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Abstract. Soil type is a critical factor influencing the seismic 

performance of buildings, as it affects the level of damage sustained 

during earthquakes. This paper presents a novel approach to 

classifying building soil types using pseudo-spectral acceleration 

readings recorded during seismic events. By leveraging machine 

learning classifiers, the study develops a model that accurately 

identifies soil types from pseudo-spectral acceleration data, 

achieving an accuracy of 89.16%. The methodology involves 

preprocessing the seismic data, extracting key features, and 

applying various classifiers to determine the most effective model. 

Performance is evaluated using metrics such as accuracy, precision, 

and recall. The findings indicate that this approach significantly 

improves soil classification accuracy over traditional methods, 

providing a practical tool for seismic hazard assessment and 

building design. This research further advances earthquake 

engineering by offering a data-driven solution to enhance building 

resilience. 
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1 Introduction 
 

The seismic performance of buildings is intrinsically linked to the type of soil on which they are constructed (Borcherdt & 

Glassmoyer, 1992). Different soil types can amplify or attenuate seismic waves to varying degrees, significantly influencing a 

structure’s response during an earthquake. Accurately assessing soil-structure interaction is therefore essential for effective 

seismic hazard assessment and the design of earthquake-resilient buildings.  

 

Pseudo Spectral Acceleration (PSA) readings, representing the maximum acceleration response of a structure at a specific 

frequency, are widely utilized in earthquake engineering to characterize the dynamic behavior of buildings during seismic events 

(Baker & Cornell, 2006). These readings encapsulate crucial information about soil conditions and the seismic response of 

structures, making them a promising basis for soil type classification.  

 

Traditional methods of determining soil type often rely on site-specific geotechnical investigations, which are time-consuming 

and costly (Gong et al., 2017). Furthermore, these methods typically provide localized, point-based assessments that may not fully 

capture the spatial variability of soil properties across a site. In contrast, PSA readings offer a more data-driven and potentially 

cost-effective approach, enabling broader and more comprehensive soil type classification across larger areas. 

 

Recent advances in machine learning have demonstrated the potential of data-driven models in predicting seismic parameters such 

as Peak Ground Acceleration (PGA). For instance, Chiang et al. (2022) showed that artificial neural networks could accurately 

predict PGA and Peak Ground Velocity, highlighting the potential for similar approaches in soil type classification. Additionally, 

Khosravikia and Clayton (2021) explored the variability of ground motion predictions across different events and sites using 

machine learning algorithms, underscoring the effectiveness of data-driven approaches in seismic analysis.  

 

This study proposes a methodology that utilizes classification techniques to identify the soil type of buildings based on their PSA 

readings during earthquakes. The approach involves preprocessing the PSA data, extracting relevant features, and evaluating 
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various classifiers to determine the most effective model for this task. By applying advanced machine learning techniques, a robust 

model is developed capable of accurately classifying soil types, even in the absence of detailed geotechnical investigations. This 

model could significantly enhance seismic hazard assessments and contribute to more resilient infrastructure design.  

 

The key contributions of this research are: (1) a data-driven model that uses PSA readings and machine learning to classify soil 

types with an accuracy of 89.16%.; (2) the preprocessing and consolidation of soil type data from seismic stations across Mexico, 

addressing data imbalances and enhancing the reliability of the results; (3) extensive feature engineering, including the use of the 

Horizontal-to-Vertical Spectral Ratio (H/V ratio) and Principal Component Analysis (PCA), to distill valuable information from 

PSA data; and (4) an ablation study to evaluate multiple machine learning models and identify the most effective approach for 

soil type classification. 

This research bridges the existing gap in soil information for seismic stations and offers a scalable solution for rapid soil type 

classification over large geographic areas, thereby enhancing current capabilities in seismic hazard assessment and building 

design. Despite advances in using geotechnical and ambient-vibration data for soil classification, the literature lacks models that 

exploit PSA signatures directly. This paper addresses that gap. 

 

The structure of this paper is as follows: Section 2 reviews related work in soil type classification and the use of PSA in seismic 

analysis. Section 3 details the methodology employed, including data collection, preprocessing, and feature extraction. Section 4 

presents the results and discusses the performance of the proposed classification models. Finally, Section 5 concludes the paper 

and outlines potential directions for future research. 

 

2 Related Work 
 

Accurate soil classification is crucial for effective seismic engineering practices, as soil properties significantly influence ground 

motion amplification and structural response (Pitilakis et al., 2013). Traditional geotechnical investigations, while providing 

detailed information, are often time-consuming and costly. There has been a growing interest in utilizing seismic data and 

advanced computational methods to characterize soil properties more efficiently and accurately.  

 

Machine learning techniques have shown significant potential in various seismic applications, including soil classification and 

ground motion prediction. Chala and Ray (2023) demonstrated the efficacy of deep learning in soil classification using cone 

penetration test data, achieving high accuracy in identifying soil types. Similarly, Xiao et al. (2021) proposed a coupled machine 

learning method to integrate borehole and piezocone penetration test data for improved soil classification, demonstrating the 

potential of machine learning in combining multiple data sources for more reliable site characterization.  

 

In seismic response prediction, Derras et al. (2014) used artificial neural networks to predict ground motion parameters from 

various input features, including soil conditions. Their work highlighted the potential of machine learning in capturing complex 

relationships between soil properties and seismic responses. Building on this, Mori et al. (2022) developed a machine learning 

approach using Gaussian process regression to produce high-resolution ground motion prediction maps, demonstrating the 

capability of machine learning techniques in handling large-scale seismic data.  

 

The application of machine learning in seismic engineering extends beyond soil classification and ground motion prediction. 

Researchers have used these techniques to enhance earthquake early warning systems (Kong et al., 2019), predict slope 

displacements in seismic events (Xu et al., 2012), and generate realistic synthetic seismic data (Kim & Kim, 2024). Kwag et al. 

(2020) demonstrated the effectiveness of artificial neural networks and Gaussian process regression in predicting the seismic 

performance of slopes, further underscoring the versatility of machine learning in seismic analysis.  

 

Joshi et al. (2024) applied machine learning techniques to estimate shear wave velocity profiles from geotechnical and geophysical 

data, showcasing the potential of these methods for subsurface characterization. However, their work primarily focused on 

property estimation and did not delve into soil type classification.  

 

Despite these advancements, none of the above studies used PSA data alone to directly classify site soil type at building locations. 

This research aims to address this gap by developing a robust machine learning model for classifying soil types at building 

locations using earthquake data, including PSA readings. By focusing on this specific application and utilizing a comprehensive 

dataset, this study seeks to advance seismic site characterization and provide a valuable tool for improving building design and 

safety. 
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3 Methodology 

 
3.1 Data Description 
 

The dataset used in this study was provided by the Accelerographic Network of the Institute of Engineering (RAII-UNAM, 2021), 

as a result of the instrumentation and processing efforts of the Seismic Instrumentation Unit. The data are distributed through the 

Accelerographic Database System online. It includes data from 160 seismic stations, with ground type information available for 

140 of them. The analysis focused on PSA data from seismic events recorded at stations with known soil type information This 

subset consists of 6 220 recordings from events that had magnitudes greater than 3.0 and occurred in Mexico between 1985 and 

2020. Each recording utilized three sensors, measuring the North-South (N/S), East-West (E/W), and vertical (V) components, 

resulting in 18660 PSA measurements. 

 

Due to the initial diversity and uneven distribution of soil type classifications, some with very few samples or ambiguous 

descriptions, a preprocessing step was essential to enhance the reliability of the analysis. The original dataset contained multiple 

soil types with varying frequencies, as shown in Table 1.  

Table 1. Original Station Soil Type Distribution 

Station Soil Type Station Count 

rock 84 

clay 12 

basaltic rock 8 

soft 7 

soil 5 

alluvial 4 

lake zone 3 

soft soil 3 

compacted clay 3 

sandy silt 3 

transition zone 2 

sedimentary rock 2 

granite 2 

Others 22 

Total 160 

To address the issue of uneven distribution and improve the statistical significance of the analysis, the various soil types were 

consolidated into three primary categories: Hard, Transitional, and Soft soil. This grouping was based on geological characteristics 

and seismic response properties. 

 

The hard category includes stable geological formations known for lower seismic wave amplification. Soil types grouped under 

this category are rock, basaltic rock, sedimentary rock, granite, travertine, metamorphic rock, basalt, altered granite, fractured 

rock, and similar formations. The transitional category is characterized by materials like compacted clay, sandy silt, and sand-silt-

clay mixtures, which can amplify seismic motions due to lower shear strength. The soft category encompasses soils with high 

compressibility that significantly influence seismic wave propagation, such as clay, lake zone preconsolidated soil, and alluvial 

soils. 

 

To ensure data integrity, soil types with ambiguous descriptions or insufficient data, such as "soil" and "unknown," were excluded 

from the analysis. Non-soil entries, including open ground, structures, and archaeological monuments, were also omitted. 

 

After preprocessing and reclassification, the final dataset distribution is summarized in Table 2. Fig. 1 displays the geographical 

distribution of the seismic stations across Mexico, color-coded by the newly defined soil categories.  
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Table 2. Final Soil Type Distribution After Preprocessing 

Soil Category Number of Stations Number of Records 

hard 102 4798 

soft 29 1056 

transitional 9 466 

Total 140 6220 

The consolidation into three categories improved class balance and enhanced the statistical significance of subsequent analyses. 

The PSA data associated with each soil category revealed distinctive patterns, reinforcing the rationale for using PSA 

measurements in soil type classification.  

 
 Fig. 1. Geographical distribution of seismic stations across Mexico, color-coded by soil type. 

Given the limited and often imprecise soil information available for seismic stations in Mexico, this study explores the use of PSA 

data as a proxy to address this information gap. PSA is instrumental in understanding how seismic waves interact with local soil 

conditions. By leveraging machine learning techniques, soil types are predicted based on the distinctive PSA patterns observed 

across different seismic events. Fig. 2 illustrates the variability and consistency of PSA signals across stations, supporting the 

potential of PSA data in soil type prediction.  

 

Fig. 2. PSA spectra for individual recordings at Hard (left) and Soft (right) soil stations. Each colored curve is one event’s PSA 

(in cm/s²) plotted against period (0 - 5 s); note that Soft-soil spectra peak much higher (around 1 - 2 s) than Hard soil spectra, 

indicating stronger site amplification. These consistent, intra-category patterns support using PSA signatures to distinguish soil 

types. 
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3.2 Feature Engineering 

The feature selection for this study was driven by the need to identify the most impactful seismic parameters for soil type 

classification. Features were derived from PSA data using the Spectral Ratio method. The Spectral Ratio was calculated using the 

Horizontal-to-Vertical (H/V) Spectral Ratio technique (Macau et al., 2015). Specifically, the horizontal component was computed 

as the Euclidean norm of the north-south and east-west PSA components, which was then divided by the vertical PSA to obtain 

the Spectral Ratio. This method captures the relative amplification between horizontal and vertical motions and is particularly 

valuable for distinguishing differences in seismic wave behavior across various soil types.  

In addition to the Spectral Ratio (SR) features, six Conventional Earthquake Measurement (CEM) features commonly used in 

seismic analysis were included: magnitude, maximum recorded acceleration in the vertical (V), east-west (E/W), and north-south 

(N/S) orientations, depth, and duration. 

Each PSA recording provides 1,000 frequency components ranging from 0.1 Hz to 100 Hz. To manage the high dimensionality 

of the Spectral Ratio data and extract meaningful information, two strategies were employed. The first involved aggregating the 

Spectral Ratio measurements by calculating statistical summaries: maximum, mean, minimum, median, and standard deviation 

across the frequency components, resulting in five features that capture the overall characteristics of the Spectral Ratio. The second 

strategy applied Principal Component Analysis (PCA) to the Spectral Ratio data, retaining the first 4 principal components that 

captured over 99% of the variance.  

Depending on the feature extraction strategy, the total number of input features ranged from 6 to 1,006 (see Table 3). When only 

the six conventional earthquake measurements were used, the feature vector comprised six dimensions. Augmenting these six 

CEMs with five SR summary statistics produced eleven features (6 CEM + 5 SR stats). Alternatively, retaining the first four 

principal components from PCA on the SR data and combining them with the six CEMs resulted in ten features (6 CEM + 4 PCA). 

Finally, using the entire 1,000-component SR vector alongside the six CEMs yielded a high-dimensional feature space of 1,006 

features. 

Table 3. Summary of feature extraction strategies and resulting feature dimensionalities 

Feature Set No. of Features Description 

CEM Only 6 
Contains only the six Conventional Earthquake Measurement 

(CEM) features. 

SR Only 1000 
Consists exclusively of the raw 1,000-component Spectral Ratio 

(SR) vector. 

CEM + SR 1006 Appends the full 1,000-component SR vector to the six CEMs. 

CEM + SR Statistics 11 
Combines the six CEMs with five SR summary statistics (max, 

mean, min, median, standard deviation). 

CEM + PCA Reduced SR 10 
Merges the six CEMs with the four principal components retained 

from PCA on the SR data. 

These feature sets correspond to the tests presented in our results (Table 4), allowing the assessment of the impact of different 

combinations of features on soil type classification performance. 

3.3 Ablation Study and Feature Evaluation 

To evaluate the effectiveness of different feature sets in predicting soil types, an ablation study was conducted, systematically 

analyzing the impact of specific features on the overall performance of the model. This approach helps identify the most influential 

features for accurate classification. The feature sets evaluated in the ablation study are those described in the Feature Engineering 

section: CEM Only, SR Only, CEM + SR, CEM + SR Statistics, and CEM + PCA Reduced SR.  

The XGBoost classification algorithm was utilized for this study. XGBoost, standing for Extreme Gradient Boosting, is a scalable 

and efficient implementation of gradient-boosted decision trees. It is renowned for its high performance and speed in handling 

classification and regression tasks, making it suitable for processing large-scale datasets.  

To ensure a robust and unbiased evaluation of the models, 5-fold stratified cross-validation was employed on the record-level 

during the training and testing phases. Stratified cross-validation maintains the original class distribution within each fold, which 
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is especially important given the class imbalance in the dataset (as shown in Table 2). By partitioning the dataset into five folds 

with proportional representation of each soil category, each fold served as a representative sample of the overall data. The models 

were trained on four folds and validated on the remaining fold, with this process repeated five times to ensure that each fold served 

as the validation set once. Performance metrics were then averaged across the five folds, providing a reliable assessment of model 

performance. 

3.4 Model Evaluation 

To identify the optimal model for the task, several well-established machine learning algorithms were experimented with: 

XGBoost, Random Forest, Logistic Regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multilayer 

Perceptron (MLP). All models were implemented using the scikit-learn library (version 1.3.2) in Python, with default 

hyperparameters to ensure replicability. Using default settings provides a baseline performance for each algorithm without the 

influence of hyperparameter tuning. For models sensitive to feature scaling, such as SVM and MLP, standardization was applied 

to the feature sets using scikit-learn's StandardScaler. 

4 Results 

All evaluations in this study were conducted using five-fold stratified cross-validation to preserve the original class proportions 

of soil types in each fold. First, the impact of different feature sets on classification performance was assessed using XGBoost. 

Table 4 presents the performance metrics accuracy, precision, recall, and F1‐score corresponding to five feature‐set configurations: 

Conventional Earthquake Measurements only (CEM only), Spectral Ratio only (SR only), CEM combined with the full 1,000‐

component SR vector (CEM + SR), CEM combined with a PCA‐reduced SR vector (CEM + PCA‐reduced SR), and CEM 

combined with summary statistics computed from the SR vector (CEM + SR statistics). 

Table 4. Performance Metrics for Different Feature Sets (ranked by accuracy; all values obtained using XGBoost) 

Feature set Accuracy Precision Recall F1-Score 
CEM + SR 89.16% 85.04% 70.62% 76.04% 
SR only 87.15% 79.75% 65.42% 70.51% 
CEM + PCA reduced SR 85.14% 74.24% 62.49% 66.65% 

CEM + SR statistics 82.73% 68.44% 56.74% 60.65% 

CEM only 76.33% 50.08% 40.28% 41.44% 

The combination of CEM with full SR features (CEM + SR) yields the highest accuracy (89.16%) as well as the best balance 

between precision (85.04%) and recall (70.62%), resulting in an F1‐score of 76.04%. This performance improvement over the 

“SR only” configuration (87.15% accuracy, 79.75% precision, 65.42% recall, F1‐score 70.51%) suggests that conventional 

measurements (e.g., peak ground acceleration, PGA, and other time‐domain descriptors) provide complementary information to 

the spectral features. Notably, when only CEM features are used, accuracy drops to 76.33% with a much lower precision of 

50.08% and recall of 40.28%, indicating that conventional measurements alone lack sufficient discriminative power to distinguish 

among soil types. The configurations in which SR features were summarized, either via PCA reduction or by computing summary 

statistics, still outperform CEM alone, but both fall short of the full SR vector’s representational capacity. Specifically, CEM + 

PCA‐reduced SR achieves 85.14% accuracy (F1‐score 66.65%), while CEM + SR statistics obtains 82.73% accuracy (F1‐score 

60.65%). Because the dataset is imbalanced (see Table 2), it is essential to consider precision, recall, and F1‐score alongside 

accuracy: the high precision of CEM + SR (85.04%) indicates relatively few false positives, while the recall of 70.62% shows that 

some samples, primarily in underrepresented soil categories, remain misclassified. Overall, CEM + SR offers the strongest 

performance across all reported metrics. 

Next, using CEM + SR (the best feature set), six classification algorithms were evaluated to identify the most suitable model for 

this task. Table 5 compares the accuracy, precision, recall, and F1‐score of XGBoost, Random Forest, K‐Nearest Neighbors 

(KNN), Logistic Regression, Support Vector Machine (SVM), and Multilayer Perceptron (MLP), all trained with default 

hyperparameters on the same cross‐validation splits. 

Here, XGBoost again ranks highest with 89.16% accuracy, 85.04% precision, 70.62% recall, and an F1‐score of 76.04%. Random 

Forest closely follows, achieving 87.28% accuracy, 81.76% precision, 63.02% recall, and an F1‐score of 68.61%. The KNN 

classifier achieves 85.48% accuracy (F1‐score 61.33%), while Logistic Regression and SVM fall to below 80% accuracy, with 

SVM showing particularly low precision (25.71%) and recall (33.33%). The MLP model performs worst overall (48.94% 
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accuracy), likely due to the limited sample size (6,220 recordings) and the challenge of training a neural network with insufficient 

data. The robust performance of tree‐based models, especially XGBoost, is consistent with their known ability to capture non‐

linear relationships and to handle class imbalance more effectively (Chen & Guestrin, 2016). 

Table 5. Comparison of classification performance for different machine learning models ranked by accuracy 

Model Accuracy Precision Recall F1-Score 
XGBoost 89.16% 85.04% 70.62% 76.04% 
Random Forest 87.28% 81.76% 63.02% 68.61% 
KNN 85.48% 80.66% 56.20% 61.33% 
Logistic regression 78.95% 58.90% 44.04% 46.49% 
SVM 77.14% 25.71% 33.33% 29.03% 

MLP 48.94% 38.56% 38.71% 33.92% 

Because class imbalance persists even under stratified splits, random oversampling was applied to the training folds to increase 

the representation of minority classes. Table 6 reports five‐fold weighted‐average metrics for XGBoost and Random Forest trained 

on three feature sets: CEM only, CEM + SR, and SR only. 

Table 6. Classification performance (accuracy, precision, recall, F1-score) for XGBoost and Random Forest on three 

feature sets after applying random oversampling to address class imbalance 

Model Feature Set Accuracy Precision Recall F1-Score 

XGBoost CEM only 68.46% 71.06% 68.46% 69.46% 

XGBoost CEM + SR 88.99% 88.56% 88.99% 88.63% 

XGBoost SR only 87.62% 86.90% 87.62% 86.99% 

Random Forest CEM only 73.87% 69.61% 73.87% 71.31% 

Random Forest CEM + SR 87.15% 86.32% 87.15% 86.39% 

Random Forest SR only 87.15% 86.28% 87.15% 86.38% 

As expected, oversampling has the most pronounced effect on the less‐informative feature set (CEM only), where XGBoost’s 

accuracy remains low (68.46%) despite improved precision (71.06%) and recall (68.46%). Compared to CEM only (68.46% 

accuracy), including SR features improves performance substantially. In particular, CEM + SR achieves 88.99% accuracy, 88.56% 

precision, 88.99% recall, and an F1-score of 88.63% for XGBoost. Random Forest trained on CEM + SR reaches 87.15% accuracy 

(F1‐score 86.39%), while using SR only yields 87.62% accuracy (F1‐score 86.99%) for XGBoost and 87.15% accuracy (F1‐score 

86.38%) for Random Forest. These results confirm that full SR features provide substantial discriminative power even under class‐

balanced training, and that XGBoost consistently outperforms Random Forest by a small margin. 

Finally, Fig. 3 displays the confusion matrix obtained from the XGBoost model trained on CEM + SR with random oversampling. 

The three soil classes, hard, transitional, and soft, are shown along both axes. Hard-soil recordings are correctly classified in 4 

586 out of 4 798 cases (95.6%). Of the 4 798 true hard-soil recordings, 162 (3.4%) are misclassified as soft and 50 (1.0%) are 

misclassified as transitional. Soft-soil recordings (1 056 total) are correctly identified in 748 cases (70.8%), while 291 (27.6%) 

are mislabeled as hard and 17 (1.6%) are mislabeled as transitional. Transitional-soil recordings (366 total) are correctly classified 

in 202 cases (55.2%), but 122 (33.3%) are predicted as hard and 42 (11.5%) are predicted as soft. These misclassifications suggest 

that transitional- and soft-soil spectral patterns overlap with those of hard soils, especially in boundary cases, so some transitional 

recordings appear “too stiff” (and are predicted as hard), and a few soft recordings resemble transitional spectra. Despite these 

errors, overall accuracy remains high. To reduce the remaining mistakes, future work could employ more balanced sampling, 

refine the feature set further, or incorporate additional site information (for example, local geologic maps). 

This PSA‐based method has several clear benefits. Rather than relying on costly borehole or CPT fieldwork and lab tests, it uses 

existing seismic recordings to classify soil over large areas quickly and at lower cost. Compared to H/V ambient‐vibration 

techniques (Macau et al., 2015), PSA directly measures how soils amplify real earthquake motions, making it more reliable under 

different noise conditions. There are some drawbacks. PSA‐based classification is indirect and relies on good‐quality recordings 

stations. Finally, while deep learning on raw waveform data could yield richer features, it requires much larger labeled datasets. 

Given current data availability, tree‐based PSA models like XGBoost remain the most practical choice. 
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Fig. 3. Confusion Matrix for XGBoost (CEM + SR, oversampled training). The rows represent true classes; the columns 

represent predicted classes. Diagonal entries correspond to correct classifications; off‐diagonal entries indicate 

misclassifications. 

5 Conclusions 

This study successfully demonstrates the use of Pseudo Spectral Acceleration (PSA) readings for soil type classification through 

machine learning. By integrating Spectral Ratio features with conventional seismic measurements, models, particularly XGBoost 

and Random Forest, achieved superior accuracy compared to other data-driven methods. This approach offers a cost-effective tool 

for seismic hazard assessment and soil-structure interaction analysis, representing a shift towards more data-driven, efficient 

building design strategies.  

By accurately predicting soil type using our model, this study opens new avenues for improved seismic risk analysis and planning 

of earthquake resistant building designs. Future work should explore integrating ambient vibration analysis to predict soil type 

without requiring an actual earthquake event. This capability would support preventive measures and the development of 

comprehensive seismic risk indicators that incorporate building characteristics, ultimately guiding the design of structures that are 

more compatible with local soil conditions. 

Overall, the findings confirm that PSA readings can be effectively utilized for predicting soil type, with each method contributing 

unique strengths to the classification task. The insights gained from this study have important implications for seismic hazard 

analysis and risk assessment, providing a robust framework for leveraging PSA data in soil type prediction. Among these 

preprocessed features, the Spectral Ratio was particularly valuable for distinguishing differences in seismic wave behavior across 

various soil types. 
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