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Abstract. The identification and characterisation of V genes poses 

a significant challenge due to the substantial number of alignments 
generated by diverse sequencing systems. This study proposes a 

method for the unification and reduction of the search space, with 

the objective of optimising the identification of V genes. The 
method integrates preprocessing, normalisation, and clustering 

using Gaussian Mixture Models. This approach facilitates data 

consolidation and reduces redundancy, thereby enhancing the 
efficiency and accuracy of the subsequent analysis. The elbow 

method was employed to determine the optimal number of groups, 

achieving a 98% reduction in the search space. The findings were 
validated through the use of metrics such as mean absolute error, 

mean squared error, and root mean squared error, thereby 

confirming the effectiveness of the method in improving the 
precision of gene identification. 

Keywords: Clustering, data integration, reduction of search 

space, sequence alignment, V gene. 

Article Info 

Received March 15, 2025 
Accepted July 6, 2025 

 

 
 

1 Introduction 

The technological development for massive sequencing has made it easier to obtain genomes, however, the annotation of these 

genomes has become a great challenge due to the variety of sequenced genomes and the large amount of data obtained. The 

purpose of annotation is the localization of genes in a genome, as well as the determination of their structure and the proteins they 

produce through computational analysis and experimental approaches. Most annotation methods share common features, but in 

the end, the best approach depends on the time and resources available. 

The first part of the annotation is the identification of the start and end positions of the genes to be analyzed. For gene identification, 

molecular biologists use various methods of sequence alignments to estimate the start and end positions of the targeted genes, or 

the sections that constitute these genes. In other words, most of the current methods cannot detect the entire structure of the genes 

simultaneously, which makes it necessary to analyze their sections separately, thus increasing the complexity of genes.  

At Centro de Investigación Sobre Enfermedades Infecciosas (CISEI) of Instituto Nacional de Salud Pública (INSP), located in 

Cuernavaca, México, the Variable, Diversity and Union genes (V, D and J) are currently being annotated. These genes play a key 

role in the formation of B-cell antibodies, which are responsible for detecting and neutralizing harmful agents such as viruses and 

bacteria (Kindt et al., 2007; Pieper et al., 2013). Within this context, the focus is placed on V genes because of their high frequency 

in vertebrate genomes and their complex structure. The aim is to reduce the time and effort required by molecular biologists for 

their identification. 

Research at CISEI also seeks to explore the structural diversity of DNA in different bat species. This is of fundamental 

epidemiological importance since bats serve as reservoirs of potentially zoonotic viruses. The annotation of V(D)J segments is 

expected to deepen the understanding of the immune system and contribute to the development of new strategies for addressing 

infectious diseases. 
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This paper proposes a novel method for effectively reducing the search space of the start and end positions of V gene segments in 

sequence alignments. The proposed method is evaluated by comparing it with the manual references generated by CISEI experts, 

using metrics to measure the error and its efficiency. This method not only seeks to improve accuracy in the identification stage, 

but also sets a benchmark for more efficient annotation, contributing to the knowledge and study of vertebrate genomes. 

1.1 Structure of the V gene 

Each of the V gene sections has the following characteristics: (a) signal peptide or SP is a short amino acid sequence that indicates 

where the V gene begins and has a length between 40 to 46 characters; (b) Exon is the section that contains the essential information 

of the V gene and has a length between 300 to 350 characters; and (c) the recombination signal or RSS which is responsible for 

the binding between the V and D gene, the length of the RSS and has 38 to 40 characters (Lefranc & Lefranc, 2001). Fig. 1 shows 

the structure of the V gene. 

 
Fig. 1. V gene structure obtained from (Lefranc & Lefranc, 2001). 

The identification of the V gene consists of determining the start and end positions of each of its sections. Correct identification 

improves the annotation and thus the representation of gene functionality (Bergman, 2007; Megrian, 2014). The use of sequences 

manually validated by experts to find new genes is called homology and is used for V gene identification (Mount, 2004; Olivieri 

& Gambón-Deza, 2019). These validated sequences are used in alignment systems to obtain data that are used in the identification 

of V genes (Amin et al., 2018; Ejigu & Jung, 2020; Mount, 2004). The following studies address genome annotation more 

extensively (Ejigu & Jung, 2020; Miguel-Ruiz et al., 2024; Serret et al., 2023). 

Some of the most used alignment systems are Blast, Hmmer and Exonerate (Altschul et al., 1990; Eddy, 1998; Slater & Birney, 

2005). Although they have the disadvantage of performing sequence alignment estimates of only some of the V gene sections 

(EMBL-EBI, 2022). They also have low precision and generate many approximations of the start and end positions of the V gene 

sections (Mount, 2004). 

Currently, CISEI experts perform V gene with the Integrative Genomics Viewer (IGV) system (Robinson et al., 2023). Fig. 2 

shows an identified and annotated V gene. Below the expert's annotation are four alignments that are used to identify the gene. 

The identification and annotation take 15-20 minutes per gene and up to one month to complete a genome of approximately 1600 

genes (V, D and J).  

 
Fig. 2. V gene identification and alignments with the IGV system. 

In Fig. 2, the alignments appear collapsed, which facilitates the general location of a gene but makes precise identification of its 

sections difficult. Each alignment groups between 50 and 200 sequences, which improves detection, but complicates the 

identification of the V gene. For a more detailed analysis, Fig. 3 shows the alignments in their expanded version, allowing CISEI 

experts to manually determine the start and end positions. Because of this, experts must apply their knowledge to select the best 

solution and precisely define the boundaries of each gene section. 
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Fig. 3. Expanded alignments. 

Each alignment system generates files with key information for V gene identification. Hmmerscan identifies the recombination 

signal (RSS); Exonerate:protein2genome detects the Exon and Signal Peptide (SP); Exonerate:est2genome, Tblastx and Tblastn 

also identify these sections, operating at different levels of the genome. Together, these systems allow CISEI experts to locate V 

genes, but the wide search space generates a large effort and time for gene identification. In this research, we propose a method 

that reduces the search space generated by sequence alignments, improving the accuracy and efficiency of V gene identification. 

1.2 Literature review 

In the literature review based on the PRISMA methodology (Urrutia & Bonfill, 2010), most relevant works for gene identification 

and annotation were identified. The research question posed was: How has the systematization of V gene characterization been 

approached and what techniques are used? The purpose of this review was to identify systems, architectures, methods, techniques 

and algorithms for the systematization of gene characterization. The following search string was used: ("gene annotation" OR 

"gene identification") AND ("machine learning" OR "computational modeling") AND ("V(D)J" OR "antibodies" OR "V genes") 

and "vertebrates". 

The review began on May 7, 2024, and was completed on November 30, 2024. The review started on May 7, 2024, and was 

completed on November 30, 2024. Articles indexed in journals and presented at conferences were searched in the databases 

PubMed, MDPI, NCBI, SpringerLink, and ScienceDirect, in combination with the Google Scholar search engine. Only articles 

written in English and published between 2019 and 2024 were considered. The search retrieved a total of 160 articles, of which 9 

were identified as relevant to this study (see Table 1). 

Table 1. Literature review 

Brief description Method, technique or algorithm Reference 

GeMoMa homology-based web system using GFF and Fasta files Based on homology with GFF 

files 

(Keilwagen et al., 

2019) 

VgeneFinder system based on the homology principle with reference 

sequences 

It is based on the use of motifs 

and genome sequence 

(Olivieri & Gambón-

Deza, 2019) 

DeepGSR deep learning-based system for signal and genomic 

pattern detection 

It is based on a convolutional 

neural network 

(Kalkatawi et al., 

2019) 

Helixer is a system based on deep learning Based on BLSTM to annotate 

sequences with Keras 

(Stiehler et al., 2020) 

GOODORFS is a system based on the ab initio method. Based on Kmeans (McNair et al., 2021) 

RAPID is a web-based system that analyzes antibodies and 

annotates clonotypes 

Not specified (Y. Zhang et al., 2021) 

TOGA is a sequence alignment pipeline It is based on homology and 

machine learning 

(Zhang et al., 2021) 

IGDetective is a homology-based system The system is based on graph 

theory and homology 

(Sirupurapu et al., 

2022) 

Mgcod identifies the zones of a gene Based on homology (Pfennig et al., 2022) 

GeMoMa homology-based web system using GFF and Fasta files Based on homology with GFF 

files 

(Keilwagen et al., 

2019) 

The literature review evidenced the importance of systematization and the use of artificial intelligence and optimization techniques 

for V gene identification, highlighting works such as Olivieri & Gambón-Deza (2019) and Sirupurapu et al. (2022a). Although 

there are few specific studies, most genomic annotation systems rely on prior identification of genes, creating a large area of 

opportunity. The most widely used and proven effective techniques for gene annotation are based on homology methods and ab 
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initio approaches in conjunction with LSTM models, convolutional neural networks, and deep learning (Kalkatawi, Magana-

Mora, et al., 2019). Other techniques still rely on sequence alignments with reference data. 

2 Method for reducing the search space in V-gene sequence alignments  

Several proposals to systematize the characterization of V genes have been reported in the scientific literature, including the 

studies of Olivieri and Gambón-Deza (2019) and Sirupurapu et al. (2022). Nevertheless, important challenges remain, particularly 

regarding the low accuracy in predicting the precise location of genes. To address this, a distance-based method is proposed to 

reduce the search space in V gene alignments. This approach relies on the structural organization of V genes and the defined 

distances between their three fundamental sections to generate a new dataset used for search space reduction. The method is 

structured into three main stages: preprocessing, processing, and postprocessing, as summarized in Table 2. An overview of the 

method is illustrated in Figure 4. 

Table 2. Structure of method with its steps and activities 

Step Activity Description 

Preprocessing Data unification Different alignment sources (e.g., Hmmer, Exonerate, Tblastn) are 

integrated into a single representative dataset. This ensures that 

each record includes all sections of the V gene 

Data normalization and splitting Data are adjusted using techniques such as Normalizer to improve 

clustering performance and then split into training and testing sets 

Processing Training and use of a clustering model A model based on the Gaussian Mixture algorithm is implemented 

Group unification Records within each cluster are consolidated into a single record 

per gene, reducing the search space and enabling fairer 

measurement of results 

Postprocessing Error measurement and best-group 

selection 

Results are compared against expert reference using metrics such 

as MAE, MSE and RMSE to select the best-performing group. 

Transformation to GFF format The best group is transformed back into GFF format for 

compatibility with genomic analysis tools (e.g., IGV) 

 
Fig. 4. Method for reducing the search space of V gene(s). 

The proposed method allows a significant reduction of the search space for V gene identification, achieving efficient performance 

on both large and small genomes, with processing times of less than 60 minutes. The following sections of the paper address key 

aspects such as (a) data sets in GFF format, (b) activities associated with preprocessing, (c) activities associated with data 

processing, and (d) results of the postprocessing stage. 

2.1 Dataset in GFF format 

GFF files are widely used in biological and bioinformatics projects due to their ability to organize and make sense of fragments 

of a genome. This plain text format consists of nine tab-delimited columns, allowing for a structured and detailed representation 

of genomic features (EMBL-EBI, 2022; García Simón, 2018). GFF files are comparable to datasets used in data science, because 

both contain attributes associated with specific features. 
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The data used in this study come from different systems specialized in sequence alignments, which identify areas of interest in a 

genome and in specific V genes. The systems used by the CISEI experts are Blast, Hmmer and Exonerate. Each of these systems 

employs a different principle for the execution of the alignments (EMBL-EBI, 2022) and is only interested in one or several 

sections of the gene. An example of this is Exonerate:protein2genome and Exonerate:est2genome, which identify the Exon and 

signal peptide. Each works at different levels of the genome and complement each other. If protein2genome does not identify the 

signal peptide, est2genome can complete the identification. Despite their effectiveness, these systems have important limitations, 

such as their low accuracy in determining the location of the complete structure of a gene (Mount, 2004). For this reason, in this 

work we propose to combine multiple results from these different systems. 

The Blast, Hmmer and Exonerate systems generate key data in the GFF format, which represent sequence alignments representing 

possible gene locations. This format provides a structured framework for analyzing genetic features, facilitating their integration 

and analysis. An excerpt of a GFF file used in this research is presented in Table 3. The GFF files contain nine attributes that 

allow for the identification of key information, as presented in Table 4. For this study, the Start, End, and Strand columns are 

particularly important because they describe the structure of the V gene.  

Table 3. Dataset in GFF format 

Seqname Source Feature Start End Score Strand Frame Attribute 

CM040297.1 exonerate:est2genome gene 16489607 16489647 NA - NA NA 

CM040297.1 exonerate:est2genome gene 16489648 16489956 1239 - NA NA 

CM040297.1 exonerate:est2genome gene 16489648 16490157 2011 - NA NA 

Table 4. Nine attributes of GFF files 

Field Description 

Seqname Unique identifier of the sequence, such as the chromosome or scaffold where the feature is located 

Source Tool or method that generated the alignment, e.g., Hmmer, Exonerate or Blast 

Feature Types of aligned features, such as Gene, Exon, CDS or mRNA 

Start Initial position of the feature in the sequence 

End Final position of the feature in the sequence 

Score Confidence value associated with the annotation. It can be a number or a dot (.) if not available 

Strand Direction of the feature in the DNA, indicated by + or – 

Frame Specifies how the codons are to be read. Possible values are 0, 1 or 2 

Attributes Additional information about the features, such as unique identifiers, gene names or notes 

In the context of genome characterization, bats (chiropters) have been widely studied due to their genetic diversity and unique 

adaptations. Specifically, at CISEI, we have worked with the species Tadarida brasiliensis, a bat native to the western and southern 

United States, Mexico, Central America and other regions (Webster et al., 2024). This species is notable for its extensive genome, 

containing more than 800 V genes, while one of its GFF files alone exceeds 167,165 records, representing an intermediate number 

for data used in genomic characterization. The specimen used in this study has as reference chromosome CM061257.1, which 

allows a detailed analysis of its genetic organization and its reference in the National Center for Biotechnology Information 

(NCBI).  

When performing a detailed analysis of the GFF file characteristics, it was decided to use three key columns: Start, End and 

Strand. These columns concentrate the most relevant information for describing genomic structure and features, as seen in Table 

5. Although the start and end positions have a scale that can exceed millions, this granularity is essential for identifying each of 

the V gene sections. A major challenge in working with these files is that each file identifies only one section of the gene, rendering 

any attempt at independent analysis ineffective. For this reason, it is essential to unify the dispersed information. 

Moreover, the study of Tadarida brasiliensis provides an opportunity to explore not only the complexity of its immunogenetic 

repertoire but also the methodological challenges inherent in large-scale genomic projects. The high number of V genes, coupled 

with the fragmented representation in GFF files, highlights the necessity of implementing structured data reduction and integration 

strategies. Such approaches allow researchers to move beyond raw sequence data, enabling the extraction of biologically 

meaningful insights and supporting comparative studies with other vertebrate genomes. 
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Table 5. Basic statistics of the exonerate:est2genome set 

Column Min Max  Mean Median NA_Count 

seqid 13 CM061257.1 0 13 - 

start 15537 250241728 239268703.757382 247595660 0 

end 15746 250242045 239269002.931899 247595962 0 

strand 1 - 0 1 - 

2.2 Data preprocessing stage 

Analysis of the data in GFF format shows that its sparse structure makes it difficult to accurately represent the V gene, limiting 

the application of machine learning algorithms. Each record captures only a part of the information, preventing a complete 

identification of the gene. To solve this problem, a preprocessing for unification has been developed that integrates the fragmented 

data into new records, improving their representation. This approach is based on the relative distances between V gene sections, 

allowing them to temporarily omit the character sequence and focus on the structural information in the GFF files.  

Data unification. In this research, it is essential to implement a new preprocessing technique that focuses on the unification and 

integration of data from different sources into complete and accurate records. This unification enables the representation of the V 

gene's structural composition, incorporating the relative distances between its three sections (SP, Exon, and RSS). Consequently, 

the dependence on absolute positions is mitigated, enhancing the flexibility and accuracy of the analysis, even when tools vary in 

their start and end values. 

This approach optimizes time and resources in V gene identification by consolidating scattered data, making annotation more 

efficient. Systematic integration of these data not only improves V gene identification but also creates a reusable framework for 

consolidating data from other genomes. The subsequent section delineates data unification with a five-stage flowchart, as shown 

in Table 6. 

Table 6. Five stages of data unification 

Stage  Description 

1 GFF data import Recovery and adaptation of GFF files, transforming them into a tabular format that 

facilitates subsequent manipulation and analysis 

2 Identification of file 

with least redundancy 

Comparison of all available files to determine which has the fewest redundant 

records; this file is chosen as the starting point because it offers the most specific and 

reliable information for constructing V-gene records 

3 Data extraction and 

preparation 

Using the positions from the least-redundant file, missing data are extracted from the 

other files to improve the representation of the V gene 

4 Construction and 

validation of V gene 

records 

Assembly of V-gene records according to biological constraints, ensuring that 

generated records do not exceed biologically consistent distances between feature 

points 

5 Adjacency matrix 

construction and 

vectorization 

Generation of an adjacent matrix for each gene to represent relational data; new 

distance-based features are derived from this matrix and then vectorized to facilitate 

their use by machine-learning algorithms 

The five stages are articulated to ensure that the processed data are of high quality and ready for analysis at advanced stages. The 

combination of these activities not only improves the accuracy of V gene identification, but also simplifies the handling of complex 

data, promoting a more efficient and reliable workflow. Fig. 5 presents the general structure of data unification and its five stages. 

 
Fig. 5. Data unification process. 
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The first stage consists of importing GFF data: this stage involves retrieving and adapting the GFF files, transforming them into 

a tabular format that facilitates their manipulation and subsequent analysis. The second stage, shown in Fig. 6, consists of 

identifying the file with the lowest redundancy, ensuring that the selected set contains only unique information. To do this, the 

redundancy of each GFF set is calculated, verifying whether at least one of the Start or End columns contains unique values and 

whether these represent the totality of the records within the analyzed file. Once the appropriate option is identified, the set with 

the lowest redundancy is assigned to the DUMrev or DUMforw (Data Unique Matrix) variable, depending on the direction of the 

alignment. At this stage, it is considered whether the alignment is Reverse or Forward. Finally, the DUMrev and DUMforw 

matrices are returned for use in the following stages of the unification. 

 
Fig. 6. Second stage, identification of the file with less redundancy. 

The third stage, shown in Fig. 7, consists of data matching and preparation, ensuring that the records are structured correctly. 

Therefore, the starting positions of the DUMrev and DUMforw matrices are extracted in pairs and used as ranges. With these 

ranges, data is retrieved from the other matching GFF files within the intervals set by these ranges. Subsequently, the extracted 

records are assigned to lists according to their direction: LISTMrev or LISTMforw. These lists store the records in a structured 

manner for further analysis. The process continues iteratively until there is no more outstanding data in DUMrev or DUMforw. 

 
Fig. 7. Third stage, data adequacy and data preparation. 
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The fourth stage, shown in Fig. 8, consists of the construction and validation of V-gene records. The objective is to ensure that 

the generated records comply with biologically consistent distances between sections, consolidating the information from the 

previous subprocesses. The subprocess starts by extracting a record from DUMrev or DUMforw and assigning it to the RSS 

variable. The next step is to process the data from LISTMrev or LISTMforw, depending on the DUM from which it was extracted 

for the RSS. The following mappings follow the structure of the first LISTM record (depending on the strand) mapped to Exon, 

while the next one is associated with SP.  

Record construction is based on a generic V-gene structure, ensuring that the three sections are correctly represented and that 

each record is biologically valid. To maintain this coherence, four fundamental rules are established to delimit the gene structure, 

which are presented in Table 7. 

Table 7. Rules for data unification 

Rule  Description 

1 Distance between RSS 

and Exon 

The absolute difference between the start position of the RSS and the start of the Exon 

must be ≥ 0 and ≤ 15 characters. Ensure sections are close without overlaps or 

excessive gaps; otherwise, the next record is extracted as an Exon and reevaluated 

2 Distance within the 

Exon 

The absolute difference between the Exon’s start and end must lie between 280 and 

350 characters. Absolute values are used because reverse alignments increase and 

forward alignments decrease; if not met, the next record is analyzed and the entire 

process restarts 

3 Distance within the 

SP 

The absolute difference between the SP’s start and end must be > 45 but ≤ 50 

characters. If this condition fails, the record is extracted as SP and the full evaluation 

process restarts 

4 Distance between SP 

and Exon 

The absolute distance between the SP’s start and the Exon’s end must be between 60 

and 150 characters. This ensures biologically consistent separation; if the criterion is 

not met, another record is treated as a potential SP and the whole process restarts 

If all validation criteria are met, the RSS, SP and Exon records are stored in the Mat_Gen array according to the direction of 

alignment and these arrays are stored in ListMat_Genrev or ListMat_Genforw depending on the direction. Once there is no more 

data left in DUMrev or DUMforw, the lists are returned, containing the final records ready for analysis in the next phase of the 

unification method. This subprocess is critical for structuring the data in a consistent manner, ensuring that the V gene sections 

are represented with biological accuracy. 

 
Fig. 8. Fourth stage, construction and validation of V gene registers. 
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The fifth stage, presented in Fig. 9, consists of the construction of adjacent matrices and their vectorization, a critical step in 

transforming the V gene records into a matrix and vector representation. This process optimizes downstream analysis by ensuring 

an accurate relationship between gene sections. The procedure begins with the combination of ListMat_Genrev and 

ListMat_Genforw, generating a new list called ListMat, which contains all the unified records. From ListMat, the first record is 

extracted and stored in MatrizGen, establishing the basis for the construction of relationships between the data. 

The adjacency matrix (AdMatrix) is constructed to represent all possible distances between the data of the current record and 

specifically its start and end fields. To avoid redundancies, all values below the diagonal are set to zero, ensuring a coherent 

structure. The records are then vectorized for storage. The start and end positions are stored in the Gen array, while the adjacency 

matrix is vectorized and stored in Distans. These two lists are combined to form the Totalgen array, facilitating their manipulation 

and structuring into an ordered data set. Subsequently, the direction of the records is determined from MatrixGen, classifying 

them as Forward or Reverse. Depending on their direction, a new record is added to Totalgen, assigning values 0 or 1 accordingly. 

All records generated for Totalgen are stored in MatFinal, which will be the new dataset, since it will contain the gene structure, 

its direction and distances. The subprocess is repeated until there are no more records in ListMat. 

Data unification is essential to generate complete and structured records that comprehensively represent a V gene. Each record 

must cover the entire gene structure, avoiding partial fragmentations. The construction of records is based on the formation of 

adjacent matrices and their vectorization, processes that will be detailed in the construction of adjacent matrices and their 

vectorization, because they depend on the application of specific distances and methods of data structuring. The data unification 

method is highly adaptable to any genome containing V genes and using sequence alignments for their identification. Its versatility 

allows the method to be reused in different genomic studies, ensuring accuracy, efficiency and applicability in genetic 

characterization.  

 
Fig. 9. Fifth stage, construction of adjacent matrices and their vectorization. 

Construction of adjacent matrices and their vectorization. One of the fundamental steps of the data unification method is 

the formation of functional records from structurally valid arrays. The section will focus on the construction of these records using 

an adjacency matrix, with the goal of ensuring that each record within the array represents validated distances between V gene 

sections. Array formation depends on the records generated by sequence alignments, organized in tables that group three records 

to represent the sections of a gene. The example presented is based on data from the individual Tadarida brasiliensis, which has 

six sequence alignment files: (a) Hmmerscan for RSS, (b) Exonerate:protein2genome, (c) Exonerate:est2genome, (d) Tblastx, (e) 

Tblastn and (f) Hmmerscan for SP and Exon.  

As shown in Table 8, there are examples of records that can be found in ListMat_Genforw or ListMat_Genrev, which are stored 

in MatrixGen. Each group of three records represents a V gene, along with its respective sections and associated strands. Although 
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the Feature column specifies the section of the gene that has been identified, it cannot always be used as an absolute criterion 

when forming the records. In this example, the first record corresponds to the RSS, the second to the Exon, and the third to the 

SP. The same sequence is repeated in the fourth, fifth, and sixth records, thus representing a second V gene. 

Table 8. Example of records for a V gene with all its sections 

Seqname Source Feature Start End Score Strand Frame Attribute 

CM040297.1 hmmerscan RSS 3712219 3712180 NA - NA NA 

CM040297.1 exonerate:est2genome Exon 3712181 3711873 NA - NA NA 

CM040297.1 exonerate:est2genome gene 3711792 3711746 NA + NA NA 

CM040297.1 hmmerscan RSS 2168368 2168403 NA - NA NA 

CM040297.1 exonerate:est2genome Exon 2168406 2168717 NA - NA NA 

CM040297.1 exonerate:est2genome gene 2168796 2168837 NA + NA NA 

The first step in record construction is the assignment of data to the Gen variable, using the information in Table 8. In this process, 

only the absolute positions in the genome are extracted and vectorized. The Gen variable defines the positions to be used for the 

adjacency matrix. Each of the records represents one of the sections of the V gene, the first 3 records in the Start column represent 

the start of the RSS, the Exon and the SP while the last three are the end positions of these, the record is presented in Table 9. 

These two rows represent the two possible genes obtained from the records in Table 8. 

Table 9. Examples of V genes organized into Their six sections 

StartRSS StartExon StartSP EndRSS EndExon EndSP 

3712219 3712180 3712181 3711873 3711792 3711746 

2168368 2168406 2168796 2168403 2168717 2168837 

The calculation of the distance is based on the progressive subtraction of each position of a gene with respect to all other positions, 

repeating this procedure for each position. As shown in Equation 1, the subtraction of the first position of the gene is presented, 

which corresponds to the start of the RSS with a position of 3712219. The result of all these subtractions corresponds to the first 

row of the adjacency matrix, which represents the absolute distances between the V gene sections. This process is repeated for 

each of the positions representing the gene and is performed for all other positions representing the V gene. 

                      [
3712219 − 3712219 3711873 − 3712219
3712180 − 3712219 3711792 − 3712219
3712181 − 3712219 3711746 − 3712219

] = {0 39 38 346 427 473}                                         (1) 

Table 10 presents the new adjacency matrix obtained from the process of Fig. 10, in which there are absolute values between the 

different distances. It is noteworthy that, at first glance, this matrix assumes a mirror-like configuration. Given the occurrence of 

the mirror in all values below the diagonal, it is determined that all values below the diagonal should be converted to zero. The 

new matrix could be used in its current form; however, it would not be entirely suitable for a machine learning algorithm. 

Therefore, it must be vectorized to generate a single record. This process is repeated for each record.  

Table 10. Example of adjacency matrix 

 3712219 3712180 3712181 3711873 3711792 3711746 

3712219 0 39 38 346 427 473 

3712180 0 0 1 307 388 434 

3712181 0 0 0 308 389 435 

3711873 0 0 0 0 81 127 

3711792 0 0 0 0 0 46 

3711746 0 0 0 0 0 0 

With the adjacency matrix generated, the values of the distances are vectorized and added to the Totalgen. Subsequently, the 

direction of gene V is verified using the first record of the MatrixGen variable, which allows this information to be incorporated 

into the vector. Finally, the Totalgen variable is integrated into the MatFinal Table, where all the V gene records are stored.  
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The new dataset is composed of 43 features of which the first seven are the positions of the alignments in the genome. These first 

features are maintained by preserving the relationship between the records and their location in the genome. The first seven 

attributes correspond to 1) Strand, 2) Start_RSS, 3) Start_Exon, 4) Start_SP, 5) End_RSS, 6) End_Exon and 7) End_SP. 

Table 11 presents the 36 attributes representing the relationships between each of the V gene sections and the distances between 

them. As previously mentioned, all values below the diagonal of the adjacency matrix are converted to zeros. With the integration 

of these data, the final set is obtained, ready to be used in some machine learning algorithm.  

Table 11. Attributes resulting from data unification 

Attributes 8 to 13 Attributes 14 to 19 Attributes 20 to 25 Attributes 26 to 31 Attributes 32 to 37 Attributes 38 to 43 

StartRSS-StartRSS EndRSS-StartRSS StartExon-StartRSS Endexon-StartRSS StartSP-StartRSS EndSP-StartRSS 

StartRSS-EndRSS EndRSS-EndRSS StartExon-EndRSS Endexon-EndRSS StartSP-EndRSS EndSP-EndRSS 

StartRSS-StartExon EndRSS-StartExon StartExon-StartExon Endexon-StartExon StartSP-StartExon EndSP-StartExon 

StartRSS-EndExon EndRSS-Endexon StartExon-EndExon Endexon-EndExon StartSP-EndExon EndSP-EndExon 

StartRSS-StartSP EndRSS-StartSP StartExon-StartSP Endexon-StartSP StartSP-StartSP EndSP-StartSP 

StartRSS-EndSP EndRSS-EndSP StartExon-EndSP Endexon-EndSP StartSP-EndSP EndSP-EndSP 

It is essential to understand both the structure of the original data and the structure of the new set, because they follow an 

unsupervised learning approach. To avoid the loss of relevant information, traceability of records must be preserved during data 

unification. Furthermore, the selection of suitable algorithms is crucial to processing the data in an optimal way and to ensure a 

correct interpretation of the spatial relationships between the V-gene sections. Therefore, the next activity consists of performing 

column filtering and data normalization. 

Data normalization and data splitting. The evaluation of the effectiveness of data unification was based on its use in the GFF 

datasets of the species Tadarida brasiliensis. The analyzed set consists of 1,006,797 records, distributed among its six GFF files, 

representing the magnitude of data that experts must work with daily in genome characterization and V gene identification. 

The total number of records after the application of the unification is 46,787 records. The percentage reduction in search space is 

calculated using the following Equation 2. This Equation enables the identification of the initial percentage reduction in the search 

space, thereby providing a quantitative metric for assessing data unification. In this case, the reduction achieved is 95.35%, which 

represents a significant reduction in the number of records to be analyzed. Although there is a significant reduction in the search 

space, many records with similar values remain, as shown by the fraction in the total space reduction. 

            ((𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 − 𝐹𝑖𝑛𝑎𝑙 𝑡𝑜𝑡𝑎𝑙)/𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑜𝑡𝑎𝑙)  × 100                  (2) 

One of the first points that are addressed on the data set are the columns composed entirely of zeros. Table 12 presents a fraction 

of the data set resulting from data unification. Examples of columns with no relevance are a) StartRSS-StartRSS or b) StartRSS-

EndRSS, these attributes are made up entirely of zeroes, so they are filtered and removed. After this filtering, the dataset is reduced 

to 22 columns, which contain information about the distances between V gene sections and their original positions in the genome. 

The final step in the process of splitting the data set consists of extracting the initial seven columns, resulting in a total of 15 

attributes used. The selection of these 15 attributes is based on their ability to encompass the complete set of distances between 

each section of the V gene. This approach allows the most relevant information to be used for model training. 

Table 12. New data set obtained from data unification 

Strand Start

RSS 

Start 

Exon 

Start 

SP 

End 

RSS 

End 

Exon 

End SP StartRSS-

StartRSS 

StartRSS-

EndRSS 

StartRSS-

StartExon 

StartRSS-

EndExon 

StartRSS- 

StartSP 

StartRSS-

EndSP 

0 15507 15543 15931 15542 15857 15975 0 35 36 350 424 468 

0 15507 15543 15929 15542 15851 15970 0 35 36 344 422 463 

When starting the analysis of the data, the first step is to verify its normality. The distribution plots in Fig. 10 represent exclusively 

the distances between the gene sections and in particular, the relationship between the start of the RSS and the end of the Exon. 

As shown in the non-standardized results, as shown in Fig. 10 (a) plot, the distances range from 300 to 38 characters, which is a 

common range for the distance between the two gene sections.  
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However, the data still does not present a uniform scale or a clear approximation to normality, highlighting the need to normalize 

the data. For this study, the normalized function of scikit-learn was used, based on the L2 or Euclidean norm (Pedregosa et al., 

2011), fitting the values to a vector of length 1. The second plot in Fig. 10 (b) shows the data after normalization, evidencing a 

more uniform distribution and better adaptation to the processing algorithms, which optimizes their performance in the following 

stages of the analysis.  

   
                                     (a)                                                                                                       (b) 

Fig. 10. Distribution plots of the start of the RSS at the end of the Exon. (a) distribution of the distance from the start of the RSS 

to the end of the Exon (b) distribution of the distance from the start of the RSS to the end of the normalized Exon. 

With the normalization of the data, we proceeded to the elaboration of two new graphs that represent the dispersion of the data. 

Fig. 11 shows these graphs, where the state of the data before and after normalization can be observed. It is important to highlight 

the new distribution after normalization. Fig. 11 (a) presents the original and unprocessed data, while Fig. 11 (b) represents the 

data after normalization. This normalization will allow correct processing by the algorithms to be used, allowing the identification 

of unknown relationships and patterns. 

 
                                    (a)                                                                                                  (b) 

Fig. 11. Scatter plots of the first two attributes of the set (a) scatter plot of the original data (b) scatter plot of the data 

normalized with the Euclidean function. 

Finally, it is worth mentioning that normalization makes use of the alignment data and reference data processed by the data 

unification. The reason for using all data at the same time is to use as much data as possible and to verify the effect of the reference 

data. But these reference data are extracted for data processing so as not to affect the model implementation. The algorithm will 

only make use of the 46,787 records for its implementation, bypassing a total of 918 reference records that will be used for the 

validation of the best group. 
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2.3  Data processing stage 

The processing stage consists of the application of a machine learning algorithm suitable for the type of data used. In this case, 

the objective is the reduction of the search space and the identification of V genes, which implies working with an unclassified 

dataset, because there are no features available to clearly differentiate between defined classes. Because of this, the problem falls 

within the scope of unsupervised learning, which requires the selection of a clustering algorithm capable of identifying records 

with greater similarity to each other. 

The selected algorithm is Gaussian Mixture Models (GMM) due to its ability to model complex data distributions and detect 

hidden patterns without the need for predefined labels. Unlike other clustering methods such as K-Means, GMM allows modeling 

data that does not necessarily follow a spherical structure, which makes it more suitable for data sets with variability in their 

distributions (Oscar Contreras Carrasco, 2024; Pedregosa et al., 2011). 

With the definition of the algorithm, it is necessary to determine the optimal number of groups. Although this decision can be 

made arbitrarily, in the present study it has been decided to make use of one of the most used approaches for the definition of 

groups which is the Elbow Method, which identifies the point where the inertia (variability within groups) decreases (Shi et al., 

2021).  

Finally, once the number of groups has been defined, the last stage of data processing is carried out: unification by groups. This 

step consists of consolidating the data within each group, since similar records are expected to be found in the same cluster. The 

goal is to minimize the number of results per group. This final reduction is necessary because only one result is reported for each 

V gene in every group. The data processing performed for the Tadarida brasiliensis dataset is presented below. 

Selection of groups and application of the Gaussian mixture model. The first step in this section was the selection of a 

clustering algorithm for the nature of the data. As mentioned earlier, due to the structure of the data, it is necessary to use an 

unsupervised learning technique, particularly a clustering algorithm. Although there are multiple approaches for data 

segmentation, in this study we have chosen to use the Gaussian mixture model (GMM). This algorithm assumes that the data 

comes from multiple overlapping normal distributions, which allows modeling uncertainty in the assignment of points to groups.  

Unlike algorithms such as K-Means, which assigns each point strictly to a single group, GMM allows points to have a probability 

of belonging to different groups, which makes it more suitable for data with non-spherical structures (Oscar Contreras Carrasco, 

2024; Pedregosa et al., 2011). The analysis of Fig. 12, which represents the dispersion of the data, allows for the identification of 

three key characteristics in its distribution. These characteristics are presented in Table 13. 

Table 13. A comparison of K-Means and GMM for non-spherical structures 

Observation K-Means Limitation GMM Advantage 

Non-spherical 

structure 

The K-Means algorithm assumes that clusters 

are isotropic (circular), which prevents the 

detection of groupings with elongated or 

elliptical geometries 

The Gaussian mixture model represents each 

cluster as a multivariate Gaussian distribution, 

each with its own vector. This approach 

captures elliptic and other complex geometries 

Overlapping of 

potential groups 

Each observation is assigned exclusively to a 

single cluster, imposing rigid boundaries even 

in regions where groups overlap 

It assigns to each observation a probability of 

belonging to each component, which facilitates 

smooth boundaries that adapt to regions of high 

density and allow the overlapping of subgroups 

Heterogeneity in 

dispersion 

It assumes that all clusters share the same 

variance, making it unsuitable for modeling 

structures with heterogeneous dispersion 

As each Gaussian component has an 

independent covariance matrix, the model 

supports clusters with heterogeneous variances 

and irregular dispersions 

Based on these observations, GMM was defined as the algorithm selected for this study, because it allows capturing complexities 

in the data distribution and generating clusters more representative of the underlying structure in the analyzed set. The need to 

obtain clusters with clear similarities in their data is one of the main reasons for its selection. 

After preprocessing the data and defining the clustering algorithm, we proceeded to define the optimal number of clusters. 

Therefore, it was determined that the elbow method would be employed to ascertain the point at which augmenting the number 
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of groups no longer engenders substantial enhancements in data compactness. Fig. 12 shows the relationship between the number 

of groups (k) and inertia, showing a drastic reduction in inertia between k = 2 and k = 4. However, from k = 4 onwards, the 

decrease in inertia becomes less pronounced, indicating that adding more groups does not significantly improve the quality of the 

clustering. In this study, 4 clusters will be used. 

 
Fig. 12. Results of the Elbow Method. 

After defining the number of groups and the algorithm to be used, the data were trained and grouped. Fig. 13 presents the scatter 

diagrams with the grouped data. The first diagram (Fig. 13 (a)) shows the original data from Fig. 11 (b). The four groups are 

represented by different colors, and the principal component analysis (PCA) technique was used to improve the graphs' 

representation (see Fig. 13 (b)). Note that a new group labeled 10 is presented in the graphs. This group represents the reference 

data that were not used to train the algorithm. The purpose of representing these data is to evaluate their proximity to the other 

groups and to analyze if they present any relevance within the segmentation performed. 

 
     (a)                                                                                           (b) 

Fig. 13. Scatter plots after applying the GMM algorithm. (a) Scatter plot of normalized and pooled data (b) Two-component 

scatter plot with PCA. 

Finally, the cluster analysis indicates that: a) cluster one has clustered 8219, b) cluster two has clustered 1117, c) cluster three has 

clustered 33968 and d) cluster four has clustered a total of 3482. Each of these clusters contains N number of V genes, but one of 

the problems with these clusters is that there is still repeatability so performing another data unification will solve this problem. 
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Unification of data by groups. The unification of data by group is the last point of processing, which allows minimizing the 

number of results within each grouping. This reduction is essential for the comparison of the quality of each group with reference. 

The new data unification is because each group identifies a number N of V genes. However, these genes may appear in several 

records with small variations, generating redundancies within a group. For example, position 15946089 in Table 14 corresponds 

to the start of one gene, while position 247913721 corresponds to the start of another gene. These two positions mark the start of 

the RSS in their respective genes. This pattern in the two genes will be repeated for each gene in the different groups. 

Table 14. Positions grouped by the algorithm 

Number  StartRSS StartExon StartSP EndRSS EndExon EndSP 

1 15946089 15946130 15946516 15946129 15946438 15946566 

2 15946089 15946130 15946516 15946129 15946441 15946566 

3 15946089 15946130 15946516 15946129 15946444 15946566 

4 247913721 247913760 247914148 247913759 247914065 247914189 

5 247913721 247913762 247914142 247913759 247914070 247914183 

6 247913721 247913762 247914143 247913759 247914067 247914190 

In view of the high prevalence of repetition among the identified genes, it is proposed that the data for each group be consolidated 

by computing the column-wise mean. This will result in the production of a single representative row per gene. As demonstrated 

in Table 15, this procedure results in the derivation of two genes from the six rows presented in Table 14. This consolidation 

process serves to reduce redundancy and ensures that each gene is represented by a single, comprehensive record. 

Table 15. Positions grouped by the algorithm 

StartRSS StartExon StartSP EndRSS EndExon EndSP 

15946089 15946130 15946516 15946129 15946441 15946566 

247913721 247913760 247914148 247913759 247914065 247914189 

However, the process used to generate the records in Table 15 often produces decimal values because of averaging. To address 

this issue and obtain a single representative record per gene, the value closest to the average is selected within each group, 

prioritizing those that preserve biological coherence. Following this criterion, the second and fourth records from Table 14 are 

retrieved. 

This procedure is repeated for each gene across the different groups, aiming to obtain unique V genes within each grouping, 

thereby enabling their evaluation against the reference standard. Given the nature of the problem, generic evaluation metrics 

cannot be applied, as a specific approach is required to ensure precise and consistent measurements. To this end, the final phase 

of the method incorporates a post-processing step. 

3 Postprocessing 

The final stage of the method corresponds to postprocessing, whose purpose is to evaluate and select the most appropriate cluster 

among those generated by the GMM algorithm. The evaluation is based on error-related metrics, as they quantify the quality of 

the clusters in relation to the reference. The metrics applied include a) Mean Absolute Error (MAE), b) Mean Squared Error 

(MSE), c) Root Mean Squared Error (RMSE), and d) the number of genes in each group. The use of these metrics allows for an 

effective assessment of the method’s capacity to reduce the search space and accurately identify V genes. This ensures that the 

unified records faithfully represent the actual genomic structure. 

Finally, a reduced file is generated by comparing the genomic positions of the best-performing group against the original files. 

This reduced file, containing the most accurate positions, is subsequently used in the IGV tool to demonstrate the effectiveness of 

the method in narrowing the search space for V genes in vertebrate genomes. 

3.1 Evaluation and selection of the best group 

In interpreting the results for the selection of the best group, it is first necessary to understand the relationship between the new 

data set and the reference used for validation. As mentioned above, the unified dataset contains 46,787 records, each representing 

a possible V gene. However, one of the key questions for the method is: How many actual V genes can be identified within these 
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46,787 records? To answer this question, a unique function is used on the first column of the dataset (Start_RSS), which allows to 

count the number of unique V genes being the total of 842 V genes that can be identified. 

It is essential to know this number, because it sets a limit on the maximum number of V genes that can be identified in the dataset. 

From this, the second question arises: How many complete and validated V genes are there in the reference? The answer to this 

question is a total of 917 records. These records will be used for the evaluation of the method. 

The evaluation follows the principle of regression measurement, where an expected value (expert reference) and a predicted value 

(data obtained from the search space reduction method) are compared. Table 16 shows this comparison, where: a) the first row 

represents the values scored by the experts (expected reference); b) the second row corresponds to the data generated by the 

unification method; c) The third record shows the difference between both values, used to calculate the error metrics. 

Table 16. Evaluation of the results of the method against the reference 

 StartRSS StartExon StartSP EndRSS EndExon EndSP 

Reference 88965 88926 88539 88930 88615 88495 

Method 88967 88929 88536 88929 88621 88490 

Difference -2 -3 3 1 -8 5 

The evaluation results are presented in Table 17, which summarizes the quality of each group generated by the Gaussian Mixture 

Model algorithm. This comparison reveals variability in the number of genes identified, with an approximate error of 3 in most 

cases. The best-performing group achieved an error of 3.166583, identifying 734 genes out of 842, which corresponds to 87.17 % 

of the total. 

Although the total number of identified genes does not reach 842, this discrepancy is explained by structural alterations in certain 

genes, which hinder their proper grouping and identification by the proposed method. Nevertheless, Group 3 stands out as the top 

performer, yielding the lowest error and the highest number of V genes identified. 

Table 17. Results of the test of the search space method 

Group No. of data Number of genes MAE MSE RMSE 

1 8219 490 2.820408 22.254422 4.717459 

2 1117 21 2.47619 15.793651 3.974123 

3 33968 734 1.986376 10.027248 3.166583 

4 3482 175 3.333333 40.95619 6.399702 

Table 17 provides an overview of the error, while the distribution plots in Fig. 14 offer a more detailed perspective on the 

magnitude and variability present in each section of the V gene. These plots show how the displacement varies across the different 

sections of the V gene within the analyzed groups. For instance, in the Start_RSS position from Fig. 14 (a), Group 3 exhibits an 

error close to zero, with most values ranging between +1 and +4. This stability indicates that the records in this group align more 

closely with the expert reference for the RSS start section. As shown in Fig. 14 (a), most genes in Group 3 are positioned at +1, 

with a bar exceeding 600 records, followed by Group 2 with approximately 400 genes. This demonstrates that, at least for the 

gene start section, Group 3 delivers the best results. 

The Exon_start and SP_start, shown in Fig. 14 (b) and 14 (c), greater variability is observed, even within Group 3. In the case of 

Exon_start from Figure 14 (b), values range from +1 to +10, with notable concentrations at positions +4 and +5, indicating a 

higher degree of dispersion and reduced precision in correctly identifying the gene. For SP_start Fig. 14 (c), values range from -

1 to +10; however, in Group 3, most data points are concentrated at +1. This plot also reveals that certain groups exhibit variations 

of up to 80 positions, with minimal records of a single gene, but associated with an abnormal error. 

Finally, Figs. 14 (d), 14 (e), and 14 (f) present the results for the final sections of the V gene. In Fig. 14 (d) (End_RSS), most 

values are concentrated at 0, with slight variations at -1, indicating the presence of genes with missing characters that prevented 

perfect identification. In Fig. 14 (e) (End_Exon), a pattern like Fig. 14 (b) is observed, where gene identification is more 

challenging due to greater positional variation, with displacements ranging from +1 to +10. For Group 3, the highest concentration 

occurs at +1, with nearly 300 genes, suggesting an error of at least one base. Lastly, Fig.14 (f) (End_SP) exhibits the largest 

displacement, with errors between -2 and -1. Although some error margin remains in this plot, the presence of values at 0 

demonstrates that the method can accurately identify genes in this section. 
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                           a)                                                            b)                                                           c) 

 
                            d)                                                          e)                                                             f) 

Fig. 14. Error distribution plots for each group: a) Start_RSS position, b) Start_Exon position, c) Start_SP position, d) End_RSS 

position, e) End_Exon position, and f) End_SP position. 

3.2 Reduced file and its use in IGV 

Consequently, the reduced file is obtained from the dataset with the highest identification accuracy. In this final phase, the first 

seven columns of the optimal dataset are used to determine the positions of the V gene. As shown in Table 18, an example from 

dataset 3 is presented, where the first column indicates direction, the next three columns correspond to the initial sections, and the 

last three columns to the final sections of the gene. To construct the reduced file, the first three columns of the first row are merged 

into a single column, and the same procedure is then applied to the last three columns of that row. This process yields a structured 

representation of the V gene. 

Table 18. Example of final records for reduced V gene(s) 

Strand StartRSS StartExon StartSP EndRSS EndExon EndSP 

Reverse 15507 15543 15928 15542 15851 15975 

Forward 2107209 2107245 2107629 2107244 2107553 2107676 

Once a Table with only two records is obtained, the original files are searched for records that generate the same positions as the 

table, for example, StartRSS with 15507 and EndRSS with 15542, and the record that is identical to these positions is extracted. 

Finally, these results are transformed into GFF format and unified in a single file. Fig. 15 shows an example of a fraction of this 

file with the present example. In this format, every three records represent one gene, consolidating the information in a structured 

way and facilitating its analysis in genomic annotation tools. 

 
Fig. 15. Example of a V gene in the reduced file. 

To demonstrate the method's feasibility, the results were presented using the tool employed by experts. This approach shows how 

the method reduces the search space and facilitates the identification of V genes in the analyzed genome. Fig. 16 shows the 

clusters generated by the method, displaying the distribution and segmentation of the data. The IGV system facilitates the 

assessment of the magnitude of the Tadarida brasiliensis genome in relation to the V genes. 
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Fig. 16. Set of alignments reduced by the method. 

When the analysis is extended over a set of alignments, a key phenomenon emerges: some groups identify genes that others do 

not. This highlights the importance of understanding that the method is not completely foolproof, because its accuracy is 

influenced by the nature of the V genes and the variability in their alignments. While certain groups may detect genes that others 

fail to identify, as shown in Fig. 17, the fundamental question is not only which genes are identified, but how accurately these 

results are achieved. Evaluating this aspect is essential to determine the reliability of the method, ensuring that the detections are 

consistent and reproducible within the genomic characterization process.  

 
Fig. 17. Close-up of a set of alignments.  

When selecting a gene, Fig. 18 shows the three sections of the gene; in this case the gene has a reverse direction, in red the 

reference of the expert is shown. It is relevant to mention that group three shows a great closeness to the reference, but it is not 

perfect, this is demonstrated by the missing characters at the start of the gene. But it compensates mostly with the accuracy in the 

SP, the last section of the alignment. 

 
Fig. 18. Example of a gene with alignments. 

Finally, when a closer approach is made to the start of the Exon and the alignment of the SP, Fig. 19 shows the closeness of each 

group to reference. As shown in group 3 and 4 present a great closeness to the reference in the case of the start of the Exon but in 

the alignment of the SP is where the difference of each group is demonstrated. In the case of the SP for group 3 is the one that 

presents a greater accuracy of all the groups, in the case of group 3 it only varies by one position being almost perfect.  

 
Fig. 19. Example of the alignments of a SP. 

4 Discussion 

The proposed method for data unification and search space reduction proved to be an effective tool for improving V gene 

identification in large volumes of genomic data. The integration of multiple alignment sources allowed for a more complete 

representation of the gene, reducing redundancy and minimizing the manual effort required by experts. However, despite the 

improvement in accuracy and efficiency, the method still presents challenges, especially in the identification of specific sections 

of the gene, such as the Exon, where higher variability was observed compared to the expert reference. 
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One of the most relevant aspects of the analysis was the evaluation of the performance of the method in terms of computational 

time. Running on a computer with moderate specifications (Asus TUF with 16 GB RAM, mechanical hard disk, Intel Core i7U 

and an NVIDIA RTX 3070 graphics card) allowed the method to be completed in approximately 50 minutes, which represents a 

significant improvement compared to the manual method. However, this time could be optimized with the use of more advanced 

computational architectures or by comparing other models or dimension reduction techniques that facilitate data processing. 

Another key point in the discussion is the reliability of the Gaussian Mixture Model (GMM) used for clustering data. While GMM 

allowed modeling complex structures and capturing variations in the distribution of alignments, the probabilistic assignment of 

records to clusters suggests that some genes could have been classified into multiple clusters. Future research explores the 

combination of GMM with other machine learning approaches, such as dimension reduction to vary the structure and dispersion 

of the data. As well as analyzing other data normalization and cluster unification techniques and identifying if these produce any 

variation for method improvement. 

Finally, the transformation of the results to GFF format was a crucial step to ensure the applicability of the method in genomic 

analysis tools such as IGV. However, it was identified that the accuracy of the alignments is highly dependent on the quality of the 

input data. In the future, more extensive evaluation with different datasets is recommended. Validating the generalization to 

different genomes will allow robustness of the method and verify that the method is indeed applicable to multiple species. 

5 Conclusions 
 

This study presents an innovative method for reducing the search space in the identification of V genes, achieving a substantial 

improvement in both the precision and efficiency of the process. The combination of preprocessing, normalization, and clustering 

techniques significantly reduced the number of records to be analyzed, facilitating the identification of complete genes with high 

agreement to expert annotations. This is evidenced by the reduction in the search space: starting with a total of 1,006,797 records 

for all genes and concluding with clusters containing, at most, 734 records—one per gene. Although some data loss occurs, the 

method's optimization continues to offer opportunities for performance enhancement. 

The results demonstrate that the method can be applied to other genomes, provided that the input data meets the defined alignment 

and structuring criteria. The integration of multiple data sources into a unified reference set improves record quality and reduces 

redundancy, thus optimizing the time and computational resources required for genomic characterization. 

A noteworthy aspect of this method is the lack of a similarly structured proposal in the current literature that direction search 

space reduction with this level of systematization. This establishes an important precedent in the optimization of biological data 

through computational techniques. 

Despite its advantages, the method still presents areas for improvement—particularly in the identification of specific genomic 

sections, such as the signal peptide (SP) and Exon regions, as well as in computational efficiency. Future research will focus on 

refining clustering models, exploring new dimensionality reduction techniques, and assessing how genetic variability affects 

alignment precision. 

In conclusion, the proposed methodology represents a significant advancement in the systematization of V gene identification, 

especially when working with distance-based data instead of complete genomic sequences. Although the use of sequences is not 

excluded, this approach provides a solid foundation for future research in bioinformatics, genomic characterization, and 

computational process optimization. Its implementation in genomic analysis tools holds the potential to enhance gene annotation 

and facilitate data interpretation in studies of immunogenomics and molecular evolution. 
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