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Abstract. This research examines leader–team interactions in 
agile software development within a global context, with a focus 

on effort estimation. Drawing on principal–agent theory, we 

analyse the interaction on the assumption that the Scrum Master 
guides the development team under imperfect information. We 

model the interaction as a sequential game with incomplete 

information. In the first stage, the Scrum Master allocates 
resources to the development team; in the second stage, the team 

exerts effort. Both parties are characterised by types that capture 
their knowledge and skills. As these types are private information, 

we derive the Bayesian Nash equilibrium to determine the 

equilibrium effort levels. 
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1 Introduction 
 

Effort estimation (EE) is increasingly necessary since demand for software solutions is growing worldwide across multiple social 

and economic sectors (Yousif et al., 2024; Brem et al., 2021). Consequently, skilled developers with knowledge of emerging and 

innovative technologies are needed as resources to respond to the needs of the software industry. Moreover, skilled workers have 

boosted the adoption of different work schemes like home office, freelancers and open-source development communities in the 

software industry (Lisboa de Andrade et al., 2024; Zöller et al., 2020); reason why Global Software Development (GSD) 

environments have become attractive for software companies to carry on projects regardless of where developers are located 

(Zamir et al., 2025; Lopes et al., 2023). GSD generates benefits such as cost reduction and provides a large and skilled labor 

pool (Yadav, 2016).  

 

Nevertheless, EE is a complex task since GSD involves people with different objectives and processes (Grande et al., 2024; 

Zöller et al., 2020; Dantas et al., 2018). In other words, while agile methodologies promote close collaboration between co-

located teams, GSD seeks to incorporate human resources from different organizational and geographic locations, so team 

members' sourcing is determined by physical and legal dimensions (Smite et al., 2014). For example, offshore insourcing means 

a company moves software development to a branch, while offshore outsourcing transfers software development to an external 

third party (Britto, 2015). Hence, GSD faces various cultural and technical barriers to establishing collaborative work (Lisboa 

de Andrade et al., 2024; Butt et al., 2024). So, EE in merged environments such as Agile Global Software Development (AGSD) 

represents a greater challenge since EE is critical for software development to cope with delivery times (Rodríguez Sánchez et 

al., 2023; Piñeros Rodríguez et al., 2023; Mohagheghi & Jørgensen, 2017).  

 

It is worth emphasizing that teamwork is paramount since EE lies in the relationship of mutual dependence between the project 

leader and the development team to accomplish the project’s objectives within agile environments. However, in AGSD, the 

leader and the team members may have different objectives since they may belong to different organizations with different 

objectives (Sandeep et al., 2022). For example, in the Scrum methodology, the Scrum master (SM) focuses on producing the 

highest business value. At the same time, the development team (DT) wants to maximize its profits by exerting a minimum effort 

since it might be composed of smaller teams located in different places. Hence, when there is no proper communication between 

the SM and the DT (Digital.ai, 2020; Mutiullah et al., 2018), coordination and collaboration issues may arise in AGSD to the 

detriment of EE (Mishra et al., 2025; Constantino et al., 2020; Stray & Moe, 2020). Thus, agile methodologies aim to overcome 
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the previous challenges to access the benefits of building innovative and high-quality software at a lower cost (Mishra et al., 

2025; Yaseen et al., 2025; Rosado Castillo, 2024; Constantino et al., 2020; Stray & Moe, 2020; Hossain et al., 2009; Cristal et 

al., 2008; Sutherland et al., 2007). 

 

In summary, the leader and team members’ decision-making play a major role in EE. So, we study EE by considering that the 

leader and the team interact strategically in AGSD. Based on the principal-agent models (Eisenhardt, 1989), we consider that the 

SM (principal) guides the DT (agent) in developing a software project in the presence of imperfect information (their features 

are private information) when they interact in a sequential game. The SM provides resources to the DT in the first stage, while 

the DT sets its EE during the second stage. We analyze the subgame perfect Nash equilibrium as the solution concept to 

understand agents' decision-making. 

 

Regarding our understanding, we are the first to analyze EE in an AGSD context through the lens of game theory. In this sense, 

this study is a novel contribution to the EE in AGSD literature. Our contributions rely on the fact that there is a need for a 

systematic method to deal with dependencies between the parties involved in AGSD concerning EE (Wickramaarachchi & Lai, 

2017). Although EE can be done through a centralized or distributed process (Britto, 2015), such processes do not capture the 

strategic interactions during AGSD (Mishra et al., 2025; Yaseen et al., 2025).  

 

The lack of information also characterizes AGSD since the SM and the DT typically have not previously worked together when 

the latter is outsourced. Alongside cultural and linguistic differences, it is common not to have complete information about the 

skills and abilities of all the agents involved in a project (Yousif et al., 2024; Noll et al., 2010). Thus, agency issues (like moral 

hazard and adverse selection) may emerge, leading to unrealistic EE since there is no proper information about the skills and 

abilities of the agents involved in the project (Eisenhardt, 1989; Yaseen et al., 2025; Rosado Castillo, 2024). The empirical 

evidence supports the presence of agency problems in AGSD since developers engage in decision hijacking, free-riding, and 

gold plating during software development (Stray & Moe, 2020; Moe, 2013; Gulliksen Stray et al., 2011). For example, Shmueli 

and Ronen (2017) study the tendency to develop software by applying risky practices to project schedules, quality, and costs. In 

this regard, Moe et al. (2010) point out strategic misbehavior, where team members pursue their objectives without discussing 

them with their partners; in other words, they prioritize what they consider important instead of achieving the project’s objectives. 

In addition, outsourced developers might simultaneously work on several projects with different incentives for each one, which 

biases EE (Conoscenti et al., 2019).  

 

This paper is organized into four sections. The second section describes the game-theoretical model concerning EE in an AGSD 

context. Then, we compute the Bayesian subgame-perfect Nash equilibrium in the third section. Finally, in the last section, we 

discuss the conclusions and future work.  

 

2 The Model 
 

We study EE by considering that an on-site scrum master and one offshore development team interact in a single sprint of an 

outsourced Scrum environment. So, the SM and the DT have different priorities because they belong to different organizations 

or places (Conoscenti et al., 2019). In this sense, our methodology is based on establishing a game-theoretical model since Game 

Theory is the branch of mathematics that studies conflicts between decision-makers with different objectives (Bildirici et al., 

2024), as it happens in agile methodologies (Yousif et al., 2024; Wickramaarachchi & Lai, 2017). To simplify the model, we 

consider the DT a single decision-maker because its members self-organize, share goals, and make decisions collectively (Stray 

& Moe, 2020; Srivastava & Jain, 2017). Below, we describe the basic elements of our model. 

 

The set of players is 𝐽 = {𝑆𝑀,  𝐷𝑇}, the agents involved in the sprint. Given the planned sprint backlog under the AGSD setting, 

its completion depends on the interaction between agents in 𝐽. So, SM and DT develop different activities during the sprint. First, 

we assume that SM is a servant leader; that is to say, she is always willing to support DT by removing obstacles and conflicts 

(Srivastava & Jain, 2017; Villegas Gómez et al., 2016). Mathematically, servant leadership means that SM provides a support 

vector 𝑠 = (𝑟, 𝑐) where 𝑟 and 𝑐 are the resources and communication facilities SM wants to provide for the sprint development. 

Thus, the set of all SM's actions is 𝐴𝑆𝑀 = {𝑠 = (𝑟, 𝑐) ∈ ℝ2|𝑟, 𝑐 ≥ 0}.  
 

Regarding the offshore team, DT calculates the resources it needs to build the sprint backlog based on its knowledge and previous 

experience with leaders from other GSD projects. Hidayatu et al. (2020) characterize DT’s behavior by considering the resources  

(ℎ𝑟) and communication expenses (ℎ𝑐) it needs to develop the project. We denote by ℎ = (ℎ𝑟 , ℎ𝑐) as the type vector of 𝐷𝑇. The 

set of all possible types of DT is 𝐻 ⊆ ℝ2. Given the outsourced environment, we assume that SM does not know the DT’s type; 

hence, ℎ is private information (Conoscenti et al., 2019). Note that ℎ is the realization of the random vector 𝐻 = (𝐻𝑟 ,  𝐻𝑐). As it 
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is common in games with incomplete information (Bildirici et al. 2024), we assume ℎ is drawn from a common knowledge 

probability function 𝑧 ∶ ℎ𝑟 × ℎ𝑐 → [0,1]. The type vector ℎ influences the effort that DT wants to exert during the sprint. We 

consider that DT has three effort alternatives: high-effort 𝑒𝐻, low communication effort 𝑒𝐿𝐶, and overall low-effort 𝑒𝐿. Hence, 

the set of all possible DT actions is 𝐴𝐷𝑇 = {𝑒𝐻 , 𝑒𝐿𝐶 , 𝑒𝐿}. 
 

The payoffs of the players map an action vector (𝑠, 𝑒) ∈ 𝐴𝑆𝑀 × 𝐴𝐷𝑇 into a real number, i.e., 𝑢𝑆𝑀 ∶ 𝐴𝑆𝑀 × 𝐴𝐷𝑇 → ℝ and 𝑢𝐷𝑇 ∶
𝐴𝑆𝑀 × 𝐴𝐷𝑇 → ℝ. Such payoff functions summarize the agents’ preferences.   

 

2.1 Payoffs construction 
 

Payoffs depend on an action profile (𝑠, 𝑒). Moreover, SM and DT benefit from interacting with each other; i.e., they get revenue 

from fulfilling the sprint objectives while incurring costs associated with their activities. So, payoffs are the difference between 

the revenue and the costs.      

 

Concerning the SM, we assume that the costs of providing resources and communication are represented by a nonlinear function 

𝐶(𝑟, 𝑐) = (𝑟𝑐)2/𝜏, where𝜏 is the environmental stability during the sprint. The function 𝐶(𝑟, 𝑐) is aligned with empirical 

evidence that suggests a nonlinear relationship between 𝑟 and 𝑐 that increases when SM provides more resources or 

communication facilities. Also, the costs diminish as the stability increases, given the absence of discussions and 

misunderstandings between SM and DT (Ziauddin & Zia, 2012).  

 

Finally, we consider that the SM revenues are proportional to the DT’s effort since reaching the sprint’s goals depends on the 

DT activities (Lisboa de Andrade et al., 2024). By the previous discussion, the SM benefit is shown in equation 1. 

 

𝑢𝑆𝑀(𝑠, 𝑒; ℎ) =

{
 
 

 
 (𝑟𝑐)𝑒 - 

(𝑟𝑐)2

𝜏
       𝑠𝑖 𝑒 = 𝑒𝐻 ,

(𝑟𝑐)𝑒 - 
(𝑟)2

𝜏
         𝑠𝑖 𝑒 = 𝑒𝐿𝐶 ,

(𝑟𝑐)𝑒                    𝑠𝑖 𝑒 = 𝑒𝐿 .

  

(1) 

 
The benefit of DT is associated with the effort it can exert. If DT exerts high effort, we assume it gets the same benefits as SM, 

plus a monetary incentive 𝐼 that represents the fact that its activities contribute to fulfilling the sprint goal (Lisboa de Andrade et 

al., 2024). Concerning low effort, such action summarizes how DT values the SM’s support during the sprint. Specifically, we 

assume that 𝑒𝐿𝐶 means that DT does not value communication, while 𝑒𝐿 implies that DT does not get any value from the support 

vector 𝑠. Moreover, we assume that DT faces costs driven by the complexity of the sprint backlog, which is represented by 𝛾. As 

usual, we consider that DT faces a quadratic cost function over 𝑒 (Ziauddin & Zia, 2012); hence, the DT's payoff is given by 

equation 2.  
 

𝑢𝐷𝑇(𝑠, 𝑒; ℎ) = {

𝐼 + (𝑟𝑐)𝑒 - 𝛾𝑒2       𝑠𝑖 𝑒 = 𝑒𝐻 ,

𝐼 + (𝑟)𝑒- 𝛾𝑒2         𝑠𝑖 𝑒 = 𝑒𝐿𝐶 ,

𝐼 + 𝑒- 𝛾𝑒2                𝑠𝑖 𝑒 = 𝑒𝐿 .

  
(2) 

  

2.2 The Game 

 
We say that SM and DT interact in an offshore EE game. Given the features of a sprint, we model the interaction between the 

SM and the DT as a three-stage game.  

 

During the first stage, nature determines the offshore DT’s type ℎ through a probability distribution 𝑧. The SM does not observe 

the DT’s type, while DT does it at the end of this stage. In the second stage, SM sets the support vector 𝑠 that she wants to 

provide concerning the iteration development. All players observe such a vector, and the game moves to the third stage. Finally, 

in the third stage, the offshore DT exerts effort by considering the sprint features and the resources provided by the SM. Then, 

the offshore DT establishes the effort to develop the sprint backlog. 

 

After the sprint ends, agents observe the support vector provided by the SM and the effort exerted by the DT. Hence, the payoffs 

of each agent depend on the action profile (𝑠, 𝑒). Given a type ℎ, the payoffs are denoted 𝑢𝑆𝑀(𝑠, 𝑒; ℎ) and 𝑢𝐷𝑇(𝑠, 𝑒; ℎ) for the 

SM and DT, respectively. Figure 1 illustrates the EE game.  
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2.3 The Solution Concept 

 
Subsection 2.2 describes a sequential game where DT has private information concerning its type during the third stage. Since the 

SM does not know the DT’s type, her payoff is not deterministic. Consequently, the solution concept should consider the sequential 

structure and expected payoffs since SM does not know the type of DT. So, we consider a Bayesian Sub-Game Perfect Nash 

equilibrium as the solution for the EE game (Gavidia-Caldero et al., 2020). Before defining such an equilibrium concept, we first 

introduce additional notation.   

 

 

Fig. 1. The EE game in AGSD. 

 

First, it is worth recalling that the SM has a unique type (she is a servant leader). Consequently, an action of SM is also a strategy; 

the reason why the set of SM’s pure strategies is 𝑆𝑆𝑀 = 𝐴𝑆𝑀. Regarding DT, pure strategies depend on the realization of its type; 

mathematically, a pure strategy 𝜙 for DT is a decision rule that maps (ℎ, 𝑠) into an action in 𝐴𝐷𝑇. So, DT’s decision rule is a 

function 𝜙 ∶ 𝐻 × ℝ → 𝐴𝐷𝑇. Let 𝑆𝐷𝑇 denote the set of DT pure strategies. A profile of pure strategies is a vector (𝑠, 𝜙), and the set 

of all strategies’ profiles of the EE game in AGSD is 𝑆 = 𝑆𝑆𝑀 × 𝑆𝐷𝑇.  

 

A Bayesian Sub-Game Perfect Nash Equilibrium is a profile of pure strategies that induces a Nash equilibrium at each stage. So, 

agents do not have incentives to change their strategy since the equilibrium strategies provide the largest possible payoff.  

 

Definition 1. A profile (𝑠∗, 𝜙∗) ∈ 𝑆 is a Bayesian Sub-Game Perfect Nash Equilibrium, if and only if  

a. 𝐸[𝑢𝑆𝑀(𝑠
∗, 𝜙∗)] ≥ 𝐸[𝑢𝑆𝑀(𝑠, 𝜙

∗)] for all 𝑠 ∈ 𝑆𝑆𝑀, where 𝐸[𝑢𝑆𝑀] is the expected utility of SM, and  

b. 𝑢𝐷𝑇(𝑠
∗, 𝜙∗; ℎ) ≥ 𝑢𝐷𝑇(𝑠

∗, 𝜙; ℎ) for all 𝜙 ∈ 𝑆𝐷𝑇 and ℎ ∈ 𝐻. 
 

The solution concept states that DT assesses SM's actions and chooses the action that maximizes his payoff at the end of the third 

stage. Then, SM seeks to maximize her expected utility by setting the support it provides at the second stage. Also, DT observes 

resources provided by SM and chooses the strategy that induces the largest possible payoff for it. 

 

3 The Bayesian Equilibria 
 

We compute the Bayesian Sub-Game Perfect Nash Equilibria through the backward induction process (Gavidia-Calderon et al., 

2020). So, we first solve the third stage and then compute the Nash equilibria of stage 2. 

 

3.1 Second Stage equilibria 

 

Assume that SM sets the support vector 𝑠 = (𝑟, 𝑐) at the end of stage two, and DT observes it. Also, DT knows its type vector 

ℎ = (ℎ𝑟 , ℎ𝑐). Hence, during the second stage, DT chooses a level of effort from 𝐴𝐷𝑇. So, in the third stage, the backward induction 

process searches for the DT's strategies that maximize its payoff. Proposition 1 summarizes our findings. 

 

Proposition 1. There is a unique Nash equilibrium for DT at the third stage. Specifically, the DT’s equilibrium strategy is 

given by equation 3.  
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𝜙𝐷𝑇
∗ (𝑠, ℎ) = {

𝑒𝐻              𝑠𝑖 𝑟 ≥ ℎ𝑟 ,  𝑐 ≥ ℎ𝑐 ,
𝑒𝐿𝐶              𝑠𝑖 𝑟 ≥ ℎ𝑟 ,  𝑐 < ℎ𝑐 ,
𝑒𝐻               𝑠𝑖 𝑟 < ℎ𝑟               .

  
(3) 

 

Proof. For each decision rule 𝜙𝐷𝑇(𝑠, ℎ) ∈ 𝑆𝐷𝑇, we have to must prove that 𝑢𝐷𝑇(𝜙𝐷𝑇
∗ (𝑠, ℎ)) ≥ 𝑢𝐷𝑇(𝜙𝐷𝑇(𝑠, ℎ)). Given the 

parameters of the model, strategy 𝜙𝐷𝑇
∗  establishes an effort level that depend on the relationship between the team’s type and the 

resources providing by SM. Table 1 summarizes the payoff that the development team can get by exerting different effort levels 

at each case. Then, we compare the corresponding payoffs. 

 

Table 1. DT payoff analysis. 

Case condition 
High effort 

𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) 
Low communication effort 

𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶; ℎ) 
Low effort 

𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ) 

𝑟 ≥ ℎ𝑟 ,  𝑐 ≥ ℎ𝑐 𝐼 +
𝑟2𝑐2

4𝛾
 𝐼 +

𝑟2(2𝑐 − 1)

4𝛾
 𝐼 +

2𝑟𝑐 − 1

4𝛾
 

𝑟 ≥ ℎ𝑟 ,  𝑐 < ℎ𝑐 𝐼 +
𝑟2(2𝑐 − 𝑐2)

4𝛾
 𝐼 +

𝑟2

4𝛾
 𝐼 +

2𝑟 − 1

4𝛾
 

𝑟 < ℎ𝑟  𝐼 +
2𝑟𝑐 − 𝑟2𝑐2

4𝛾
 𝐼 +

2𝑟 − 𝑟2

4𝛾
 𝐼 +

1

4𝛾
 

 

At case 1, we observe that 𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶 ; ℎ) and 𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ) because 𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) does not 

consider any substraction. In the second case, analogously, the development teams’ payoff 𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶 ; ℎ) does not suffer any 

substraction, which implies that 𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) and 𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶 ; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ). Finally, in the third case, the 

previous phenomenon prevails for DT when she gets the payoff 𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ); hence, we have that 𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐻; ℎ) 
and 𝑢𝐷𝑇(𝑠, 𝑒𝐿; ℎ) ≥ 𝑢𝐷𝑇(𝑠, 𝑒𝐿𝐶; ℎ). 
 

Then, in any case, the strategy 𝜙𝐷𝑇
∗  provides DT the largest possible payoff for the DT in comparison with other strategies. Thus,  

𝜙𝐷𝑇
∗

 is the equilibrium decision rule for DT during stage 2. 

∎ 

 

Proposition 1 points out the importance of providing support for the DT. Particularly, we observe that the SM should align with 

the DT’s type to drive a high effort level.  

 

3.2 First stage equilibrium 

 

We continue with the backward induction process. So, we consider stage 2 equilibrium to compute the Nash equilibrium at stage 

1, where the SM chooses the resources and communication facilities it provides. Note that 𝜙𝐷𝑇
∗  depends on DT's requirements 

vector ℎ = (ℎ𝑟 , ℎ𝑐). However, SM does not observe ℎ = (ℎ𝑟 , ℎ𝑐). In other words, SM is unsure about her benefits because the 

effort level depends on the relationship between the DT’s type and the resources that SM provides. Hence, the SM expected utility 

function is written in equation 4. 
 

𝐸[𝑢𝑆𝑀] = 𝑢𝑆𝑀(𝑠, 𝑒𝐻)𝑃𝑟[𝑒𝐻] + 𝑢𝑆𝑀(𝑠, 𝑒𝐿𝐶)𝑃𝑟[𝑒𝐿𝐶] + 𝑢𝑆𝑀(𝑠, 𝑒𝐿)𝑃𝑟[𝑒𝐿]. (4) 

 

Before computing the first-stage equilibrium, we need to rewrite the expected utility function more operationally. Note that the 

payoff of SM allows us to expand the expected utility as it is shown in expression 5. 
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𝐸[𝑢𝑆𝑀] = ((𝑟𝑐)𝑒𝐻 −
(𝑟𝑐)2

𝜏
)𝑃𝑟[𝑒𝐻] + ((𝑟𝑐)𝑒𝐿𝐶 −

𝑟2

𝜏
) 𝑃𝑟[𝑒𝐿𝐶] + ((𝑟𝑐)𝑒𝐿)𝑃𝑟[𝑒𝐿] 

(5) 

 

Recalling that the type vector ℎ is drawn from a common knowledge probability distribution 𝑧, the expected utility function can 

be rewritten by describing each probability event in terms of ℎ  and 𝑠. By applying Proposition 1, we can specify the agent’s payoff 

concerning each probability event, which is illustrated in expression 6. 

 

𝐸[𝑢𝑆𝑀] = ((𝑟𝑐)𝑒𝐻 −
(𝑟𝑐)2

𝜏
)𝑃𝑟[𝑟 ≥ ℎ𝑟 ,  𝑐 ≥ ℎ𝑐] + ((𝑟𝑐)𝑒𝐿𝐶 −

𝑟2

𝜏
)𝑃𝑟[𝑟 ≥ ℎ𝑟 ,  𝑐 < ℎ𝑐] + ((𝑟𝑐)𝑒𝐿)𝑃𝑟[𝑟 < ℎ𝑟] 

(6) 

 

We assume a multivariable uniform distribution function over the interval [0, a] to simplify the probability. Then, we get expression 

7, which shows the expected utility function regarding the model's parameters. So, it represents an operational function that we 

analyze in Proposition 2. Specifically, we show the existence of a unique Nash equilibrium at stage 1 of the EE game. 

 

𝐸[𝑢𝑆𝑀] = ((𝑟𝑐)
𝑟𝑐

2𝛾
−
(𝑟𝑐)2

𝜏
) (1 −

𝑟 + 1

2𝛾𝑎
) + ((𝑟𝑐)

𝑟

2𝛾
−
𝑟2

𝜏
) (

𝑟

2𝛾𝑎
) + ((𝑟𝑐) (

1

2𝛾
)) (

1

2𝛾𝑎
) (7) 

 

Proposition 2. The equilibrium support vector of the scrum master is unique, and it is shown in equation 8  

 

𝑠∗ = (𝑟∗, 𝑐∗) = (
𝑐2(𝜏−2𝛾)(1−2𝛾𝑎)−√(𝑐2(2𝛾−𝜏)(1−2𝛾𝑎))

2
−6𝜏𝑐((𝜏𝑐−2𝛾)−𝑐2(𝜏−2𝛾))

3((𝜏𝑐−2𝛾)−𝑐2(𝜏−2𝛾))
,   

𝜏(𝑟2+1)

2𝑟(𝑟+1−2𝛾𝑎)(𝜏−2𝛾)
)  

(8) 

 

when 𝜏 < 2𝛾 and 2𝛾𝑎 > (𝑟 + 1), or when  𝜏 > 2𝛾 and 2𝛾𝑎 < (𝑟 + 1). 
 

Proof. Now, we compute the first-order condition to find the critical points of the expected utility function. Concerning 𝑟, equation 

9 summarizes the first order condition.   

 

𝜕𝐸[𝑢𝑆𝑀]

𝜕𝑟
=
𝑟𝑐 + 3𝑟2(𝜏𝑐 − 2𝛾) + 𝑟𝑐2(𝜏 − 2𝛾)(4𝛾𝑎 − 3𝑟 − 2)

4𝛾2𝜏𝑎
= 0 (9) 

 

Note that equation 9 has two zeros, which are the critical points of the expected utility. Expressions 10 and 11 show the previous 

critical points. 

 

𝑟1
∗ =

𝑐2(𝜏 − 2𝛾)(1 − 2𝛾𝑎) − √(𝑐2(2𝛾 − 𝜏)(1 − 2𝛾𝑎))
2
− 3𝜏𝑐((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))

3((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))
 

(10) 

 

𝑟2
∗ =

𝑐2(𝜏 − 2𝛾)(1 − 2𝛾𝑎) + √(𝑐2(2𝛾 − 𝜏)(1 − 2𝛾𝑎))
2
− 3𝜏𝑐((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))

3((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))
 

(11) 

 

Both 𝑟1
∗ and 𝑟2

∗ must satisfy that (𝑐2(2𝛾 − 𝜏)(1 − 2𝛾𝑎))
2
< 3𝜏𝑐((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))  and  (𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾) ≠ 0. 

Then, we compute the second derivative of the expected utility to verify if 𝑟1
∗ and 𝑟2

∗ maximize the SM’s payoff (see expression 

12). Next, we substitute 𝑟1
∗
  into 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
, and get the equation 13. Secondly, by introducing 𝑟2

∗
 into 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
 and simpliflying, 

we have equation 14. 

 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
=
3𝑟 + ((𝜏𝑐 − 2𝛾) + 𝑐2(𝜏 − 2𝛾)) + 𝑐2(𝜏 − 2𝛾)(2𝛾𝑎 − 1)

2𝛾2𝜏𝑎
 (12) 
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𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
(𝑟1
∗) = −

√(𝑐2(2𝛾 − 𝜏)(1 − 2𝛾𝑎))
2
− 3𝜏𝑐((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))

2𝛾2𝜏𝑎
 

(13) 

 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
(𝑟2
∗) =

√(𝑐2(2𝛾 − 𝜏)(1 − 2𝛾𝑎))
2
− 3𝜏𝑐((𝜏𝑐 − 2𝛾) − 𝑐2(𝜏 − 2𝛾))

2𝛾2𝜏𝑎
 

(14) 

 

By expressions 13 and 14, we have that 
𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
(𝑟1
∗) < 0 and 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑟2
(𝑟2
∗) > 0, respectively. So, 𝑟1

∗ maximizes the SM's payoff, 

and 𝑟2
∗ minimizes the SM's payoff. Therefore, 𝑟1

∗ is the unique optimal strategy for SM concerning the SD resources provided to 

DT.  

 

Next, we look for the communication investment 𝑐 at equilibrium. As before, we follow the criterion of the first derivative, which 

implies to solve equation 15. The equation 
𝜕𝐸[𝑢𝑆𝑀]

𝜕𝑐
= 0 has a unique critical point, that we show in equation 16.  

 

𝜕𝐸[𝑢𝑆𝑀]

𝜕𝑐
=
𝑟2𝑐(𝑟 + 1)

𝛾𝜏𝑎
+
−2𝑟2𝑐(𝑟 + 1) + 𝑟 + 𝑟3

4𝛾2𝑎
+
𝑟2𝑐(𝜏 − 2𝛾)

𝛾𝜏
 (15) 

 

𝑐1
∗ =

𝜏(𝑟2 + 1)

2𝑟(𝑟 + 1 − 2𝛾𝑎)(𝜏 − 2𝛾)
 (16) 

 

only if  𝜏 > 0 and 𝑟 > 0, 𝜏 − 2𝛾 ≠ 0, 𝑟 + 1 − 2𝛾𝑎 ≠ 0.  

 

Now, we compute the second derivative to determine the nature of 𝑐1
∗. Expression 17 shows the evaluation of the critical point in 

the second derivative. 

 

𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑐2
=
𝑟2(𝜏 − 2𝛾)(2𝛾𝑎 − (𝑟 + 1))

2𝛾2𝜏𝑎
 (17) 

 

Since parameters 𝛾, 𝜏, and 𝑎 are positive, we conclude that 
𝜕2𝐸[𝑢𝑆𝑀]

𝜕𝑐2
(𝑐1
∗) < 0 when 𝜏 < 2𝛾 and 2𝛾𝑎 > (𝑟 + 1), or when 𝜏 >

2𝛾  and 2𝛾𝑎 < (𝑟 + 1). So, 𝑐1
∗
 maximizes the SM’s payoff when such conditions are met. Therefore, 𝑐1

∗ is the optimal SM strategy 

concerning communication expenses.  

∎ 

 

Theorem 1 summarizes Propositions 1 and 2. So, a unique Bayesian Sub-Game Nash equilibrium exists in the EE game when 

an AGSD environment is considered. 

 

Theorem 1. The EE game in AGSD has a unique Bayesian Sub-Game Perfect Nash Equilibrium (𝑠∗, 𝜙∗); expressions 18 and 19 

show the equilibrium strategies for each agent. 

 

𝜙𝐷𝑇
∗ (𝑠, ℎ) = {

𝑒𝐻              𝑠𝑖 𝑟 ≥ ℎ𝑟 ,  𝑐 ≥ ℎ𝑐 ,
𝑒𝐿𝐶              𝑠𝑖 𝑟 ≥ ℎ𝑟 ,  𝑐 < ℎ𝑐 ,
𝑒𝐿               𝑠𝑖 𝑟 < ℎ𝑟               ,

  
(18) 

 

𝑠∗ = (𝑟∗, 𝑐∗) = (
𝑐2(𝜏−2𝛾)(1−2𝛾𝑎)−√(𝑐2(2𝛾−𝜏)(1−2𝛾𝑎))

2
−6𝜏𝑐((𝜏𝑐−2𝛾)−𝑐2(𝜏−2𝛾))

3((𝜏𝑐−2𝛾)−𝑐2(𝜏−2𝛾))
,   

𝜏(𝑟2+1)

2𝑟(𝑟+1−2𝛾𝑎)(𝜏−2𝛾)
) ,  

(19) 

 

when 𝜏 < 2𝛾 and 2𝛾𝑎 > (𝑟 + 1), or when  𝜏 > 2𝛾 and 2𝛾𝑎 < (𝑟 + 1). 
 

It is important to note that strategy 𝜙𝐷𝑇
∗  shows how reactive the development team is concerning the support provided by the scrum 

master. In other words, the equilibrium strategy says that resources and communication are crucial to encourage DT to exert high-
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level effort. If resources are not enough, the DT immediately chooses a low-level effort. Since the DT’s type represents how it 

values the support infrastructure, the SM should guarantee an appealing environment to reach the objectives of the sprint. In this 

sense, the SM equilibrium strategies also summarize how she should incorporate complexity (𝛾) and stability (𝜏) into providing 

resources and communication. Figure 2 shows a simulation of SM decision-making when the previous parameters change. The 

images show how communication changes with respect to stability when complexity is fixed. We observe that communication 

increases as resources increase in an environment of high stability and low complexity, suggesting a strong servant leadership 

(Holtzhausen & de Klerk, 2018). In contrast, a high level of complexity tends to diminish communication as resources increase, 

even with high levels of stability. Such a scenario represents the challenges of effectively using resources (associated with the 

optimal point where communication is maximized in Figures 2.b and 2.c) (Srivastava & Jain, 2017). 

 

Fig. 2. SM equilibrium strategies as 𝜏 change with different levels of 𝛾, low (a), medium (b) and high (c). 

 

4 Conclusions 
 

In this research, we study the impact of leader-team interaction on effort estimation and support provision during Agile Global 

Software Development (AGSD). We model such interaction using a sequential game-theoretical approach to analyze players' 

strategies in the presence of incomplete information. As the scrum master has limited information about the team's skills at an 

offshore site, principal-agent issues arise during the EE process. Findings are important for those companies that move software 

development to a branch or an external third party; that is, companies developing software under offshoring or outsourcing 

arrangements. 

 

Based on the agile SD approach, the scrum master is responsible for supporting the team by removing obstacles. We investigate 

the magnitude of support provided and the effort estimations at equilibrium. The support basket in AGSD includes SD resources 

and investment in communication to overcome problems due to the distance between sites collaborating on a project. Therefore, 

we analyze players' strategies (support and effort) at equilibrium during a single sprint where the scrum master is on site, and the 

development team is located offshore. We model such interaction as a strategic model, the EE game in AGSD, where the scrum 

master has incomplete information about the team's abilities. Here, nature plays first in determining the type of team; thus, players 

make decisions strategically to maximize their profits. Then, the scrum master supports her expectation of benefit since she does 

not know the team's type. Lastly, the team observes the support and chooses the effort level for the sprint. We find the solution by 

computing the Bayesian Sub-Game Perfect Nash Equilibrium and the players’ payoff functions described in section 2.1 for the EE 

game model. 

 
The team's optimal strategy is unique at the game's third stage. Then, a high effort level comes when both SD and communication 

resources are enough to deal with the sprint backlog complexity based on the team's experience. On the contrary, effort decreases 

in communication or development, depending on which resources the team considers useless. At the game's second stage, the 

scrum master's optimal strategy is unique and consists of a support vector providing SD and communication resources. However, 

the scrum master's strategies are highly dependent on the availability of a database with reliable effort records. Theorem 1 shows 

players' strategies at equilibrium in the EE game in AGSD. In future works, we intend to extend this theoretical model to a dynamic 

framework that allows us to analyze EE and support provision over several sprints by updating iteration velocity in AGSD. 
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