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Abstract. Every year, 17.9 million people die from heart-failure–

related conditions, making it the leading cause of mortality 
worldwide; early diagnosis could prevent many deaths. The most 

common way to detect cardiac abnormalities is through medical 

auscultation. Accurate diagnosis often depends on clinicians’ 
auscultation skills; however, they frequently have to listen in noisy 

environments. We propose a method for the automatic diagnosis 

of cardiovascular disease that is robust to noise. We extract 
entropy spectrograms from phonocardiograms to reliably convert 

audio signals into images, and then use a two-dimensional 

convolutional neural network (2D-CNN) to classify patients as 
healthy or unhealthy. To evaluate the method, we added white 

noise to the original recordings. The results show that entropy 

spectrograms are more robust than conventional feature-extraction 
techniques such as energy spectrograms or mel-frequency 

spectrograms. 
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1 Introduction 
 

Cardiovascular Diseases (CVD) are among the leading causes of mortality, according to the World Health Organization 

(WHO). Most CVDs are treatable when detected at early stages. The diagnosis normally relies on the physician’s ability to hear 

as well as his/her training on distinguishing subtle differences in pitch and duration of heart sounds (HS). These sounds result 

from disturbances in blood flow and vibrations of cardiovascular structures, these vibrations are produced by events occurring in 

the heart valves and myocardium, which are influenced by the function, electrical activity, and hemodynamics of the cardiac 

muscle (Subasi, 2019). Auscultation or HS examination are the leading non-invasive, low-cost first-contact method to detect heart 

diseases. 

 

The heart is an organ that pumps blood through all organs of the human body, it receives low-pressure blood from the veins, 

increases pressure by contracting its cardiac chambers, and expells blood into the arteries. Blood enters the heart through valves 

that open and close. These movements of contraction (systole) and relaxation (diastole) are audible; in the absence of any abnormal 

conditions, they are typically heard as lub...dub...... lub...dub...... (Chakrabarti et al., 2015). If any valves in the heart are damaged, 

additional sounds may be heard between the first heart sound (S1) and the second heart sound (S2), as well as between S2 and S1. 

These abnormal sounds are known as heart murmurs, which are audible vibrations caused by changes in blood flow through a 

damaged valve. There are also artifact sounds, which can occur during HS assessments. These noises result from factors such as 

coughing, hiccups, the movement of the stethoscope, breathing, or other body movements (Kumar & Saha, 2018). To determine 

the type of murmur a patient has, healthcare professionals consider several factors, including the timing, intensity, pattern, pitch, 

quality, and location of the sounds. 

 

Phonocardiography is a non-invasive diagnostic technique that registers the sounds produced by the heart using a specialized 

microphone called a phonocardiograph. Phonocardiograms (PCG) are recordings that capture the acoustic signals produced by 

the heart's mechanical activity, especially the opening and closing of the heart valves. In a healthy adult, the systolic phase lasts 

approximately one-third of the total cardiac cycle time, as shown in Fig.  1, while the diastolic phase lasts the remaining two-
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thirds. The duration of systole is considered constant. A heart murmur is classified according to its pattern (Chaudhuri & Jayanthi, 

2016) as: crescendo-decrescendo (ascending and then descending sound, diamond-shaped), crescendo (intense sound that goes 

from weak to strong), decrescendo (sound that goes from strong to faint), and holosystolic (sharp sound throughout systole). 

 

 
Fig.  1 PCG signal from dataset PASCAL (normal__128_1306344005749_B.wav) with annotations of the 

parts that compose each cardiac cycle. 

 

Murmurs are also classified according to their intensity, following the Levine scale: I, soft, only identified by highly experienced 

cardiologists; II, audible but very weak; III, easily audible; IV, strong, accompanied by a sound produced by strong blood flow 

turbulence; V, strong enough to be heard with a stethoscope barely touching the auscultation site; and VI, strong enough to be 

heard with a stethoscope not in contact with the auscultation area. 

 

The heart's valves are aortic, mitral, pulmonary, and tricuspid, each of which can cause problems such as regurgitation or stenosis. 

The last one, stenosis, emerges when the valve leaflets thicken and become rigid, narrowing the valve opening and causing less 

blood flow. Conversely, regurgitation occurs when valve leaflets don't close properly, causing blood to flow backward. Detecting 

these types of murmurs is crucial, depending on where and when sounds arise. 

 

Heart murmurs, as shown in Fig.  2, are classified according to their type (Liu et al., 2016) as:  

 

a) Mitral regurgitation that occurs during the systolic cycle with a uniform pattern (holosystolic) when the mitral valve 

doesn't close properly, a sound between 60 and 600 Hz is produced. 

b) Tricuspid regurgitation occurs during systolic cycle with a uniform pattern (holosystolic) when the tricuspid valve doesn't 

close properly, in that case a sound between 100 and 300 Hz is produced.  

c) Aortic stenosis occurs during systolic cycle and presents a crescendo-decrescendo pattern when the aortic valve doesn't 

open properly, then a sound between 300 and 500 Hz is produced.  

d) Pulmonary stenosis occurs during the systolic cycle with a crescendo-decrescendo pattern when the pulmonary valve 

doesn't open properly, and a sound between 100 and 400 Hz is produced. 

e) Mitral stenosis occurs during the diastolic cycle with an opening snap followed by a decrescendo-crescendo sound when 

the mitral valve doesn't open properly, in that event, a sound between 50 and 150 Hz is produced. 

f) Tricuspid stenosis occurs during the diastolic cycle with a crescendo pattern when the tricuspid valve doesn't open 

properly and a sound between 50 and 150 Hz is produced. 

g) Aortic regurgitation occurs during the diastolic cycle with a decrescendo pattern when the aortic valve doesn't close 

properly, a sound between 200 and 300 Hz is produced. 

h) Pulmonary regurgitation occurs during the diastolic cycle with a decrescendo pattern when the pulmonary valve doesn't 

close properly, a sound between 200 and 400 Hz is produced.   

 

S3 and S4 sounds occur during diastole and are low-frequency sounds, also known as extracardiac sounds. They are normally 

heard in children, pregnant women, and athletes without posing a health risk.  
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Machine learning techniques have been used recently to identify heart diseases, but there is a lack of research on the classification 

of heart problems when background noise is present, for example, the noise produced by air coolers, fans, traffic noise, rain, etc.  

 

 
Fig.  2 Types of murmurs. 

 

1.1 Related studies 
 

During the Hippocratic practice (Hanna & Silverman, 2002), 400 years B.C., to auscultate a person, the ear was placed directly 

on the patient's chest while the body was shaken to listen to the internal movement of the patient's fluids; this was called immediate 

auscultation. It was during the 15th century when Leonardo Da Vinci (Wells, 2014), intrigued by the functioning of the body, 

inserted fourteen wires into a live pig that reached the heart, to describe venous and arterial circulation, seeking to understand the 

movement produced by the heart. He noted that the movements were so rapid that it was impossible to quantify them in time. 

Robert Hooke predicted the usefulness of auscultation …I have been able to hear very plainly the beating of a Man’s heart... Who 

knows, I say, but that it may be possible to discover the Motions of the Internal Parts of Bodies... by the sound they make, that one 

may discover the Works performed in the several Offices and Shops of a Man’s Body, and thereby discover what Instrument or 

Engine is out of order… (Hooke, 1705, p. 39), and to this day, more than five hundred years later, it remains the most widely used 

method by medical doctors to examine a patient. 

 

It was not until 1816 when Laennec (Geddes, 2005), while examining a young woman's chest and feeling uncomfortable putting 

his ear on her chest, it occurred to him, knowing that it was possible to hear sounds through solid objects, to roll up a piece of 

paper forming a cylinder. He placed one ear against the paper and the other on the young woman's chest; he was not surprised to 

find that the sound produced by the heart could be heard even better. Later, he tested various materials, finding that wood 

propagated sound better, and called it a stethoscope. 

 

Laennec (Laennec, 1819), Forbes (Forbes et al., 1824), G. Camman, and J. Hope (Hanna & Silverman, 2002), among others, 

contributed to the analysis and classification of cardiovascular diseases through the produced sound. Einthoven (Einthoven & 

Geluk, 1894), father of the electrocardiogram (ECG), relied on the sounds emitted by the heart to create an instrument that would 

allow visualization of electrical records of the heart. Thomas Lewis (Lewis, 1920), based on Einthoven's studies, used a method 

that allowed recording heart sounds, using a microphone and the stethoscope created by Laennec, connected through tubes to 

transmit sound (vibrations), and these vibrations were recorded at frequencies of 200 to 300 per minute. Fahr (Sprague, 1962), a 

disciple of Einthoven, working in his laboratory, analyzed the relationship between ECG and recorded sounds; his observations 

and subsequent publications significantly contributed to cardiology. 

 

In the year 1949, Aubrey Leatham (Leatham, 1949) emphasized the need to analyze sounds produced by the heart through 

phonocardiography, mainly affected by the limitations of the human ear in perceiving certain frequencies. Additionally, in PCG 

sounds such as a third or fourth beat (S3 or S4) can easily be identified, which the ear might not hear as they occur in small time 

intervals, and which are not observable in other methods such as ECG. 

 

McKusick (McKusick et al., 1955) began studying heart problems by using recordings that generated visual representations of HS 

through PCG. This method enabled detailed observation of the timing, frequency, and intensity of these sounds, thereby facilitating 
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the detection of various cardiovascular diseases. This was important because the human ear detects sounds at intervals of 0.05-

0.06 seconds, while some cardiac alterations occur in 0.03 seconds, making medical training crucial for auscultation. 

 

One advantage of recording HS is that the recordings can be reviewed later to identify various problems (McKusick et al., 1956). 

However, to classify new recordings, it is necessary to preprocess the signal by removing noise or artifacts to ensure correct 

classification. 

 

Groch (Groch et al., 1992) proposed using HS as a physiological parameter for cardiac synchronization as an alternative to ECG. 

This method involves using PCG along with an equation that estimates the R and T frequencies of an ECG. It is assumed that the 

interval between the first heart sound (S1) and the second heart sound (S2) is shorter than the interval between S2 and S1. The 

analysis is conducted with window intervals of 200 to 400 milliseconds, which offers a significant advantage in detecting 

additional heart sounds such as S3 and S4. 

 

Liang (Liang et al., 1997) determined that the ideal approach would be to record these sounds and analyze them in a computerized 

and objective manner, first segmenting the signals into components for individual analysis. 

 

El-Hanjouri (El-Hanjouri et al., 2002) analyzed PCG using Hidden Markov Models (HMM) to classify different components. 

Since recordings often contain noise, they filtered the signal to eliminate non-cardiac sounds. They determined that the frequency 

components S1 and S2 of normal sounds are between 50-140 Hz and 80-200 Hz respectively. Any deformation or additional 

sound is called a murmur, caused by turbulent blood flow associated with improperly functioning valves. Murmurs have higher 

frequencies (up to 600 Hz).  

 

Kumar (Kumar et al., 2006) points out that several cardiovascular problems can be diagnosed efficiently through auscultation. 

The objective was identifying the limits of each of the segments produced by the HS, using wavelets of the Daubechies family of 

order 6, since he considered that their shape adapts to the natural recordings of HS. This method effectively identifies the S1 and 

S2 moments of the cardiac cycle in a healthy individual; however, several inaccuracies still arise when diagnosing CVD. 

 

Schmidt (Schmidt et al., 2008) mentions the importance of identifying the moments S1, Systole, S2, and Diastole, considering 

that these four states that occur in a chain HMM are usually very useful for identifying the segments of the cardiac cycle. HMM 

was able to detect 5 types of murmurs (Zhong et al., 2013), crucial information for diagnosing specific diseases. 

 

Chakrabarti (Chakrabarti et al., 2015) analyzed the challenges that arise in the analysis of PCG, pointing out that the segmentation 

of an audio signal from the sounds produced by the heart was the most difficult challenge due to the anomalies that may occur. 

 

PCG signal analysis consists of six steps: start, data acquisition, segmentation, feature extraction, classification, and end (Subasi, 

2019). One of the biggest challenges has been preprocessing the audio signal to eliminate noise that accompanies the recordings, 

typically using a band-pass filter. As shown in Fig.  3, the mechanical movements produced by the heart are recorded in an audio 

file from which a spectrogram can be extracted, where its most relevant frequencies can be depicted. Several variations such as 

Mel-spectrograms, Scalograms, Energy spectrograms, and bispectrum magnitude have been used. However, noisy audio signals 

continue to be one of the greatest challenges for good results in the next stage (classification). 

 

Springer (Springer et al., 2015) identifies that segmenting an audio signal without the presence of noise is relatively simple, 

however recording an audio signal of the sounds emitted by the heart without the presence of noise is impossible. For this reason, 

it uses different combined methods (Wavelets, Hilbert Transform, Spectral Density, FFT) using both PCG and ECG samples. 

 

Chaudhuri and Jayanthi (Chaudhuri & Jayanthi, 2016) took two signals to identify the location of an abnormality in the patient's 

chest, the first sound was taken from the atrial area and the second one from the ventricular area, aligning both signals to discover 

the S1 and S2 moments. They identified three kinds of abnormal sounds, the first from S1 to S2 in its entire range (holosystolic), 

the second from S1 to S2 in a diamond shape, and the third from S2 to S1 in a decreasing shape, deducing that the place where 

one of these shapes is most visible can be diagnosed with some type of cardiovascular disease, using a neural network to carry out 

the classification. 

 

In 2016, a group of researchers created a public dataset (Liu et al., 2016), as a byproduct of their research where they determined 

that the sounds emitted by the heart are between the frequencies 10-140 Hz for the S1 and 10-200 Hz for S2, abnormal sounds are 

found up to frequencies of 600 Hz, while sounds emitted by breathing occur in the range of 200 to 700 Hz, this complicates further 

the segmentation of the sounds emitted by the heart. They evaluated the use of several techniques for extracting features and 
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classification methods such as Wavelets, Shannon Entropy, Machine Learning methods, HMM, Neuronal Networks, Support 

Vector Machine, and Clustering, among others, being a dataset that allows further research on HS. 

 
Fig.  3 The movements produced by the heart (contraction and dilation) are recorded in an audio signal (PCG) 

to produce an image of energy values in the frequency domain. 

 
Table 1. Comparison in terms of accuracy among works on murmur diagnosis from heart sound signals 

Reference & Year Noise reduction Features Classification Accuracy 

Meintjes et al. 

(2018) 

Low-pass filter 

25 Hz 

CWT 

Scalograms 
CNN 86.00% 

Low & Choo (2018) Normalization Spectrograms of energy CNN 80.30% 

Han et al. (2018) - MFCC CNN 91.50% 

Wibawa et al. 

(2018) 
- Spectrograms of energy CNN 82.75% 

Ren et al., 2018 - Scalograms CNN 56.20 % 

Normal et al., 2019 
Band-pass filter 

25-400 Hz 
MFCC CNN 88.82 % 

Banerjee & Majhi 

(2020) 

Band-pass filter 

30-900 Hz 
MFCC CNN 83.00 % 

Chen et al. (2020) - Modified WT CNN 93.91% 

Alqudah et al. 

(2020) 

Low-pass filter 

500 Hz 
Spectrograms of energy CNN 93.70% 

Takezaki & Kishida 

(2021) 
Normalization Bispectrum Magnitude CNN 98.70% 

Cheng & Sun (2023) 
Band-pass filter 

25-400 Hz 
- 

CNN 

Transformer 
95.70% 

Torre-Cruz et al. 

(2023) 

Bior-4.4 discrete 

filter 

Mean, variance, kurtosis, energy, 

power, etc. 

MSV, RT, DT, 

KNN 
98.00% 

Proposed None Entropygrams 2D-CNN 100.00% 

 

Thanks to the accessibility of HS databases, several researchers were able to test various, increasingly effective methods for 

classifying the sounds produced by the heart. Whether using Energy Spectrograms (Low & Choo, 2018; Takezaki & Kishida, 

2021; Wibawa et al., 2018), MFCC (Banerjee & Mahji, 2020; Norman et al., 2019), Wavelet Transform Scalograms (Chen et al., 

2020; Ren et al., 2024), Bispectral Magnitude (Alqudah et al., 2020) or using various types of NN, the most commonly used being 

CNN (Alqudah et al., 2019; Norman et al., 2019; Renna et al. 2019; Banerjee & Majni, 2020; Chen et al., 2021; Takezaki & 

Kishida, 2021; Yildrim, 2022; Bao et al., 2023) and using Transformers (Cheng et al., 2023) to classify the type of disease. 

Denoising the audio signal has been one of the biggest challenges. 

 

Panah (Panah et al., 2023) conducted a study on the effects of noise on the classification of HS. They observed that capturing a 

signal free of noise is nearly impossible. They created a synthetic dataset contaminated with different noise levels (-10 dB to 40 

dB). They concluded that noises such as coughs, sneezes, or barks are easier to eliminate than long-duration noise that interferes 

with the frequencies of the recorded signal, making correct classification difficult. 
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If the noise as a range frequency that is similar with the range of frequencies emitted by HS, it is very difficult to eliminate, and 

the common practice is to discard these samples, losing valuable information. We instead decided to use entropygrams, a 

potentially more effective method for analyzing HS in noisy environments. This method is expected to be more robust when 

dealing with noisy audio signals, capturing the important characteristics of HS even with interference. 

 

For murmur diagnosis from heart sound signals, most researchers use filters to eliminate noise. Since we were interested in 

assessing spectrograms of entropy (i.e. entropygrams) as features extracted from noisy signals with the purpose of classification, 

we did not use any filtering, furthermore, we added more noise to the signal since the purpose of our test was to assess the 

robustness of our proposal. Table 1 shows a comparison in terms of accuracy among works on murmur diagnosis from heart sound 

signals. 

 

2 Robust Heart Disease Detection 
 

Our method consists in turning cardiac audio signals into images that preserve essential diagnostic information while being 

resilient to noise. These images are then fed to a 2D convolutional neural network since this kind of networks are known for their 

effectiveness in image recognition tasks. The network predicts the specific cardiac condition. 

 

The preprocessing pipeline begins with amplitude normalization, constraining values between -1 and 1 to ensure consistency 

across recordings. The normalized signal is split into 30 milliseconds frames with a two-thirds overlap between consecutive 

frames. To each frame, a Hamming window is applied to mitigate spectral leakage effects. 

 

2.1 Conversion of audio-signals into images 
 

We use spectrograms of entropy to illustrate how the information content in the signals is distributed across frequencies and 

evolves over time. This approach has been used before for robust audio analysis in noisy environments (Camarena-Ibarrola et al., 

2020). Our implementation uses the psychoacoustic Bark scale (Eq. 1), focusing specifically on the first eight critical bands that 

encompass the frequency range of primary HS (S1 and S2: 50-400 Hz) and murmurs (up to 600 Hz) as identified by El-Hanjouri 

et al. (2002). 

𝑧 = 13 arctan (
0.76𝑓

1000
) + 3.5 arctan (

𝑓

7500
)

2

  (1) 

 

Spectral entropy measures the amount of information in the signal's spectrum, this metric effectively differentiates between sound 

types, identifies audio transitions, and achieves great noise resilience. In cardiac contexts, spectral entropy reveals subtle patterns 

indicative of abnormal conditions that may remain undetectable in time-domain analysis. For stationary random processes with 

Gaussian density N(0,∑), entropy can be determined using the variances of real and imaginary parts of the Fourier coefficients 

with Eq. 2. We compute entropy for each frame and critical band, arranging them in an array where columns correspond to time 

progression and rows represent the number of the critical band. 

𝐻 = ln(2 𝜋𝑒) +
1

2
ln(𝜎𝑥

2𝜎𝑦
2 − 𝜎𝑥𝑦) (2) 

 

where 𝜎𝑥
2 and 𝜎𝑦

2 represent the variances of the real and imaginary parts of the Fourier coefficients respectively, and 𝜎𝑥𝑦 denotes 

the covariance between these two components of the spectrum. 

 

The procedure is illustrated in Fig.  4. First, the audio signal generated by HS is captured and normalized to values between -1 

and 1. Next, the signal is divided into short frames. The Discrete Fourier Transform (DFT) is then applied to each frame, and the 

Fourier coefficients corresponding to each of the first eight critical bands according to the Bark scale are grouped. For each critical 

band, its spectral entropy is determined, resulting in a matrix that, when depicted as an image, is referred to as a spectrogram of 

entropy. 

 

The computational process involves computing entropy values for each frame and critical band. These values populate a two-

dimensional matrix where the horizontal axis is time and the vertical axis is the frequency in the Bark scale. Fig.  5 shows 

spectrograms of entropy for four different classes: cardiac sounds containing artifacts, those exhibiting extrasystole, recordings 

with murmurs, and those from subjects with normal (healthy) cardiac function. 
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Fig.  4 The audio signal is split into 30-millisecond frames.  The DFT is applied to each frame, and the 

Fourier coefficients are grouped into the first 8 critical bands according to the bark scale. For each band, the 

spectral entropy is calculated resulting in a spectrogram of entropy. 

 

The visual matrix is organized such that the leftmost column displays entropygrams derived from unmodified source recordings. 

The central column presents entropygrams generated from signals that have been degraded with white noise, achieving a Signal-

to-Noise Ratio (SNR) of 5 dB, and the rightmost column displays entropygrams from signals that are severely contaminated with 

noise, with SNR of -5 dB. At this extreme noise level, the acoustic interference is so substantial that the human auditory system 

cannot reliably detect individual cardiac cycles within the recording. SNR quantification follows the formulation presented in Eq. 

3. 

𝑆𝑁𝑅 (𝑑𝐵) = 10𝐿𝑜𝑔 (
𝑆𝑖𝑔𝑛𝑎𝑙𝐸𝑛𝑒𝑟𝑔𝑦

𝑁𝑜𝑖𝑠𝑒𝐸𝑛𝑒𝑟𝑔𝑦
) 

(3) 

 

 
Fig.  5 Spectrograms of entropy from original audio signal and for signals mixed with SNR of 5dB and -5dB 

for 4 different classes of audio signals (Normal or Healthy; Murmur; ExtraSystole; Artifacts).  

 

For our research, the class imbalance issue that has challenged previous heart sound classification studies (Chen et al., 2020; Han 

et al., 2018; Noman et al., 2019; Ren et al., 2018; Takezaki & Kishida, 2021; Wibawa et al., 2018). Rather than employing 

conventional image augmentation techniques (rotation, scaling, shifting), which would not make sense with spectrograms, we 

implemented dataset interpolation to generate further training data. This method creates new RGB images by interpolating (Eq. 

4) between two existing entropygrams of the same class, using a parameter t that controls similarity to the source images, as shown 

in Fig.  6. Once we interpolated the images, only non-interpolated images were used for training. 
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               𝑃𝑛𝑒𝑤 {

𝑅𝑛𝑒𝑤 = (1 − 𝑡) × 𝑅1 + 𝑡 × 𝑅2   for 𝑡 ∈ [0,1]

𝐺𝑛𝑒𝑤 = (1 − 𝑡) × 𝐺1 + 𝑡 × 𝐺2  for 𝑡 ∈ [0,1]

𝐵𝑛𝑒𝑤 = (1 − 𝑡) × 𝐵1 + 𝑡 × 𝐵2  for 𝑡 ∈ [0,1]
 (4) 

 
Fig.  6 To balance the dataset, new images are generated through interpolation. 

 

 

 
Fig.  7 Convolutional Neural Network used for the diagnosis in the Bentley’s dataset. 

 
Table 2. Specifics for the CNN used with 4 and 5 classes 

Layer 
Bentley’s dataset  Yassen’s dataset 

Shape Parameters  Shape Parameters  

Conv2D 252, 252, 32 2,432  252, 252, 32 2,432  

MaxPooling2D 126, 126, 32 0  126, 126, 32 0  

Conv2D 122, 122, 64 51,264  122, 122, 64 51,264  

MaxPooling2D 61, 61, 64 0  61, 61, 64 0  

Conv2D 57, 57, 128 204,928  57, 57, 128 204,928  

MaxPooling2D 28, 28, 128 0  28, 28, 128 0  

Conv2D 24, 24, 256 819,456  24, 24, 256 819,456  

MaxPooling2D 12, 12, 256 0  12, 12, 256 0  

Conv2D 8, 8, 512 3,277,312  8, 8, 512 3,277,312  

MaxPooling2D 4, 4, 512 0  4, 4, 512 0  

LeakyReLu 4, 4, 512 0  4, 4, 512 0  

Dropout 4, 4, 512 0  4, 4, 512 0  

Flatten 8192 0  8192 0  

Dense 256 2,097,408  256 2,097,408  

Dense 4 1,028  5 1,285  

Total  6,453,828   6,454,085  
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The classification architecture includes a convolutional neural network with five convolutional layers, each followed by a 

MaxPooling layer. The classification component comprises two dense layers, the output layer has four neurons for Bentley’s 

dataset corresponding to our target classes: Artifacts, ExtraSystole, Murmur, and Normal (Fig.  7). For tests with Yassen’s dataset, 

the output layer has 5 neurons, each one corresponds to the class: N (Normal); AS (Aortic Stenosis); MS (Mitral Stenosis); MR 

(Mitral Regurgitation); and MVP (Murmur in systole), as shown in Fig.  8. We incorporated dropout techniques to prevent 

overfitting during training. Table 2 shows the specifics of CNN. Entropygram images are standardized to 256 × 256 pixels, and 

the window’s size used is 5 × 5 for every convolutional layer.  

 

 
Fig.  8 Convolutional Neural Network used for the diagnosis in the Yanseen’s dataset. 

 

3 Experimental procedures 
 

Most researchers have tested their methods on the same datasets since there are few accessible databases, and some of them 

contain only a few of the different types of murmurs that can be found in a patient. Therefore, two databases with more than two 

classes were selected to better distribute the classification results. Table 3 shows some open-access databases developed by 

university researchers with the support of medical specialists. 

 
Table 3. Published and accessible datasets for heart sound classification (audio files) 

Dataset Reference #Samples Task 

Pascal database A Bentley et al. (2011) 176 Normal, Murmur, ExtraHS, Artifact 

Pascal database B Bentley et al. (2011) 656 Normal, Murmur, Extrasystole 

PhysioNet/CinC database Liu et al. (2016) 3,240 Normal, Abnormal 

GitHub database Yaseen et al. (2018) 1,000 Normal, AS, MR, MS, MVP 

Circor DigiScope database Oliveira et al. (2021) 3,163 Normal, Abnormal 

 

In our experiments, we used the dataset from Bentley's Classifying Heart Sounds Challenge (Bentley et al., 2011), which comprises 

four distinct categories of cardiac acoustic signals: those with artifacts, extra-systole, normal (healthy) cardiac function, and 

murmurs. And Yaseen’s dataset (Yaseen et al., 2018) which includes the classes: normal, aortic stenosis (murmur between S1 and 

S2), mitral stenosis (murmur between S2 and S1), mitral regurgitation (murmur between S1 and S2), and murmur in systole 

(murmur between S1 and S2), as shown in Table 4. 

 
Table 4. Datasets used 

Dataset Classes Samples 

Pascal - A 

Normal 

Murmur 

Extrahs 

Artifact 

45 

48 

27 

56 

GitHub Open Access 

Normal (N) 

Aortic Stenosis (AS) 

Mitral Stenosis (MS) 

Mitral Regurgitation (MR) 

Murmur in systole (MVP) 

200 

200 

200 

200 

200 

 

To assess the robustness of our classification methodology under adverse acoustic conditions, we systematically introduced white 

noise to the original cardiovascular audio recordings. Noise mixing was carefully calibrated to produce Signal-to-Noise Ratios 
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(SNR) spanning from -10 dB to 20 dB. Specifically, we generated test conditions at SNR values of -10 dB, -7 dB, -5 dB, 0.1 dB, 

0.5 dB, 1 dB, 3 dB, 10 dB, 15 dB, and 20 dB for Bentley’s dataset as Fig.  9, and values of -15 dB, -10 dB, -7 dB, -5 dB, -3 dB, -

1 dB, 1 dB, 3 dB, 5 dB, 7 dB, 10 dB, 15 dB, and 20 dB for Yaseen’s dataset. It should be noted that lower SNR values, particularly 

negative ones, indicate proportionally higher noise contamination. Each audio collection was subsequently transformed into 

corresponding image representations. 

 

 
Fig.  9 Different levels of white noise are added to the audio signal, which makes it impossible to identify the 

segments of the audio signal in the time domain. 

 

For the audio-to-image conversion process, we use spectrograms of entropy, but alternative methodologies are used in the field, 

so for comparative purposes we also produced the Spectrograms of energy; the Wavelet Scalograms; and the Mel Frequency 

Cepstral Coefficient (MFCC) Spectrograms, for both Bentley’s and Yaseen’s datasets. Fig.  10 shows representative examples of 

these four images applied to each of the cardiac sound categories in Bentley’s dataset. Similarly Fig.  11, show the corresponding 

images for Yassen’s dataset.  

 

 
Fig.  10 Samples of the four classes of the Bentley’s dataset (Artifact, Extra Heart Sound, Murmur and 

Normal) using the four different feature extraction methods. 
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Fig.  11 Samples of the five classes of the Yaseen’s dataset (Normal, Murmur in systole, Mitral Regurgitation, 

Mitral Stenosis and Aortic Stenosis) using three different feature extraction methods. 

 

4 Results 

 

Our experimental protocol used 70% of each image collection training and 30% for tests. Table 5 shows the accuracies obtained 

for Bentley´s dataset, which is also depicted graphically in Fig.  12. 

 

Table 6 shows the accuracies obtained for Yaseen’s dataset, which is also depicted graphically in Fig.  13. The results confirm the 

general observation, previously noted by Panah, Hines & McKeever (2023), that acoustic noise adversely affects the classification 

performance across all HS analysis techniques. Notably, our proposed entropy spectrogram approach demonstrated superior noise 

resilience, maintaining exceptional classification accuracy of 99.43% even under the most challenging noise conditions (SNR of 

-10 dB).  
  

Table 5. Accuracy achieved for the heart audio-signal image representations (columns) and noise levels (rows); the first 

rows correspond to higher noise levels for Bentley’s dataset 

SNR 
Spectrogram 

of Energy 
Scalogram 

Spectrogram 

of MFCC 

Spectrogram 

of Entropy 

(Entropygram) 

-10 dB 0.5833 0.2777 0.9166 0.9444 

-7 dB 0.9166 0.2777 0.8888 0.9722 

-5 dB 0.8611 0.8611 0.8611 0.9722 

0.1 dB 0.8888 0.9166 0.9444 1.0000 

0.5 dB 0.9444 0.8888 0.8888 1.0000 

1 dB 0.8888 0.9722 0.8611 1.0000 

3 dB 0.8888 0.9444 0.8888 1.0000 

5 dB 0.9444 0.9166 0.8888 0.9722 

10 dB 0.9166 0.9722 0.8888 0.9722 

15 dB 0.9166 0.9722 0.9722 0.9722 

20 dB 0.9166 0.9444 0.9166 1.0000 

Raw 0.9166 0.9444 0.9166  1.0000 
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Fig.  12 Accuracy vs SNR for several image representations of features from heart audio-signals for Bentley’s 

dataset with four classes. Increment in horizontal axis means less noise. 

 

For audio signals with such high noise content that the human auditory system would struggle to even discern the heartbeats, our 

method only reduces the 100.00% accuracy, achieved with uncontaminated signals, to 88.99% for Bentley’s dataset which is still 

hugh enough for practical purposes. In the case of Yaseen’s dataset, the accuracy obtained with the noisiest audio signal was 

83.45%, remarking the exceptional robustness of our methodology. 

 
Table 6. Accuracy obtained for the image representations of the heart audio-signal (columns) and levels of noise (rows), 

the first rows correspond to higher levels of noise for Yaseen’s dataset 

SNR Scalogram 
Spectrogram 

of MFCC 

Spectrogram 

of Entropy 

(Entropygram) 

-15 dB 0.6833 0.6833 0.7133 

-10 dB 0.7133 0.7433 0.7966 

-7 dB 0.7433 0.7599 0.8033 

-5 dB 0.7533 0.7766 0.8266 

-3 dB 0.7533 0.7766 0.8466 

-1 dB 0.7766 0.8133 0.8366 

1 dB 0.8366 0.8133 0.8433 

3 dB 0.8366 0.7966 0.8566 

5 dB 0.8633 0.7966 0.8700 

7 dB 0.8433 0.8366 0.8566 

10 dB 0.8433 0.8033 0.8566 

15 dB 0.8433 0.8033 0.8733 

20 dB 0.8366 0.7666 0.8700 

Raw 0.8500 0.8633 0.8899 

 

 
Fig.  13 Accuracy vs SNR for several image representations of features from heart audio-signals for 

Yanseen’s dataset with five classes. Increment in horizontal axis means less noise. 
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Regarding accuracy obtained using uncontaminated (i.e. original) heart sound signals, we found that the four classes from 

Bentley’s dataset are easily separated. In particular, healthy (i.e. normal) hearts produce sounds where S1 and S2 moments are 

very clear, while hearts with murmurs contain noise either between the moment s1 and s2, or between s2 and s1; the extras class 

contains an additional sound between s2 and s1, which are known as s3 and s4; the artifact class contains noise such as echoes, 

music, speech, these sounds being very noticeable since they are found in frequencies much higher than those produced by HS. 

This data set is useful for testing whether or not a patient’s heart has murmurs, or not and if the sample contains too much noise 

that should be discarded. Yaseen’s dataset has five classes, one normal class and four with different kinds of murmurs, the results 

show discrimination of healthy patients over those with cardiovascular diseases, and even though the murmur classes could 

coincide the class between S1 and S2 or between S2 and S1, it manages to classify eight to nine out of ten patients correctly. 

 

4 Conclusions 
 

Our tests have confirmed that spectrograms of entropy are very useful for diagnosing murmurs from phonocardiograms, even in 

the presence of high noise levels. This approach focuses on the distribution of information content across frequencies preserving 

information not even audible to humans. This allows the detection of temporal patterns in cardiovascular sounds that may persist 

even in noisy environments. Spectrograms of entropy emphasize areas of the signal with high information content. These visual 

representations are suitable inputs for convolutional neural networks and other machine-learning techniques based on images. 

 

Entropygrams (i.e. Spectrograms of entropy) have not been used for the diagnosis of cardiovascular diseases to the best of our 

knowledge. When comparing the accuracy obtained using Entropygrams with that using energy spectrograms, MFCC 

spectrograms, and scalograms, which are the most widely used methods for converting audio signals to images for cardiovascular 

diagnosing, we found that entropygrams produce better results. 

 

Diagnosing the specific murmur type for any valve failure remains a challenge and is ongoing work. 
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