CNNs) excel at classifying patterns in images, most studies evaluate their performance 

using threshold-dependent metrics such as accuracy, F1-score, precision, and recall. These metrics require converting the predicted 

probabilities of a model into discrete class labels based on a fixed decision threshold, which means their values are highly sensitive 

to the specific threshold chosen. This inherent dependency represents a significant limitation for their use in robust performance 

evaluation. In contrast, the Area Under the ROC Curve (AUC) offers a threshold-independent alternative. Rather than measuring 

performance at a single arbitrary point, the AUC assesses the fundamental ability of a classifier to discriminate between classes 

across all possible decision thresholds (Fawcett, 2006).   

 

This work proposes using the LibAUC library, described in (Yuan et al., 2023). The authors report that their approach 

outperformed other similar tools in experiments involving tasks such as classifying unbalanced data, learning to rank, and 

contrastive representation learning. The decision to use LibAUC was not motivated by the dataset; the dataset is balanced. Instead, 
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the motivation was the robustness of the AUC metric itself. The AUC metric reliably evaluates the discriminatory power of a 

classifier, regardless of the decision threshold. Rather than optimizing for a different metric like accuracy or precision, the goal 

was to train models that achieve the best possible separation between two classes. This was done using a loss function that directly 

maximizes the AUC value. 

 

Applying the LibAUC library for binary corrosion classification represents a novel approach. Existing methods typically use 

generic loss functions like cross-entropy, but LibAUC uses a specialized loss function and optimizer to maximize the AUC value 

directly. Although this library has succeeded in several other tasks, researchers have not yet explored its use for fine-tuning 

pretrained models. 

 

This study simplifies the complex nature of corrosion into a binary classification problem (corrosion or no corrosion), even though 

the condition manifests in various types and degrees. This approach is practical for two main reasons. First, it serves as the initial 

step to validate the performance of the LibAUC library in this specific area. Second, early corrosion detection, a simple yes-or-no 

result, is sufficient to trigger a technical response. This work provides three main contributions. First, we apply the LibAUC 

library to the task of corrosion classification. Second, we comparatively evaluate three pretrained CNNs (DenseNet121, ResNet50, 

and EfficientNetV2s), each optimized for AUC. Finally, we analyze the performance of these models using five metrics: AUC, 

accuracy, precision, recall, and specificity. 

 

This document is structured as follows. Section 1 establishes the context and motivation for this study. Section 2 reviews related 

work in the field. Section 3 provides the necessary theoretical background. Section 4 then outlines the proposed methodology. 

The experimental setup and a discussion of the corresponding results are presented in Section 5. Finally, Section 6 concludes the 

paper by summarizing the key findings and their implications. 

 

2 Related work 
 

Corrosion inspection is an intensive and time-consuming task, often hampered by inefficient techniques and environments 

inaccessible to technicians. However, the development of deep learning has revolutionized image analysis, enabling the automatic 

and accurate identification of corrosion. Consequently, several studies have investigated the application of CNNs for image-based 

corrosion detection. This section reviews six notable examples of this approach.  

 

R. Zhao et al. (2017) employed a CNN for the binary classification of material images to detect corrosion. Their approach utilized 

transfer learning, specifically through the fine-tuning of multiple EfficientNetV2 model variants. Performance was evaluated 

based on accuracy, precision, recall, F1-score, and AUC. The top-performing configurations were the EfficientNetV2B0 and 

EfficientNetV2s models, with fine-tuning rates of 20% and 15%, respectively. These models achieved a maximum testing 

accuracy of 0.9176, an AUC of 0.97, and precision, recall, and F1-score values all exceeding 0.9. 

 

Vriesman et al. (2019) developed a Texture Convolutional Neural Network (TCNN) for the automated visual inspection of 

corrosion on thermoelectric metallic pipelines. Their experimental results demonstrated that the proposed TCNN achieved a high 

accuracy of 99.20% in classifying three distinct levels of corrosion severity: non-defective, medium, and aggravated. In a related 

study, Bastian et al. (2019) proposed a custom computer vision approach based on a CNN to detect corrosion in images of water, 

oil, and gas pipelines. Their model classifies corrosion into four severity levels (high, medium, low, or none) and achieved a 

reported accuracy of 98.8%.  

 

Holm et al. (2020) conducted a study to compare the performance of four different convolutional neural networks: AlexNet, 

GoogLeNet, ResNet-50, and VGG-16. Their goal was to find the best model for automatically classifying corrosion-related 

damage on bridge coatings from images. To measure performance, they used recall, precision, accuracy, and the F1-score. They 

reported that AlexNet achieved the highest accuracy for damage detection at 99.14%. 

 

In one study, Srivastava et al. (2021) used a deep learning UNET architecture with eight layers to analyze and classify corroded 

regions in images, achieving an accuracy rate of 96.87%. In a different approach, Nie (2023) focused on classifying six specific 

types of corrosion: Crazing, Inclusion, Patches, Pitted, Rolled-in, and Scratches. The author built a small, conventional CNN and 

compared it with five other architectures (VGG16, ResNet50, MobileNetV2, InceptionResNetV2, and Xception). The experiments 

showed that the custom CNN, InceptionResNetV2, and Xception models obtained an accuracy rate of more than 90%. 

 

In one comparative study, Tariber et al. (2023) evaluated four models for classifying submarine pipelines into three categories: 

corroded, cracked, and undamaged. The models evaluated were EfficientNetB0, MobileNetV2, ResNet50, and VGG-16. Of these, 
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VGG-16 achieved the highest accuracy at 99.04%. Finally, in the most recent study considered, Farooqui et al. (2024) proposed 

a custom convolutional neural network (CNN) for binary corrosion classification and employed two pretrained models, YOLOv8 

and EfficientNetB0. They reported that their custom CNN and EfficientNetB0 both achieved perfect scores of 100% across 

accuracy, precision, recall, and F1 metrics. In contrast, YOLOv8 achieved scores of 95% for accuracy, 100% for precision, 90% 

for recall, and 94.74% for the F1 score.  

 

Most of the reviewed studies assessed model performance using threshold-dependent metrics like accuracy, precision, recall, and 

the F1-score. Calculating these metrics requires converting the predicted probabilities of a model into discrete class labels based 

on a fixed decision threshold. As a result, the reported values can vary depending on the threshold chosen. Of the works discussed, 

only R. Zhao et al. (2017) reported AUC. This metric is threshold-independent and evaluates the fundamental power of a classifier 

to discriminate between classes.  

 

This work proposes to evaluate model performance using the AUC metric, which offers a more robust measure of the 

discriminatory power of a model. To maximize AUC values during training, we utilized the LibAUC library, which is specifically 

designed for optimizing this metric. In addition to AUC, we employed a suite of complementary threshold-dependent metrics, 

such as accuracy, precision, recall, F1 score, and specificity, to provide a comprehensive performance evaluation. 

 

3 Background 
 

This section provides the theoretical background for the key concepts and tools used in this work. It begins with an overview of 

CNNs, and the transfer learning technique used to adapt them for specialized tasks. The discussion then covers the LibAUC 

library, the specific framework employed for model optimization. Finally, the section details the metrics for performance 

evaluation, including the ROC curve, the Area Under the ROC Curve (AUC), and the confusion matrix with its derived metrics. 

 

3.1 Convolutional Neural Network 
 

Artificial Neural Networks (ANNs) are computational systems inspired by the biological structure and function of the human 

brain. These networks consist of numerous interconnected processing units, or neurons, which work in parallel to recognize 

complex patterns and relationships within data through iterative learning processes (Agatonovic-Kustrin & Beresford, 2000; 

O’Shea & Nash, 2015). A specialized and highly effective type of ANN for processing visual information is the CNN (Anzures-

Garcia et al., 2024). The standard CNN architecture is composed of a sequence of distinct layers, each performing a specific 

operation on the input data. These include convolutional layers for feature extraction, pooling layers for dimensionality reduction, 

activation functions for introducing non-linearity, and fully connected layers for final classification (Indolia et al., 2018). 

Mathematical formulations of CNN are explained in (Koushik, 2016) . The starting point is the input signal 𝑥, and the next layer 

𝑥𝑗 is computed as 

 

𝑥𝑗 = 𝜌𝑊𝑗𝑥𝑗−1   (1) 

 

In Equation (1), 𝑊𝑗 represents a linear operator, and 𝜌 is a nonlinearity. In CNNs, 𝑊𝑗 is almost always a convolution, and 𝜌 is a 

non-linear function such as max⁡(𝑥, 0) or 
1

1+𝑒𝑥𝑝−𝑥
.  To understand what 𝑊𝑗 does, we can interpret it as a set of convolutional filters. 

A convolutional layer produces filter maps, and each of these maps can be represented as a sum of convolutions of the previous 

layer, as is written in Equation (2). 

 

  𝑥𝑗(𝑢, 𝑘𝑗) = ⁡𝜌 (∑ (𝑥𝑗−1(. , 𝑘) ∗ 𝑊𝑗,𝑘𝑗
(. , 𝑘)) (𝑢)𝑘 ) 

 (2) 

 

Where ∗ represents the convolution operator: 

 

  (𝑓 ∗ 𝑔)(𝑥) = ⁡∑ 𝑓(𝑢)𝑔(𝑥 − 𝑢)∞
𝑢=⁡−∞       (3) 

3.2 Transfer learning 
 

Deep learning models, including CNNs, are typically trained using one of two primary methodologies: complete training or 

transfer learning (Das et al., 2024). Complete training involves initializing all model weights randomly and training the entire 
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architecture from scratch on a specific dataset. In contrast, transfer learning leverages the feature extraction capabilities of a model 

previously trained on a large, general-purpose dataset, such as ImageNet. This work employs a transfer learning approach, utilizing 

a technique known as fine-tuning. The fine-tuning process consists of two distinct phases. First, the feature extraction layers of 

the pretrained model are frozen, and only the classifier layers are trained on the target dataset for a set number of epochs. 

Subsequently, the feature extraction layers are unfrozen, and the entire model undergoes further training. This two-stage process 

allows the model to adapt its generalized features to the specific nuances of the new task while mitigating the risk of overfitting. 

 

Among the architectures selected for this study is DenseNet121, a member of the Densely Connected Convolutional Networks 

family introduced by Huang et al. (2016). This model, pretrained on the ImageNet dataset (Deng et al., 2009), is characterized by 

its dense connectivity pattern. Its core innovation lies in its dense blocks, where each layer receives the feature maps of all 

preceding layers as input and passes its own feature maps to all subsequent layers, as illustrated in Fig. 1. This connectivity pattern 

encourages feature reuse, reduces the vanishing gradient problem, and improves parameter efficiency. The key components of a 

dense block are described in Table 1, while the standard architecture of DenseNet121 for ImageNet multiclass classification is 

detailed in Table 2. For this investigation, the final classification layer of the DenseNet121 model was modified to perform binary 

classification. 

 

 
Fig. 1. Example of a dense block with five layers. Each layer receives information from all previous layers, as was 

explained in (Huang et al., 2016). 

 

ResNet50 is a deep convolutional architecture from the Residual Networks (ResNets) family, introduced by He et al. (2015). Its 

defining innovation is the use of Deep Residual Learning (DRL), a framework designed to overcome the vanishing gradient 

problem in very deep networks. The core principle of DRL is the use of shortcut connections, also known as skip connections, 

which bypass one or more layers of the network. These connections allow gradients to propagate more effectively during training 

and enable the network to learn identity functions with greater ease. Crucially, if a group of intermediate layers does not enhance 

network performance, the residual connection permits the input to be passed forward unchanged. This mechanism prevents 

performance degradation that often occurs with increasing network depth. Like other modern architectures, ResNet50 is pretrained 

on the ImageNet dataset. The specific configuration of the layers and residual blocks of this model is detailed in Table 3. 

 

EfficientNetV2s is a convolutional neural network model belonging to the EfficientNetV2 family. It was specifically designed to 

be smaller in size and faster in operation compared to earlier models in the EfficientNet lineage. This model family employs a 

combination of neural architecture search and scaling techniques to achieve an optimal balance between accuracy, training speed, 

and parameter efficiency (Tan & Le, 2021). A distinguishing characteristic of EfficientNetV2s is its implementation of both 

MBConv and Fused MBConv blocks, with emphasis on the latter in initial layers to enhance computational efficiency during 

training. Fig. 2 provides a visual representation of these architectural components. Like the previously discussed architectures, 

EfficientNetV2s was pretrained using the ImageNet dataset. 

 

3.3 LibAUC library 
 

The LibAUC library implements algorithms from scientific literature that are designed to optimize a family of statistical 

risk functions known as X risks. The Area Under the ROC Curve, or AUC, is a member of this X risks function family, 

(Yuan et al., 2023). The specific loss function implemented in LibAUC is based on a mathematical formulation 

introduced by Yuan et al. (2020). This formulation is called the AUCM loss. The library optimizes this loss function 

using a specialized technique known as the Proximal Epoch Stochastic Gradient, or PESG, method. We now provide a 

detailed description of both the AUCM loss function and its corresponding PESG optimizer. 

 

Loss function. LibAUC implements a function that directly optimizes AUC. This metric is widely used to evaluate classifier 

performance, especially for imbalanced datasets standard in fields like medicine, where negative samples often outnumber positive 

ones. To achieve this optimization, Yuan et al. formulated a specialized loss function, which they referred to as the AUC margin 

loss (4). For a detailed explanation of this loss formulation, readers can refer to section 3.3 of the paper by Yuan et al. (2020). 
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Yuan et al. showed that the above objective corresponds to the min-max objective. 

 

Theorem 1 Minimizing the AUC margin loss (1) is equivalent to the following min-max optimization (5):  

 
Table 1. Description of the elements in a dense block 

Element Description 

 Input layer 

  4 layers for feature extraction  

 Transition layer 

 
Table 2. DenseNet121 architecture for the dataset Multiclass ImageNet (Huang et al., 2016) 

Block Details 

Input Block 7×7 Conv, Stride 2 

3×3 Max Pooling, Stride 2 

Dense Block 1 6 densely connected layers  

Each layer: 1×1 Conv → 3×3 Conv 

Transition Layer 1 1×1 Conv 

2×2 Avg Pooling, Stride 2 

Dense Block 2 12 densely connected layers 

Each layer: 1×1 Conv → 3×3 Conv 

Transition Layer 2 1×1 Conv  

2×2 Avg Pooling, Stride 2 

Dense Block 3 24 densely connected layers 

Each layer: 1×1 Conv → 3×3 Conv 

Transition Layer 3 1×1 Conv 

2×2 Avg Pooling, Stride 2 

Dense Block 4 16 densely connected layers 

Each layer: 1×1 Conv → 3×3 Conv 

Classification Layer 7 × 7 global average pool 

1000D fully connected, sigmoid 

 
Table 3. Architecture of ResNet50 (He et al., 2015) 

Layer Name Output Size ResNet50 Configuration 

conv1 112 × 112 7 × 7, 64, stride 2 

conv2_x 56 × 56 [
1 × 1, 64
3 × 3, 64
1 × 1, 256

] × 3 

conv3_x 28 × 28 [
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

conv4_x 14 × 14 [
1 × 1, 256
3 × 3, 256
1 × 1, 1024

] × 6 

conv5_x 7 × 7 [
1 × 1, 512
3 × 3, 512
1 × 1, 2048

] × 3 

FLOPs  3.8 × 10^9 

 

 

𝐴𝑀(w) = 𝐴1(w) +⁡𝐴2(w) + max
𝛼≥0

2𝛼(𝑚 − 𝑎(w) + 𝑏(w)) − 𝛼2⁡. (4) 
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Where: 

ℎ𝐰(𝐱) is the prediction scoring function, e.g., deep neural network 

𝑝   is the ratio of positive samples to all samples 

𝑎 is a statistic of positive predictions 

𝑏  is a statistic of negative predictions 

𝛼 is an auxiliary variable 

𝑚 is a margin term that defines the desirable separation between classes 

 

Optimizer. To optimize AUCM loss Yuan et al., employed the proximal epoch stochastic method (PESG). The algorithm of the 

PESG optimizer, which is also described in (Yuan et al., 2020) and the main steps are presented in Algorithm 1. As explained in 

their work, the algorithm utilizes several key parameters:  λ represents a standard regularization parameter, often referred to as 

weight decay; γ > 0 is a positive parameter included to enhance model generalization; and η denotes the learning rate. 

 

Hyperparameters. The hyperparameters for the loss function are:  

p = (positive samples in train dataset) / (all samples in train dataset) 

And  

m with a value of 1.0 

The hyperparameters and their values for the optimizer were: 

η= 0.1 

λ = 1e-4 

 
Algorithm 1. PESG for optimizing the AUC margin loss 

Inputs: 𝜼, 𝜸, 𝝀, 𝑻 

1: Initialize 𝐯𝟏, 𝜶𝟏 ≥ 𝟎  

2: for 𝒕 = 𝟏,…, do 

3:     Compute 𝛁𝐯𝑭𝐌(𝐯𝐭, 𝜶𝒕; 𝐳𝒕)⁡𝐚𝐧𝐝⁡𝛁𝜶𝑭𝐌(𝐯𝐭, 𝜶𝒕; 𝐳𝒕). 
4:     Update primal variables 

𝐯𝒕+𝟏 = 𝐯𝒕 − 𝜼(𝛁𝐯𝑭𝐌(𝐯𝐭, 𝜶𝒕; 𝐳𝒕) + ⁡𝜸(𝐯𝒕 − 𝐯𝒓𝒆𝒇)) − 𝝀𝜼𝐯𝒕 

 

5: Update 𝜶𝒕+𝟏 =⁡ [𝜶𝒕 + ⁡𝜼𝛁𝜶𝑭𝐌(𝐯𝐭, 𝜶𝒕; 𝐳𝒕)]+. 

6: Decrease ⁡𝜼 by a factor and update 𝐯𝒓𝒆𝒇 periodically 
7: end for  

 

3.4 ROC curve 
 

The ROC curve is a graph that illustrates the performance of a diagnostic test. The Receiver Operating Characteristic (ROC) 

concept was initially developed during the Second World War to evaluate the ability of radar operators to distinguish real objects 

from noise on their screens (Fan et al., 2006). An ROC curve is created by plotting the true positive rate (sensitivity) on the vertical 

axis against the false positive rate (1 minus specificity) on the horizontal axis. Fig. 3 shows three examples of ROC curves. 

 

3.5 Area under ROC curve  
 

The Area Under the ROC Curve (AUC) is a widely used metric that measures the discriminatory power of a test (Fan et al., 2006). 

While common in the medical field, it is also used to evaluate the performance of classification models in engineering (Namdar 

et al., 2021). The AUC value ranges from 0 to 1. An ideal test, which correctly classifies all positive and negative samples, achieves 

a perfect score of 1.0. A score of 0.5 indicates the test has no discriminatory power, which is equivalent to random guessing. 

Therefore, any useful classifier must have an AUC greater than 0.5 (Majnik & Bosnić, 2013).   

min
w∈ℝ𝑑

(𝑎,𝑏)ℝ2

max𝔼z
𝛼≥0

[𝐹𝑀(𝐰, 𝑎, 𝑏, 𝛼; 𝐳)], 𝑤ℎ𝑒𝑟𝑒⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (5) 

𝐹𝑀(𝐰, 𝑎, 𝑏, 𝛼; 𝐳) = (1 − 𝑝)(ℎ𝒘(𝐱) − 𝑎)2𝕀[𝑦=1] 

  (6) 
+⁡𝑝(ℎ𝐰(𝐱) − 𝑏)2𝕀[𝑦=−1] − 𝑝(1 − 𝑝)𝛼2 

+2𝛼⁡(𝑝(1 − 𝑝)𝑚 + 𝑝ℎ𝐰(𝐱)𝕀[𝑦=−1] − (1 − 𝑝)ℎ𝐰(𝐱)𝕀[𝑦=1])⁡. 
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Fig. 2. Structure of MBConv and Fused-MBConv (Tan & Le, 2021). 

 

3.6 Confusion matrix 
 

According to Majnik and Bosnić (2013), a binary classifier must determine whether a target belongs to one of two possible classes. 

This work, for example, aims to determine if a metal structure has corrosion based on a set of images. The classification process 

yields four possible outcomes. A true positive (TP) occurs when an image of a corroded structure is correctly classified as 

corroded. A false negative (FN) occurs when an image of a corroded structure is incorrectly classified as not corroded. A true 

negative (TN) occurs when an image of an uncorroded structure is correctly classified as not corroded. A false positive (FP) occurs 

when an image of an uncorroded structure is incorrectly classified as corroded. 

 

In this context, it is essential to note that the term positive refers to the class of interest, which is corrosion. Conversely, negative 

refers to the absence of that condition, such as no corrosion. The terms; true and false describe correct and incorrect classifications, 

respectively. As Majnik & Bosnić indicated, these four outcomes can be represented in a matrix known as a confusion matrix, 

which is illustrated in Fig. 4. 

 

 
Fig. 3. Three examples of ROC curves. The green curve illustrates a perfect classifier, the purple curve represents a 

classifier with a high classification power, and the straight black line corresponds to a classifier with a random 

classification power. 

4 Proposed methodology 
 

This work proposes a methodology for classifying images of corroded surfaces using three pre-trained Convolutional Neural 

Network (CNN) models: DenseNet121, ResNet50, and EfficientNetV2s. To develop this methodology, we adapted an example 

from the LibAUC library that was designed initially for classifying skin cancer (melanoma) (Yuan, n.d.). The pre-trained network 

used in that example was DenseNet121. 
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Fig. 4. Graphical representation of the confusion matrix. 

 

For this study, we used a dataset obtained from GitHub (Sun, n.d.) this dataset has also been used in similar studies (Farooqui et 

al., 2024; Z. Zhao et al., 2024). Unlike the dataset used in the original melanoma classification study (Yuan et al., 2020), the 

dataset used is balanced, containing 990 images of corroded surfaces (positive samples) and 829 images of non-corroded surfaces 

(negative samples). We chose the LibAUC library because it is designed to maximize the Area Under the Curve (AUC). The AUC 

is a helpful metric for evaluating classifier performance (Calders & Jaroszewicz, n.d.; Hoo et al., 2017; Namdar et al., 2021). The 

overall methodology is represented graphically in Fig. 5. 

  

 
Fig. 5. Workflow for fine-tuning pre-trained CNNs using LibAUC for binary corrosion classification. 

 

4.1 Pre-trained models 
 

To leverage the powerful feature extraction capabilities learned from the ImageNet dataset, we employed a transfer learning 

approach. We fine-tuned three widely recognized pre-trained models for the specific task of corrosion detection: DenseNet121, 

ResNet50, and EfficientNetV2s. This selection was motivated by their proven efficacy and frequent application in related 

computer vision research, particularly in domains involving material surface analysis and defect detection. 

 

4.2 Raw data 
 

Composition. The dataset for this study comprises 1,819 images depicting various metal structures, including ships, bridges, cars, 

pipes, and tanks. Within this collection, 990 images present instances of corrosion, while the remaining 829 images show structures 

without corrosion. All images possess different dimensions. Representative examples from the dataset include five randomly 

selected images of corroded structures, shown Fig. 6Error! Reference source not found., and a corresponding set of non-corroded 

structures, displayed in Fig. 7  

 

Dataset split. The complete dataset was systematically divided into three separate subsets to support the distinct phases of the 

machine learning workflow. A total of 70% of the images formed the training set, which serves as the primary data for the model 

to learn feature representations. To enhance the model ability to generalize and to increase the diversity of the training examples 

artificially, data augmentation techniques were applied exclusively to this subset. Another 20% of the data was allocated to the 

validation set. This set is essential for model selection and hyperparameter tuning, as performance is evaluated on it after each 

training epoch using the Area Under the Curve (AUC) metric. The remaining 10% of the images constituted the test set. This 

subset is withheld entirely until the final stage of the process, providing a rigorous and unbiased assessment of the model 

performance on completely unseen data.  

 

Data preprocessing. A critical consideration for this study is that the available volume of data is insufficient for robust model 

training. Training on a limited dataset can produce a model that fails to generalize effectively, a phenomenon known as overfitting.   
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Fig. 6. Five random images of corroded structures from the dataset used to train the model. 

 

 
Fig. 7. Five random images of no corroded structures from the dataset used to train the model. 

. 

An overfitted model typically demonstrates strong performance on the validation data but performs poorly on new, unseen data. 

This performance degradation is most evident when the model is evaluated on the test set, which consists of data withheld from 

both the training and validation phases. 

 

To mitigate the risk of overfitting, data augmentation techniques were applied exclusively to the images within the training set. 

This process artificially expands the dataset by generating new, modified versions of the original images through various 

transformations. These transformations included adjustments to brightness, the application of blur, random cropping, and rotation. 

By exposing the model to these varied conditions, augmentation encourages the learning of more generalizable features. For this 

task, the open-source Python library Albumentations (Albumentations, n.d.) was employed to implement these transformations. 

Fig. 8 demonstrates the effect of this technique, showing six augmented variations derived from a single image randomly selected 

from the training dataset.  

 

4.3 LibAuc library 
 

The decision to employ the LibAUC library was motivated by its unique optimization objective. Unlike standard approaches that 

maximize common metrics like accuracy or the F1-score, LibAUC is specifically designed to optimize the AUC metric directly. 

As detailed in Section 3.5, the AUC metric measures the inherent discrimination power of a classifier, representing its ability to 

rank positive instances higher than negative ones. To accomplish this direct optimization, the library implements a loss function 

known as AUCM, which is minimized during training using a stochastic gradient descent variant called the PESG optimizer. This 

specific combination of loss function and optimizer was integrated into the training stage for all CNN models in this study. 

 

 
Fig. 8. Augmentations applied to a random image from the training dataset. 
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4.4 Training 
 

The training procedure was designed to ensure both computational efficiency and statistical robustness. To achieve this, ten 

independent training runs were executed for each model architecture. This approach provides a sufficient basis for statistical 

comparison while effectively managing computational time. The resulting set of ten trained models per architecture generates a 

distribution of performance metrics, which allows for a rigorous comparison of AUC values from the validation and test sets using 

non-parametric statistical tests, such as the Wilcoxon signed-rank test. 

 

Each run was set for a maximum of fifty epochs. This limit was not always reached, as an early stopping callback was employed 

to automatically terminate training if the validation AUC failed to improve over several consecutive epochs. This technique serves 

two primary purposes: it prevents the model from overfitting the training data, and it optimizes computational resources by 

concluding the process once peak performance is achieved, often before the fiftieth epoch. 

 

Fine-tuning models. A fine-tuning technique was applied to the models. The feature extraction layers were frozen for the first 

ten epochs. This freezing allowed only the classifier layers to adapt to the specific task. After this period, these layers were 

unfrozen. The entire model then underwent the complete training process. These sequential steps comprise the standard fine-

tuning technique.  

 

Early Stop. A mechanism known as early stop was applied to the training process. This technique halts training if a monitored 

metric fails to improve after a set number of epochs. The specific metric monitored for this purpose was AUC. Implementation of 

this mechanism commenced after the initial ten epochs. The use of early stopping serves to prevent overfitting. 

 

Store Best Models. The best performing model from each of the ten independent training runs was stored during the validation 

stage. Model selection was based on the highest AUC score achieved on the validation set. This procedure resulted in ten optimal 

models for each architecture. These stored models will undergo final evaluation using test data. 

 

4.5 Evaluation of the models 
 

Each of the ten models per architecture was evaluated using the images from the test set. The performance metrics obtained from 

this final evaluation were then compared to the results previously achieved on the validation set. AUC served as the primary metric 

for this comparison. Additional support metrics provided further performance context; these metrics included accuracy, precision, 

recall, F1-score, and specificity.   

 

5 Experiment and results 
 

Experiments were conducted using a Jupyter Notebook on Kaggle.com, and the system specifications are listed in Table 4Table 4. 

The data employed to train the model was described in Subsection 4.2. The primary metric considered was AUC, the most accurate 

technique to compute AUC is trapezoidal integration (Namdar et al., 2021). Other metrics to measure the model performance are 

widely used in machine learning and are derived from the terms of the confusion matrix, as seen in Subsection 3.6. They are 

defined from (7) to (11). Table 5 summarizes the interpretation of each of these metrics. 

  
Table 4. Specifications of the Notebook where the experiments of this work were carried out 

Component Specification 

CPU Intel(R) Xeon(R) CPU @ 2.00GHz 

CPU Speed 2000.162 MHz 

CPU Cores 2 

Operating System Linux f2257cf573ca 6.6.56+ x86_64 

GPUs 2 GPU Tesla T4 @ 15360 MiB 

CUDA Version 12.6 

Python Version 3.10.12 

LibAUC Version 1.3.0 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(7) 
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Table 5. Interpretation of the performance metrics for the model in the binary classification of corrosion 

Expression  Interpretation 

Accuracy  A high value means that the model classifies images correctly, either with or without 

corrosion. 

Precision A high value indicates that the model is correctly classifying most images of corroded 

surfaces, thereby avoiding the incorrect classification of images with no corroded surfaces as 

corroded. 

Recall A high value indicates that the model is correctly classifying most images of corroded 

surfaces, thereby avoiding the incorrect classification of images with corroded surfaces as non-

corroded. 

Specificity A high value indicates that the model accurately classifies most images of non-corroded 

surfaces, avoiding the misclassification of images with non-corroded surfaces as corroded. 

F1 score A high value means that the model has an equilibrium between precision and recall. 

 

5.1 Experiment  
 

Each of the three models (DenseNet121, ResNet50, and EfficientNetV2s) was trained ten times. Each training run consisted of a 

50 epoch process that involved two stages: training and validation. In the training stage, batches of augmented images were fed 

to the CNN. The AUCM loss function computed the difference between the model predictions and the actual classes. 

Backpropagation then calculated the loss gradient, which the PESG optimizer used to update the network weights. In the validation 

stage, the model made predictions on a non-augmented validation dataset. The Area Under the Curve (AUC) score was then 

computed from these predictions, and the version of the model that achieved the highest AUC score was saved. 

 

For the first ten epochs of each run, the feature extraction layers were frozen and then unfrozen for the remaining epochs. During 

this second phase, an early stopping mechanism was also applied, which halts the training if the AUC score fails to improve after 

a specified number of epochs. This process yielded ten optimized binary classification models for each of the three architectures. 

Finally, each group of trained models was evaluated with the test data. Metrics were computed by applying a threshold of t = 0.5 

to the output probability of the model. As shown in expression (12), this threshold classified an image as either having corrosion 

(label 1) or not having corrosion (label 0).  

   

 

Where 𝑦̂ represents the model prediction. 

 

5.2 Results and discussion  
 

This section presents the results from the evaluation of three distinct CNN architectures for binary corrosion classification: 

DenseNet121, ResNet50, and EfficientNetV2s. Table 6, Table 7, and Table 8 detail the performance of each of the ten trained models 

per architecture across both the validation and test datasets. The performance metrics for all ten models from each architecture are 

detailed in their respective tables. Table 6 provides a complete summary of the results for the DenseNet121 models. Table 7 and 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
𝑇𝑃

𝑇𝑃⁡ + ⁡𝐹𝑃
 

 

(8) 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙⁡(𝑇𝑃𝑅) = ⁡
𝑇𝑃

𝑇𝑃⁡ + ⁡𝐹𝑁
 

 

(9) 

 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ⁡
𝑇𝑁

𝑇𝑁⁡ + ⁡𝐹𝑃
 

 

(10) 

 

 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒𝑠 = 2⁡ × ⁡
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡ + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(11) 

𝑦̂ = ⁡ {
1, 𝑖𝑓⁡𝑃(𝑦 = 1|𝑥) ≥ 𝑡

0, 𝑖𝑓⁡𝑃(𝑦 = 1|𝑥) < 𝑡
⁡. 

(12) 
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Table 8 present the corresponding data for the ResNet50 and EfficientNetV2s models, respectively. Each table displays the 

following metrics for every individual model (labeled 1 through 10) on both the validation (Val) and test (Test) datasets: AUC, 

Accuracy, Precision, Recall, F1-score, and Specificity. 

 

This detailed presentation of the data allows for a thorough assessment of the performance and generalization capabilities of each 

model. These results, in turn, provide the basis for a robust comparative analysis across the three architectures. Within the results 

for each architecture, bolded values identify the best-performing model. This designation is given to the model that achieved the 

highest AUC score on the test dataset, the primary metric used for comparison 

 
Table 6. Performance metrics results for DenseNet121 models on validation and test data 

Model 
AUC Accuracy Precision Recall F1_score Specificity 

Val Test Val Test Val Test Val Test Val Test Val Test 

1 0.993 0.994 0.960 0.978 0.982 0.979 0.944 0.979 0.962 0.979 0.979 0.975 

2 0.992 0.993 0.942 0.945 0.993 0.968 0.899 0.929 0.944 0.948 0.993 0.963 

3 0.995 0.996 0.972 0.961 0.988 0.979 0.960 0.949 0.974 0.964 0.986 0.975 

4 0.995 0.993 0.960 0.972 0.966 0.970 0.960 0.979 0.963 0.974 0.959 0.963 

5 0.993 0.992 0.972 0.956 0.994 0.969 0.955 0.949 0.974 0.959 0.993 0.963 

6 0.994 0.991 0.969 0.956 0.994 0.978 0.949 0.939 0.971 0.958 0.993 0.975 

7 0.995 0.993 0.966 0.972 0.988 0.970 0.949 0.979 0.968 0.974 0.986 0.963 

8 0.996 0.995 0.975 0.978 0.983 0.970 0.972 0.989 0.977 0.980 0.979 0.963 

9 0.994 0.994 0.957 0.972 0.982 0.979 0.938 0.969 0.960 0.974 0.979 0.975 

10 0.993 0.995 0.957 0.956 0.994 0.978 0.927 0.939 0.959 0.958 0.993 0.975 

 
Table 7. Performance metrics results for ResNet50 models on validation and test data 

Model 
AUC Accuracy Precision Recall F1_score Specificity 

Val Test Val Test Val Test Val Test Val Test Val Test 

1 0.993 0.996 0.972 0.956 0.967 0.950 0.983 0.969 0.975 0.960 0.959 0.939 

2 0.991 0.992 0.951 0.950 0.993 0.968 0.916 0.939 0.953 0.953 0.993 0.963 

3 0.993 0.989 0.960 0.961 0.994 0.969 0.932 0.959 0.962 0.964 0.993 0.963 

4 0.996 0.989 0.978 0.967 0.988 0.969 0.972 0.969 0.980 0.969 0.986 0.963 

5 0.993 0.991 0.966 0.950 0.988 0.959 0.949 0.949 0.968 0.954 0.986 0.951 

6 0.992 0.991 0.972 0.967 0.994 0.969 0.955 0.969 0.974 0.969 0.993 0.963 

7 0.993 0.986 0.957 0.945 0.976 0.949 0.944 0.949 0.960 0.949 0.973 0.939 

8 0.991 0.988 0.966 0.945 0.994 0.958 0.944 0.939 0.968 0.948 0.993 0.951 

9 0.994 0.991 0.972 0.956 0.977 0.959 0.972 0.959 0.974 0.959 0.973 0.951 

10 0.996 0.988 0.975 0.961 0.977 0.960 0.977 0.969 0.977 0.964 0.973 0.951 

 

Fig. 9 displays box plots of the AUC scores for the ten models trained for each architecture: DenseNet121, ResNet50, and 

EfficientNetV2s. The plots show the score distributions on both the validation (blue) and test (red) datasets. The results indicate 

that the EfficientNetV2s model achieved the highest performance, with median AUC values of approximately 0.997 on the 

validation dataset and 0.993 on the test dataset. In comparison, the DenseNet121 model shows consistent performance, with a 

median AUC score of approximately 0.994 across both datasets.  

 

The ResNet50 model exhibits the most variability, particularly on the test dataset, showing lower median AUC values and a wider 

distribution range. To assess the generalization capacity of each architecture, a Wilcoxon signed-rank test was performed on the 

paired AUC values from the validation and test sets. The significance level (α) was set to 0.05. For each architecture, the null 

hypothesis (H0) stated that there is no significant difference between the median AUC scores of the validation and test sets.  

 

DenseNet121 

H0: There is no statistically significant difference in AUC between validation data and test data across the DenseNet121 models.  

 

ResNet50 

H0: There is no statistically significant difference in AUC between validation data and test data across the ResNet50 models.  

 

EfficieNetV2s 

H0: There is no statistically significant difference in AUC between validation data and test data across the EfficieNetV2s models.  
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Table 8. Performance metrics results for EfficieNetV2s models on validation and test data 

Model 
AUC Accuracy Precision Recall F1_score Specificity 

Val Test Val Test Val Test Val Test Val Test Val Test 

1 0.998 0.993 0.972 0.945 0.988 0.968 0.960 0.929 0.974 0.948 0.986 0.963 

2 0.996 0.990 0.972 0.928 0.994 0.947 0.955 0.919 0.974 0.933 0.993 0.939 

3 0.998 0.993 0.978 0.967 1.000 0.989 0.960 0.949 0.980 0.969 1.000 0.987 

4 0.998 0.995 0.966 0.967 0.982 0.989 0.955 0.949 0.968 0.969 0.979 0.987 

5 0.996 0.994 0.966 0.950 0.988 0.978 0.949 0.929 0.968 0.953 0.986 0.975 

6 0.995 0.989 0.972 0.923 0.994 0.929 0.955 0.929 0.974 0.929 0.993 0.915 

7 0.998 0.991 0.975 0.945 1.000 0.968 0.955 0.929 0.977 0.948 1.000 0.963 

8 0.997 0.994 0.963 0.950 0.988 0.978 0.944 0.929 0.965 0.953 0.986 0.975 

9 0.998 0.993 0.966 0.956 0.994 0.989 0.944 0.929 0.968 0.958 0.993 0.987 

10 0.997 0.991 0.972 0.950 0.982 0.950 0.966 0.959 0.974 0.954 0.979 0.939 

 

H0 is rejected if the p-value <⁡𝛼 and accepted if the p-value > 𝛼. 

 

 
Fig. 9. AUC score distributions for the three CNN architectures on validation (blue) and test (red) datasets. Results from 

the evaluation of ten models per architecture. 

 

The performance metric statistics for all thirty models that completed the fine-tuning process are consolidated in Table 9 and 

Error! Reference source not found.. These tables provide a comprehensive overview of model effectiveness. Table 9 presents 

statistical summaries for AUC, Accuracy, and Precision. Error! Reference source not found. provides the same statistical 

measures for Recall, F1 score, and Specificity. For each metric, the calculated statistics include the average value (AVG), standard 

deviation (SD), minimum value (MIN), and maximum value (MAX). 

 

The Wilcoxon signed-rank test showed different generalization capabilities among the architectures. The null hypothesis (H0) 

was rejected for two of the models: ResNet50, with a p-value of 0.031, and EfficientNetV2s, with a p-value of 0.004. This outcome 

suggests that these two architectures do not generalize well to unseen data. In contrast, the null hypothesis was not rejected for 

the DenseNet121 architecture (p-value = 0.431). This result indicates that the model generalizes effectively, as its performance 

did not significantly differ between the validation and test datasets.  

 

 

Table 11 presents a comparison of the AUC performance of the individual architectures when evaluated on validation data and 

test data. The numbers in bold represent the average ± standard deviation of the AUC corresponding to DenseNet121 when 

evaluated with test data; this result indicates that this architecture exhibits the best stability and yields the highest AUC values on 

average. 
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Figures Fig. 10 and Fig. 11 present the confusion matrix and ROC curves, respectively, for the models with the best performance 

from each architecture, specifically those with the highest AUC scores. Table 12 identifies the corresponding models for these 

architectures, showing the key metrics. 
Table 9. Summary statistics of AUC, accuracy, and precision for Fine-Tuned DenseNet121, ResNet50, and 

EfficientNetV2s models 

Architecture Statics AUC Accuracy Precision 

Val Test Val Test Val Test 

DenseNet121 

AVG 0.994 0.993 0.963 0.964 0.986 0.974 

SD 0.001 0.001 0.010 0.011 0.008 0.004 

MIN 0.992 0.991 0.942 0.945 0.966 0.968 

MAX 0.996 0.996 0.975 0.978 0.994 0.979 

ResNet50 

AVG 0.993 0.990 0.966 0.955 0.984 0.961 

SD 0.001 0.002 0.008 0.008 0.009 0.007 

MIN 0.991 0.986 0.951 0.945 0.967 0.949 

MAX 0.996 0.996 0.978 0.967 0.994 0.969 

 

EfficientNetV2s  

AVG 0.997 0.992 0.970 0.948 0.991 0.968 

SD 0.001 0.001 0.004 0.014 0.006 0.020 

MIN 0.995 0.989 0.963 0.923 0.982 0.929 

MAX 0.998 0.995 0.978 0.967 1.000 0.989 

 
Table 10 Summary statistics of recall, F1-score, and specificity for Fine-Tuned DenseNet121, ResNet50, and 

EfficientNetV2s models 

Architecture Statics AUC Accuracy Precision 

Val Test Val Test Val Test 

DenseNet121 

AVG 0.945 0.960 0.965 0.966 0.984 0.969 

SD 0.020 0.021 0.009 0.010 0.010 0.006 

MIN 0.899 0.929 0.944 0.948 0.959 0.963 

MAX 0.972 0.989 0.977 0.980 0.993 0.975 

ResNet50 

AVG 0.954 0.957 0.969 0.958 0.982 0.953 

SD 0.021 0.012 0.008 0.007 0.011 0.009 

MIN 0.916 0.939 0.953 0.948 0.959 0.939 

MAX 0.983 0.969 0.980 0.969 0.993 0.963 

 

EfficientNetV2s  

AVG 0.954 0.935 0.972 0.951 0.989 0.963 

SD 0.007 0.012 0.004 0.013 0.007 0.024 

MIN 0.944 0.919 0.965 0.929 0.979 0.915 

MAX 0.966 0.959 0.980 0.969 1.000 0.987 

 
Table 11. AUC performance of individual architecture evaluated on validation and test data 

Architecture 
Validation Test 

AUC (AVG ± SD) MIN MAX AUC (AVG ± SD) MIN MAX 

DenseNet121 0.994 ± 0.001 0.992 0.996 0.993 ± 0.001 0.991 0.996 

ResNet50 0.993 ± 0.001 0.991 0.996 0.990 ± 0.002 0.986 0.996 

EfficientNetV2s 0.997 ± 0.001 0.995 0.998 0.992 ± 0.001 0.989 0.995 

 

The confusion matrix and ROC curves of the best models, along with the data in Table 6, Table 7, Table 8, Table 9 and Table 10, 

provide evidence that all architectures (DenseNet121, ResNet50, EfficientNetV2s) have excellent performance for the binary 

classification of corrosion. On the test data, the architectures achieved high AUC values averaging 0.993, 0.994, and 0.997, 

respectively. This performance underscores their considerable potential for corrosion detection, a critical task in predictive 

maintenance and industrial safety. These results suggest the models are highly effective at classification when optimized with 

LibAUC. 

 

Although high AUC values above 0.99 for all architectures suggest excellent performance, an analysis of generalization capacity 

reveals a critical difference. The p-values from our hypothesis test show this disparity. Only DenseNet121 demonstrated robust 

generalization, indicated by a p value of 0.431 that permitted us to accept the null hypothesis. DenseNet121, therefore, emerges 

as the optimal choice. 
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In contrast, ResNet50 (p = 0.031) and EfficientNetV2s (p = 0.004) both rejected the null hypothesis, which indicates their ability 

to generalize is less robust. This weakness was particularly evident in EfficientNetV2s. The robust generalization of DenseNet121 

stems from its use of LibAUC, highlighting the potential of directly optimizing the AUC metric. This approach is powerful for 

binary classification tasks like corrosion detection, which require a classifier with high discriminatory power, a quality the AUC 

metric directly represents. 

 

 
(a) 

 
                       (b) 

 
                           (c) 

Fig. 10. Confusion matrix of the models with the maximum AUC value for each architecture (a) DenseNet121, (b) 

ResNet50, and (c) EfficienNetV2s. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Roc Curve of the models with the maximum AUC value for each architecture (a) DenseNet121, (b) ResNet50, 

and (c) EfficienNetV2S. 

 
Table 12. Metrics of evaluation for the best models according to the maximum value of AUC on test data taken from 

Table 6, Table 7 and Table 8. Numbers in bold represent the best value for each metric 

Model AUC Accuracy Precision Recall F1_score Specificity 

(3) DenseNet121 0.996 0.961 0.979 0.949 0.964 0.975 

(1) ResNet50 0.996 0.956 0.950 0.969 0.960 0.939 

(4) EfficieNetV2s 0.995 0.967 0.989 0.949 0.969 0.987 

  

5.3 Comparison with two state-of-the-art research studies 

 
We compared our results with two state-of-the-art studies to contextualize the performance of our model. This comparison 

highlights explicitly the AUC scores because they represent the discriminatory power of a classifier. Table 13 presents the 

complete data from this analysis, allowing for a direct evaluation against the other works. 
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Table 13. Comparison of the results of the metrics of the best model obtained related to AUC, with the results reported in 

two state-of-the-art studies. Values in bold letters represent the best values 

Research Model AUC Accuracy Precision Recall F1-score Specificity 

(Z. Zhao et al., 2024) EfficientNetV2 0.97 0.9176 0.9146 0.9036 0.9091 NR 

(Farooqui et al., 2024) CNN from scratch NR 1.0 1.0 1.0 1.0 NR 

This work LibAUC-DenseNet121 0.996 0.961 0.979 0.949 0.964 0.975 

NR = No reported. 

 

6 Conclusions 
 

This study examined three deep learning architectures (DenseNet121, ResNet50, and EfficientNetV2s) for binary corrosion 

classification, using the LibAUC library to optimize the AUC metric directly. All architectures initially proved effective, achieving 

high AUC values that confirmed their strong potential for corrosion detection. However, a rigorous generalization analysis using 

a hypothesis test revealed a critical difference in their robustness. Only DenseNet121 demonstrated superior generalization, as its 

ability to maintain high performance on unseen data led to the acceptance of the null hypothesis. This result establishes it as the 

best option for this classification task. In contrast, despite their high initial AUC values, ResNet50 and EfficientNetV2s showed 

significant limitations, suggesting a high risk of overfitting. 

 

In summary, this study validates the efficacy of CNNs with direct AUC optimization for binary corrosion classification and 

emphasizes that generalization analysis is essential for model selection. The findings identify DenseNet121 as the most robust 

candidate for this task. Future work will focus on validating this model with more diverse, real-world datasets and exploring 

techniques to enhance its superior generalization capabilities further.  

 

Finally, we compared our results with those of two related studies (Farooqui et al., 2024; Z. Zhao et al., 2024). The study by 

Farooqui et al., reported perfect scores (100%) for accuracy, precision, recall, and F1 score, but omitted AUC and specificity 

metrics. Such perfect scores can suggest potential overfitting or limited dataset diversity, issues our study mitigated with fine-

tuning and early stopping techniques. Our DenseNet121-LibAUC model outperformed the EfficientNetV2 model from Z. Zhao 

et al., across all key metrics. Specifically, our model achieved a 2.68% improvement in AUC (0.996 vs. 0.97) and a notable 

increase in accuracy (0.961 vs. 0.9176). 
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