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Abstract. The Grouping Genetic Algorithm with Controlled Gene 
Transmission (GGA-CGT) is among the most effective algorithms 

for solving the one-dimensional Bin Packing Problem (1D-BPP), a 

classical NP-hard combinatorial optimisation problem with 
numerous industrial and logistical applications. This study aims to 

identify the characteristics that enable a mutation operator to 

perform better within this algorithm by implementing five state-of-
the-art mutation operators: Elimination, Merge & Split, Swap, 

Insertion, and Item Elimination. Performance was evaluated in 

terms of the number of optimal solutions obtained. Our findings 
indicate that the GGA-CGT performs best with the least disruptive 

operators and that both the gene selection strategy and the item 

selection strategy can enhance the performance of mutation 
operators. These findings were validated by redesigning and 

improving a state-of-the-art item-oriented operator, achieving a 

26% improvement over the best baseline version of the same 

operator. 
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1 Introduction 
 

The one-dimensional Bin Packing Problem (1D-BPP) can be defined as follows: Given an unlimited number of bins, each with a 

fixed capacity c > 0, and a set of n items, each with a weight 0 < wᵢ ≤ c, it intends to find the minimum number of bins necessary 

to pack all the items such that no bin has its capacity exceeded by the sum of the weights of the items it contains. Due to being 

an NP-hard problem, it is unlikely that there exists a deterministic algorithm that can solve all 1D-BPP possible cases optimally 

in polynomial time, given that the problem complexity grows exponentially as the size of the problem increases. 

 

The Grouping Genetic Algorithm with Controlled Gene Transmission (GGA-CGT) can efficiently find the optimal solution for 

1D-BPP instances with different features, prevailing as one of the best metaheuristics in the state-of-the-art (Quiroz-Castellanos 

et al., 2015). However, experimental studies of its performance on high-difficulty benchmark instances have shown that, for 

certain types of test cases, its operators can lead to premature convergence (Carmona-Arroyo et al., 2021; González-San-Martín 

et al., 2023; Vázquez-Aguirre et al., 2024). To analyze and improve the performance of the GGA-CGT, problem reduction 

strategies and diversity mechanisms have been studied and included (González-San-Martín, 2021), parameter control strategies 

have been implemented (Flores-Torres et al., 2023), and the crossover operator strategies have been analyzed to propose a new 

crossover operator (Amador-Larrea, 2022).  

 

The performance of the GGA-CGT is mainly related to the Adaptive mutation operator, which adjusts the level of variation to 

the properties of each solution and promotes the transmission of the best genes, including an intelligent rearrangement heuristic 

to improve the quality of each gene. However, the strategies included in the operator have not been sufficiently analyzed to 

explain its performance; furthermore, the GGA-CGT has not been studied with other state-of-the-art mutation operators to 

understand the impact that changing this operator may have on its final performance. 

 

To the best of the author's knowledge, none of the state-of-the-art grouping mutation operators have been tested on the GGA-

CGT before, which serves as motivation for performing the study presented in this paper. In the present work, we implemented 
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five state-of-the-art grouping mutation operators. We analyzed the GGA-CGT performance by replacing the original mutation 

operator with the state-of-the-art grouping mutation operators: Elimination, Merge & Split, Swap, Insertion, and Item 

Elimination (Ramos-Figueroa et al., 2021). We measured each one's performance regarding the number of optimal solutions 

found throughout two benchmarks. The proposed study aims to identify which characteristics of a mutation operator make it 

perform better than others. 

 

The structure of the paper is as follows. Section 2 presents some of the most relevant state-of-the-art algorithms for 1D-BPP; 

Section 3 briefly defines the components of the GGA-CGT; in Section 4, we explain each of the five state-of-the-art mutation 

operators that will be implemented; Section 5 includes the experiments done to analyze the performance of the mentioned 

mutation operators and the obtained results; finally, Section 6 constitutes the conclusions and the future research directions. 

 

2 Related Work 
 

The specialized literature contains surveys and reviews of several algorithms used to solve the 1D-BPP (Ramos-Figueroa et al., 

2019; Munien et al., 2020; Munien & Ezugwu, 2021; Gonzalez-San-Martin et al., 2023). This section presents several 

algorithms, including heuristic techniques, hybrid algorithms, evolutionary algorithms, and other bio-inspired metaheuristics. 

 

The Hybrid Grouping Genetic Algorithm (HGGA) for 1D-BPP, presented by Falkenauer (1996), utilizes a representation 

scheme that handles the groups as genes, a fitness function that evaluates the fullness of the bins, variation operators that work 

with the group-based representation scheme, and a local optimization method inspired by the dominance criterion of Martello & 

Toth (1990). Fleszar & Hindi (2002) developed Perturbation-MBS’, an algorithm that uses a modified MBS heuristic first 

presented in Gupta & Ho (1999). This algorithm builds new solutions by perturbing the current solution with a variable 

neighborhood search and lower bounds. Alvim et al. (2004) proposed a hybrid improvement heuristic (HI_BP). This heuristic 

used the search space reduction techniques of Martello & Toth (1990), lower bounding strategies, a load redistribution method 

based on dominance, differencing, and unbalancing, and a Tabu search as an improvement process. Levine & Ducatelle (2004) 

developed another hybrid algorithm; this time, it was an ant colony optimization alongside a strategy for local search that 

eliminates bins and tries to swap free items with already packed ones.  

 

Singh & Gupta (2007) presented C_BP by combining a hybrid genetic algorithm with an improved version of the Perturbation-

MBS’ heuristic introduced by Fleszar & Hindi (2002). In another related work, a neighborhood search with the concept of 

weight annealing was proposed by Loh et al. (2008), where temperature controlled the amount of item distortion in the search. 

Fleszar & Charalambous (2011) introduced Perturbation-SAW-MBS’, a modification to the Perturbation-MBS’ method of 

Fleszar & Hindi (2002) that uses a new principle to control the average weight of the items packed in each bin called sufficient 

average weight (SAW) by comparing the average weight of a subset of items with the average weight of all currently unpacked 

items. Layeb & Chenche (2012) presented a new approach based on the GRASP procedure that worked in two phases: (1) a 

stochastic procedure that can use both First Fit (FF) and Best Fit (BF) heuristics to build initial solutions, and (2) a Tabu search 

to improve the solutions found in phase one. 

 

In the work of Cruz-Reyes et al. (2012) a hybrid genetic algorithm called HGGA-BP was proposed, which utilized the 

Falkenauer group representation scheme and efficient heuristics to generate the initial population and to perform crossover and 

mutation operations, as well as a hybrid strategy to reinsert free items left from the variation operators into the solutions. A 

memory-integrated artificial bee colony algorithm was developed in Bayraktar et al. (2014) that combines a memory with a 

neighborhood search to force the bees to stay away, for some time, from the already studied and experienced neighborhoods that 

had no practical results and, allow them to revisit these neighborhoods with a random search, after a certain amount of time had 

passed. Dokeroglu & Cosar (2014) used parallel computation techniques with hybrid parallel algorithms, evolutionary grouping 

metaheuristics, and bin-oriented heuristics to obtain solutions for large-scale 1D-BPP instances. 

 

Quiroz-Castellanos et al. (2015) proposed the Grouping Genetic Algorithm with Controlled Gene Transmission (GGA-CGT), 

another genetic algorithm that uses the groups representation scheme of Falkenauer (1996) with strategies to keep the best genes 

in the crossover and mutation operators, as well as controlled selection and replacement techniques to promote diversity with 

elitism. Later, Buljubašić & Vasquez (2016) presented the consistent neighborhood search (CNSBP). CNSBP uses problem 

reduction techniques and lower bounds to help construct the initial partial solution, a Tabu search to add or remove elements 

from bins, and the hill descent procedure to get close to a feasible solution. Ozcan et al. (2016) proposed the 1D-BPP-CUDA, an 

efficient grouping genetic algorithm using the Graphics Processing Unit (GPU) with Compute Unified Device Architecture 

(CUDA) that lowers computational times. 
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The Adaptive Cuckoo Search (ACS), presented in Zendaoui & Layeb (2016), used a decoding mechanism to obtain discrete 

solutions and apply an algorithm initially designed for continuous problems to the 1D-BPP. Kucukyilmaz & Kiziloz (2018) 

developed the Island Parallel Grouping Genetic Algorithm (IPGGA), where sequential GGA procedures run in parallel while 

allowing communication among separate executions to share solutions and improve the results. In the work of El-Ashmawi & 

Abd Elminaam (2019), a modified version of the Squirrel search algorithm (MSBPP), proposed originally in Jain et al. (2019), 

was introduced. The main modifications in MSBPP were generating the initial feasible solution by improving the Best Fit 

heuristic and applying an operator strategy to gain a final feasible solution in terms of bin efficiency by regrouping and packing 

items into bins. Gherboudj (2019) combined an Adaptive African Buffalo Optimization with the rank order value method to 

obtain discrete solutions and 1D-BPP heuristics to incorporate problem knowledge. 

 

An Adaptive Fitness-Dependent Optimizer (AFDO) was proposed in Abdul-Minaam et al. (2020). The AFDO is based on the 

Fitness-Dependent Optimizer developed in Abdullah & Ahmed (2019); however, it includes a modified Fist Fit heuristic for 

generating the initial population and searches for the final optimal solution by adjusting parameters. The Hybrid Evolutionary 

Algorithm (HEA), presented in Borgulya (2021), uses two new mutation operators and 10 local searches to improve solutions 

with the help of a relative pair frequency matrix that contains how often a pair of items is included in the same bin in the best 

solutions. Ali et al. (2024) presented an Ant Colony Optimization integrated with the grouping representation scheme that 

Falkenauer (1996) presented and a differential pheromone procedure that rewards efficient packing, encouraging solutions with 

full bins. A multi-parent crossover operator, called Deep Neural Crossover (DNC), that uses deep reinforcement learning and an 

encoder-decoder architecture to identify linear and non-linear correlations between genes to select the most promising ones, was 

implemented in a GA for the 1D-BPP in Shem-Tov & Elyasaf (2024). Cellini et al. (2024) introduced the Quantum Augmented 

Lagrangian method for Bin Packing (QAL-BP). This method was a Quadratic Unconstrained Binary Optimization (QUBO) 

formulation that efficiently scales logical qubits and analyzes the estimation of the Lagrangian penalty terms by establishing a 

connection between QUBO models and Augmented Lagrangian methods. 

 

Ramos-Figueroa et al. (2021) reviewed the state-of-the-art variation operators for grouping genetic algorithms, which included 

seven mutation operators. Of these seven operators, only five could be implemented for the 1D-BPP. In other previous works, it 

has been proven that incorporating problem domain knowledge into variation operators is key to developing high-performance 

grouping genetic algorithms (Ramos-Figueroa & Quiroz-Castellanos, 2024). Examples of this can be found in the specialized 

literature for different grouping problems, like the Image Segmentation Problem (ISP) (Fernández-Solano, 2023; Zavaleta-

García, 2023), Parallel-Machine Scheduling Problem with Unrelated Machines and Makespan Minimization (𝑅||𝐶𝑚𝑎𝑥) (Ramos-

Figueroa, 2022), and more specifically, an experimental study like the one presented in this article has been done for the 

crossover operator for the GGA-CGT and yielded promising results (Amador-Larrea, 2022). 

 

3 Groping Genetic Algorithm with Controlled Gene Transmission 
 

Proposed in Quiroz-Castellanos et al. (2015), this is a genetic algorithm (GA) that uses a group-based representation scheme that 

adapts naturally to solve grouping problems and therefore is named a Grouping Genetic Algorithm (GGA). In this scheme, the 

genes of a solution represent groups or bins with their respective objects. For the fitness function, the GGA-CGT uses the 

function proposed in Falkenauer (1996), which evaluates the average squaring of the "bin efficiency".  Eq. 1 defines the fitness 

function, where m is the number of bins in the solution, Si is the sum of the item weights in bin i, and c is the bin capacity. 

 

  

 

 

(1) 

 

 

The initial population is generated with the FF-ñ heuristic, proposed for the first time in Quiroz-Castellanos et al. (2015). This 

heuristic starts by packing the ñ items that have a weight greater than 50% of the maximum capacity of the bins, in ñ bins. The 

rest of the items are randomly permuted and inserted in the solution with the First Fit heuristic, which places the current item in 

the first bin that can contain it without exceeding its capacity. If no such bin exists, a new one is created. 

 

A controlled selection scheme is used to select individuals to cross and mutate. This strategy uses an elitist approach alongside 

two inverted rankings to select individuals to promote diversity in the population. For the crossover, solutions are pairwise 

combined from two sets of parents, G and R, each with nc/2 individuals. G consists of nc/2 randomly selected solutions from the 

best nc individuals of the population with uniform probability, and R consists of nc/2 randomly selected solutions from the entire 
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population without considering the elite solutions, also with uniform probability. The elite solutions are the population's best |B| 

solutions; the size of B is a predefined parameter in the GGA-CGT. For the mutation process, the best nm solutions of the 

populations are selected and mutated; however, the solutions belonging to the elite group |B| with an age lower than a 

predefined parameter called life_span are cloned before being mutated. This parameter limits the generations for which an elite 

solution is considered for cloning for the sake of diversity in the population. 

 

Regarding the crossover operator, the GGA-CGT uses gene-level crossover, which combines two parents, p1 and p2, and 

generates two children, c1 and c2. The first step is to sort the genes of both parents in descending order of how full each gene 

(bin) is. After that, in the second step, genes from both parents are compared in parallel, and the fullest bin is selected first to 

pass onto the child, followed by the gene of the other parent. If both genes are equally full, then a priority criterion is used: for 

the first child, priority is given to the gene of the first parent, and for the second child, the priority is given to the gene of the 

second parent. If any parent happens to have more genes than the other, then these genes are inherited directly by the children as 

their last genes. Lastly, genes with repeated items are eliminated from the solution, and any free items are reinserted using the 

First Fit Decreasing heuristic. This heuristic uses the same process as First Fit, but the items are sorted in decreasing order based 

on their weight beforehand. 

 

The mutation operator included in the GGA-CGT is the Adaptive mutation operator. This operator works at the gene level, 

eliminating the nb least full bins. The variable nb gets calculated for each solution and is related to the size of the solution and the 

number of non-full bins. The equation used for this is shown below: 

 

  ,
 (2) 

where ɩ corresponds to the number of non-full bins in the solution, ɛ is the elimination proportion defined in Eq. 3, pε is the 

elimination probability defined in Eq. 4, and k is a parameter that defines the rate of change of ɛ and pε with respect to ɩ (k>0). 

 

  ,

 
 

(3) 

 

  .

  

(4) 

The free items left from eliminating bins are reinserted into the solution using the Rearrangement by Pairs heuristic. This 

heuristic consists of two stages: (1) Swaps between pairs of packed and free items are attempted at each bin; (2) the free items 

left after that are packed into the solution with the FF heuristic. 

 

The controlled replacement strategy in GGA-CGT seeks to preserve diversity and the best solutions by replacing duplicated 

fitness individuals first and then the worst solutions. For crossover, the first nc/2 children replace the set of parents R, and then 

the other nc/2 children replace the individuals with duplicated fitness. When no individuals with duplicated fitness are left and 

there are still children who have not been inserted, they replace the worst individuals. As mentioned, some solutions are cloned 

when selected for the mutation process. The clones are then reinserted by replacing the solutions with duplicated fitness first. 

When no such solutions exist and there are still clones to be reinserted, they replace the worst solutions in the population. 

 

4 Grouping Mutation Operators 

 
The mutation operator works by slightly altering a solution, which promotes the exploration of the search space and helps when 

the algorithm is approaching a local optimum by providing the capacity of redirecting the search elsewhere (Ramos-Figueroa et 

al., 2021). These operators can be organized into item- and group-oriented operators, considering the procedure they use to 

mutate a solution. The item-oriented operators change the location of x items in y selected groups, while group-oriented 

operators apply their operations to y selected groups. Ramos-Figueroa et al. (2021) presented a survey on the state-of-the-art 

grouping variation operators; from this review, only five operators were selected for implementation in this work due to the 

specifications of the 1D-BPP. In the following subsections, we will explain each group-oriented operator, Elimination and 
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Merge & Split, followed by each item-oriented operator, Swap, Insertion, and Item Elimination. Their general procedure, as 

well as their implementation in GGA-CGT, will be explained below. 

 

4.1 Elimination 

 
The procedure of the Elimination operator consists of selecting k groups to eliminate, releasing the items of all these groups, and 

then reinserting them with a problem-domain heuristic into the solution. The variable k is a number generated randomly each 

time the operator is called, and it can range in the interval [1, number of groups in the solution]. The selection of the groups to 

eliminate is random for each of them. In Fig. 1, an example of this operator is shown where three groups (marked with a pink 

color) are selected for elimination, and all the items in the groups end up as free items. These free items are then reinserted into 

the solution with a problem-domain heuristic. 

 

4.2 Merge & Split 

 
On the other hand, Merge & Split works in two phases: (1) it selects two groups (G1 and G2) to join them and convert them into 

a single group; (2) it selects a group and splits it into two different groups. Given the features of the group-based solutions in the 

GGA-CGT and the restriction of the bin capacity for the 1D-BPP (which does not allow combining two groups into one), for 

this implementation, Merge & Split works as the Elimination operator with a fixed number of groups to eliminate equal to 2. 

This means that this operator will always eliminate two groups. The selection of the groups is also random. An example of this 

operator is shown in Fig. 1, where two groups are selected for elimination (highlighted in pink) and have their items released 

and become free items. Finally, these free items are reinserted into the solution with any problem-domain heuristic. 

 

 
Fig. 1. An example of each of the item-oriented mutation operators: a) Elimination and b) Merge & Split for a 1D-BPP instance. 

 

4.3 Swap 
 

The first item-oriented operator, Swap, randomly selects two groups (G1 and G2), then randomly picks n1 items from G1 and n2 

items from G2 and exchanges them. The values of n1 and n2, as mentioned in Ramos-Figueroa et al. (2021), can be defined with 

tuning and control techniques. For this implementation, both n₁ and n₂ have a fixed value 1. Fig. 2 depicts an example of this 

operator where two groups are selected first, and then one item from each group is selected, 8 and 1. Finally, the move is 

performed only if swapping these items between their respective groups does not exceed the bin capacity. If performing the 

swap would violate any bin capacity, no movement is made, and the solution remains the same. 
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4.4 Insertion 

 
In the Insertion operator, a random group G is selected, and n items are removed from that group. The free items are reinserted 

in other groups using a problem-domain heuristic. Again, the n parameter can be defined using tuning and control techniques. 

For this implementation, the n parameter is generated randomly each time the operator is called and can range in the interval [1, 

number of items in the group G]. In the example shown in Fig. 2, the group selected is highlighted pink, and the item selected 

for elimination is highlighted in red. This item is then treated as a free item and reinserted into another group with a problem-

domain heuristic. 

 

4.4 Item Elimination 

 
The last operator, Item Elimination, generates a probability with uniform distribution for each item in every group. If this 

probability is less than a threshold t, the item is eliminated from the solution. This means that the closer the threshold value is to 

1, the more the mutated solutions tend to differ from their original. The mutated solutions tend to be similar when the threshold 

is closer to 0. The free items are then reinserted with a problem-domain heuristic. Fig. 2 illustrates this operator with an 

example. First, a probability for each item is generated, and if it is lower than the threshold, in this case 0.3, the item is 

eliminated. In this example, the items selected for elimination are highlighted in pink with their probability first and red when 

shown in the group-based scheme. Items eliminated become free items and are reinserted into the solution using a problem-

domain heuristic.  

 

 
Fig. 2. An example of each of the item-oriented mutation operators: a) Swap, b) Insertion and c) Item Elimination for a 1D-BPP 

instance. 

 

In Section 5, we present an analysis of the previous operators and the Adaptive operator (see Section 3) by experimenting with 

integrating the state-of-the-art operators in the GGA-CGT and studying the algorithm's behavior with each one. 
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5 Computational Experiments 

 

This section presents the experiments performed to analyze the impact that the different operators (Elimination, Merge & Split, 

Swap, Insertion, and Item Elimination) can have on the performance of GGA-CGT. The algorithm's performance is assessed in 

terms of the number of optimal solutions found in test instances, and two benchmarks were used to help with this. First, it was 

the classic benchmark, which consists of 1615 instances proposed by:  

 

• Scholl et al. (1997): three sets of instances with uniform item sizes. The difficulty of the set of instances increases for 

each one, starting with Data set 1, containing 720 easy instances, Data set 2, containing 480 medium difficulty 

instances, and finally, Data set 3, containing 10 hard instances. 

 

• Falkenauer (1996): there are two sets of instances. The first one, called Uniform, has 80 easy instances with uniformly 

distributed item sizes, and the second set, called Triplets, has 80 more difficult instances with triplets of items that, in 

any optimal solution, must be packed into the same bin without leaving unused space. 

 

• Schoenfield (2002): a set of 28 hard instances called Hard28. This set is the most complex set of instances in the classic 

benchmark. 

 

• Schwerin & Wäscher (1997): two sets of 100 low difficulty instances called Was 1 and Was 2. 

 

• Wäscher & Gau (1996): one set of 17 hard instances, known as Gau 1. 

. 

Table 1 summarizes the information, showing the number of instances (#), the number of items (n), the bin capacities (c), and 

the distribution. 

Table 1. Main characteristics of the instances used in the classic benchmark 

Class Parameters of the instances 

# n  c Distribution 

Data set 1 720 {50, 100, 200, 500} {100, 120, 150} Uniform 

Data set 2 480 {50, 100, 200, 500} 1000 Uniform 

Data set 3 10 200 100,000 Uniform 

Triplets 80 {60, 120, 249, 501} 1000 Ad-hoc 

Uniform 80 {120, 250, 500, 1000} 150 Uniform 

Hard28 28 {160, 180, 200} 1000 Ad-hoc 

Was 1 100 100 1000 Uniform 

Was 2 100 120 1000 Uniform 

Gau 1 17 [57–239] 10,000 Ad-hoc 

 

The second benchmark is the BPPvu_c benchmark, proposed in Carmona-Arroyo et al. (2021), and it consists of 2,800 instances 

distributed among four classes (BPP.25, BPP.5, BPP.75, and BPP1). Each class is divided into seven sets; each of these 

consisting of 100 instances with bin capacities increasing for every set in the following way: c = 102, c = 103, c = 104, c = 105, c 

= 106, c = 107, and c = 108. For the BPP.25 class, the number of items n varies starting from 110 items to 154 items and with 

the optimal solutions for this class having a number of bins equal to 15; for the BPP.5 class, the number of items n varies 

starting from 124 items to 167 items and with the optimal solutions for this class having a number of bins equal to 30; for the 

BPP.75 class, the number of items n varies starting from 132 items to 165 items and with the optimal solutions for this class 

having a number of bins equal to 45; for the BPP1 class, the number of items n varies starting from 148 items to 188 items and 

with the optimal solutions for this class having a number of bins equal to 60. According to Carmona-Arroyo et al. (2021), the 

difficulty of these instances is caused by the large capacities of the bins alongside the fact that in the optimal solutions all bins 

end up full. The information is summarized in Table 2, in which the number of instances (#), the number of items (n), the bin 

capacities (c), and the distribution are shown. 
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Table 2. Main characteristics of the instances used in the BPPvu_c benchmark 

Class Parameters of the instances 

# n  c Distribution 

BPP.25 700 [110, 154] 102, 103, 104, 105, 106, 107, 108 Ad-hoc 

BPP.5 700 [124, 167] 102, 103, 104, 105, 106, 107, 108 Ad-hoc 

BPP.75 700 [132, 165] 102, 103, 104, 105, 106, 107, 108 Ad-hoc 

BPP1 700 [148, 188] 102, 103, 104, 105, 106, 107, 108 Ad-hoc 

 

The GGA-CGT algorithm and the implementation of all the operators tested in this study were developed in the C++ language 

and were compiled using Borland C++ 5.02 in the Win32 mode. The experiments were performed on a computer with an AMD 

Ryzen 5 5600 3.50 GHz processor. A single execution of the GGA-CGT was run for each operator for each instance, with an 

initial seed for the random number generation set to 1. The parameters used are the same in the configuration proposed by 

Quiroz-Castellanos et al. (2015): 

 

a) Population size |P| = 100 

b) Maximal number of generations max_gen = 500 

c) Number of solutions to be selected for crossover nc = 20 

d) Number of solutions to be selected for mutation nm = 83 

e) Rate of change for non-cloned solutions k = 1.3 

f) Rate of change for cloned solutions k = 4 

g) Number of solutions in the elite set |B| = 10 

h) Maximal age for a solution in the elite set to be cloned life_span = 10 

 

For all the operators tested, the controlled techniques and reinsertion heuristic (Controlled Selection, Controlled Replacement, 

and Rearrangement by Pairs) remain the same as in the GGA-CGT, and only the operator itself was modified. The Adaptive 

operator in the original GGA-CGT selects the bins to eliminate by fullness, meaning that the nb least full bins are eliminated. An 

additional version of the Adaptive operator, called Adaptive-R for brevity, was also implemented. Adaptive-R has the same 

behavior as Adaptive except in the bin selection phase, where the nb bins are selected randomly instead of by bin fullness. The 

bin and item selection are random for all five state-of-the-art operators and their different versions. With this, we aim to show 

the importance of the selection process in the mutation operation. 

 

Tables 3 and 4 show the results of the group-oriented operators, including the Adaptive operator, for the classic and BPPvu_c 

benchmarks, respectively. The first column represents the names of each class of instances, the second column represents the 

number of individual instances for each class, and the third through tenth columns represent the number of optimal solutions by 

each mutation operator. Each row represents a class of instances and the optimal solutions each operator found per class, and the 

final row represents the total number of instances in the benchmark for the second column and the total number of optimal 

solutions found for each operator for the rest of the columns. The case is the same regarding Tables 5 and 6, but for the item-

oriented operators. 

 

The Adaptive operator found the optimal solution of 1600 instances of the classic benchmark and of 1482 instances of the 

BPPvu_c benchmark, for 3082 instances in total, and was the operator with the best results. Adaptive-R found the optimal 

solution of 1495 instances of the classic benchmark and 937 of BPPvu_c, for 2432 instances in total. 

 

Due to the Adaptive operator varying the number of bins to eliminate depending on the solution size, a similar behavior was 

sought after in the Elimination operator by creating different versions with different numbers of bins to eliminate to analyze the 

difference in performance for each of them: (1) the original version, which eliminates k random groups (k is a random variable 

generated each time the operator is called); (2) a version called for brevity, Elimination10, where the operator eliminates a fixed 

10 percent of the bins in the solution; the bins are selected at random, (3) a version called for brevity, Elimination20, where the 

operator eliminates a fixed 20 percent of the bins in the solution; the bins are selected at random, (4) a version called for brevity, 

Elimination30, where the operator eliminates a fixed 30 percent of the bins in the solution, the bins are selected at random, and 

(5) a version called for brevity, Elimination40, where the operator eliminates a fixed 40 percent of the bins in the solution, the 

bins are selected at random. We can observe that Elimination10 is the version of Elimination that performs the best in both the 

classic benchmark and in BPPvu_c benchmark, with 1449 and 902 optimal solutions found, respectively, for a total of 2351, 

followed by Elimination20, with 1403 optimal solutions found in the classic benchmark and 605 in the BPPvu_c benchmark for 

2008 total optimal solutions. Elimination30, with 542 instances optimally solved, and Elimination40, with 513, outperform 
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Elimination, with 512, in the BPPvu_c benchmark; however, Elimination, with 1442 optimal solutions, had a better performance 

in the classic benchmark than Elimination30 and Elimination40, with 1368 and 1332, respectively, and also obtained more 

optimal solutions in total, with 1954 optimal solutions found for Elimination, while Elimination30 found 1910 and 

Elimination40 found 1845. It is important to note that the versions that gave the best results are the ones that eliminate the least 

number of bins, as we will discuss this again later. 

 

As mentioned, the Merge & Split operator works as an Elimination operator with a fixed number of groups to eliminate, equal to 

two, and the groups are randomly selected. It obtained the optimal solution of 1517 instances in the classic benchmark and 1007 

in BPPvu_c, for a total of 2524 instances. It performed the best of all the five state-of-the-art operators and even outperformed 

the Adaptive operator with random bin selection. 

Table 3. Comparison of the group-oriented operators and their different versions with respect to the number of optimal 

solutions found in each of the nine classes of the classic benchmark 

Class Instances Adaptive Adaptive-R Elimination Elimination

10 

Elimination

20 

Elimination 

30 

Elimination

40 

Merge  

& Split 

Data set 1 720 720 710 688 688 675 671 663 719 

Data set 2 480 480 464 464 464 446 432 416 477 

Data set 3 10 10 9 9 9 8 8 5 10 

Triplets 80 80 16 1 8 9 3 0 9 

Uniform 80 80 74 62 60 45 38 36 79 

Hard28 28 14 8 5 5 5 5 5 8 

Was 1 100 100 100 100 100 100 100 99 100 

Was 2 100 100 99 100 100 100 99 98 100 

Gau 1 17 16 15 13 15 15 12 10 15 

Total 1615 1600 1495 1442 1449 1403 1368 1332 1517 

Table 4. Comparison of the group-oriented operators and their different versions with respect to the number of optimal 

solutions found in each of the four classes of the BPPvu_c benchmark 

Class Instances Adaptive Adaptive-R Elimination Elimination

10 

Elimination

20 

Elimination

30 

Elimination

40 

Merge  

& Split 

BPP.25 700 443 255 204 329 216 202 200 297 

BPP.5 700 322 201 106 219 112 110 101 273 

BPP.75 700 239 143 100 123 102 100 100 198 

BPP1 700 478 338 102 231 175 130 112 239 

Total 2800 1482 937 512 902 605 542 513 1007 

 

The Swap operator implemented only makes exchanges between one item from group G1 and one item from group G2 (a 1-1 

move). The items are randomly selected, and if the exchange is not possible due to exceeding any bin capacity, then the 

movement is not performed, and the solution will remain the same. According to Tables 5 and 6, this operator found the optimal 

solution of 1446 instances of the classic benchmark and 700 instances of the BPPvu_c benchmark, totaling 2146 instances. It has 

the second highest number of instances solved by item-oriented operators. 

 

Regarding the Insertion operator, Tables 5 and 6 show that it found the optimal solution of 1497 instances of the classic 

benchmark and 930 of the BPPvu_c benchmark, for a total of 2427 instances. It is the item-oriented operator that solved the 

most instances in both benchmarks. 

 

For the last item-oriented operators, Item Elimination, like in the Elimination operator, five different implementations were 

made, each with a different value for the threshold: 0.1, 0.3, 0.4, 0.5, and 0.8. Item Elimination with a 0.1 threshold obtained the 

optimal solution of 1307 instances of the classic benchmark and 532 of the BPPvu_c benchmark; Item Elimination with a 0.3 

threshold found the optimal solution of 1238 instances of the classic benchmark and 491 of the BPPvu_c benchmark; Item 

Elimination with a 0.4 threshold optimally solved 1216 instances of the classic benchmark and 494 of the BPPvu_c benchmark; 

Item Elimination with a 0.5 threshold found the optimal solution of 1210 instances of the classic benchmark and 491 of the 

BPPvu_c benchmark; and finally, Item Elimination with a 0.8 threshold obtained the optimal solution of 1194 instances of the 

classic benchmark and 460 of the BPPvu_c benchmark. Fig. 3 shows that by comparing the total number of instances solved for 

the different versions of this operator, the lower the threshold, the better the results were. 
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The best operator in the results is the original operator in GGA-CGT, the Adaptive operator, as shown in Fig. 3, followed by 

Merge & Split, Adaptive-R, Insertion, Elimination10, and Swap. It can be observed that the best operators are the least 

disruptive operators; Adaptive only eliminates a small number of bins after its calculations; Merge & Split only eliminates a 

fixed number of two bins; Insertion only eliminates items in a single bin; Elimination10 only eliminates 10 percent of the total 

number of bins; and Swap only does 1-1 movements, which only affect the two selected bins. As we increase the percentage of 

Elimination, the performance decreases, and Elimination with a variable number of k groups to eliminate is still too disruptive. 

With Item Elimination, we can also observe a decline in performance as we increase the threshold; however, even with a low 

threshold, the operator underperforms compared to the rest. 

Table 5. Comparison of the item-oriented operators and their different versions with respect to the number of optimal 

solutions found in each of the nine classes of the classic benchmark 

Class Instances Swap Insertion Item 

Elimination 

0.1 

Item 

Elimination 

0.3 

Item 

Elimination 

0.4 

Item 

Elimination 

0.5 

Item 

Elimination 

0.8 

Data set 1 720 711 718 672 656 653 651 647 

Data set 2 480 452 465 386 365 358 353 350 

Data set 3 10 8 8 8 0 0 0 0 

Triplets 80 0 5 1 0 0 0 0 

Uniform 80 72 79 40 33 31 31 24 

Hard28 28 5 7 5 5 5 5 5 

Was 1 100 89 100 93 81 72 73 72 

Was 2 100 96 100 93 91 90 90 90 

Gau 1 17 13 15 9 7 7 7 6 

Total 1615 1446 1497 1307 1238 1216 1210 1194 

Table 6. Comparison of the item-oriented operators and their different versions with respect to the number of optimal 

solutions found in each of the four classes of the BPPvu_c benchmark 

Class Instances Swap Insertion Item 

Elimination 

0.1 

Item 

Elimination 

0.3 

Item 

Elimination 

0.4 

Item 

Elimination 

0.5 

Item 

Elimination 

0.8 

BPP.25 700 253 313 199 195 197 195 175 

BPP.5 700 200 200 102 101 100 100 100 

BPP.75 700 139 199 100 99 100 100 97 

BPP1 700 108 218 131 96 97 96 88 

Total 2800 700 930 532 491 494 491 460 
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Fig. 3. The number of optimal solutions found in total for all the operators and their different versions implemented. 

 

After seeing the difference in the results of the Adaptive operator, where the bin selection was the nb least full bins, and 

Adaptive-R, where the bin selection for the nb bins is random, more tests were performed for the five best implemented 

versions: Merge & Split, Insertion, Elimination10, Swap, and Elimination20. In these tests, the bin selection was done regarding 

the bin fullness, choosing the least full bins instead of randomly selecting bins. Merge & Split would eliminate the two least full 

bins, Insertion would select the least full bin for later eliminating items from it, Elimination10 would select the least full bins to 

eliminate after calculating the fixed 10 percent of bins to eliminate, Swap would choose an item from each of the two least full 

bins, and Elimination20 would select the least full bins to eliminate after calculating the fixed 20 percent of bins to eliminate. 

Tables 7 and 8 and Figs. 4 and 5 show the results of these experiments. The termination -R indicates the version of the operators 

that use the random bins selection, and -B indicates the version of the operators that use the least full bins selection. 

Table 7. Number of optimal solutions found in each of the nine classes of the classic benchmark for the top five operator 

versions when modifying least full bins 

Class Instances Merge  

& Split  

Insertion Elimination

10 

Swap Elimination 

20 

Data set 1 720 717 710 714 706 689 

Data set 2 480 469 434 472 435 449 

Data set 3 10 10 8 9 6 8 

Triplets 80 21 1 27 0 20 

Uniform 80 73 72 70 72 54 

Hard28 28 8 5 11 5 6 

Was 1 100 100 95 96 91 100 

Was 2 100 100 97 100 94 99 

Gau 1 17 16 13 16 12 16 

Total 1615 1514 1435 1515 1421 1441 

 

Table 8. Number of optimal solutions found in each of the four classes of the BPPvu_c benchmark for the top five 

operator versions when modifying least full bins 

Class Instances Merge  Insertion Elimination Swap Elimination 
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& Split 10 20 

BPP.25 700 371 241 240 231 386 

BPP.5 700 256 200 299 197 247 

BPP.75 700 201 140 229 126 156 

BPP1 700 225 108 416 101 193 

Total 2800 1053 689 1184 655 982 

 

While the group-oriented operators improved the algorithm performance with the least full bins selection, the item-oriented 

operators underperformed with it. Elimination10 optimally solved slightly more instances, 66, in the classic benchmark and 

showed a greater improvement in the BPPvu_c benchmark, finding the optimal solution of 282 more instances for a total 

increase of 348 instances while selecting the least full bins for elimination rather than selecting bins at random. Merge & Split 

found three fewer optimal solutions with the least full bins selection. However, it improved its performance in the BPPvu_c 

benchmark by obtaining 46 more optimal solutions for a total improvement of 43 instances over the random bin selection. 

Elimination20 with the least full bins selection found 38 more optimal solutions in the classic benchmark and 377 in the 

BPPvu_c benchmark for 415 more instances optimally solved than when selecting bins at random. Insertion obtained 62 fewer 

optimal solutions in the classic benchmark and 241 fewer optimal solutions in the BPPvu_c benchmark with the least full bins 

selection for a total decrease of 303 fewer optimal solutions than when random bin selection is used. Finally, Swap found 25 

fewer optimal solutions in the classic benchmark and 45 fewer in the BPPvu_c benchmark with the least full bins selection, 

obtaining 70 fewer optimal solutions than when selecting bins at random. 

 

The drop in performance for the item-oriented operators could be due to the least full bins having large items that cannot be 

reinserted in other groups through the RP heuristic and end up reinserted in the same group or a new one with the FF heuristic. 

Since these eliminated items were in the last bins due to them not fitting in other bins, they could be packed in the same bin 

again, and therefore, the algorithm does not explore the search space enough. So far, the results have shown that an operator 

works best when it is not very disruptive, when selecting the worst bins in the solution, and when not eliminating large items 

that cannot fit in other bins. 

 
Fig. 4. The number of optimal solutions found in total for the best three group-oriented operators and the Adaptive operator with 

both random bin selection and least bin fullness selection. 
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Fig. 5. The number of optimal solutions found in total for the best two item-oriented operators with both random bin selection 

and least bin fullness selection. 

 

Fig. 6 illustrates the results of this implementation compared to the results of the other Item Elimination versions. A significant 

improvement can be observed for this version of Item Elimination. The Adaptive IE 0.5 operator found the optimal solution of 

1454 instances in the classic benchmark, 147 more than Item Elimination with a 0.1 threshold (previously the best Item 

Elimination version) and 244 more than Item Elimination with a 0.5 threshold without the Adaptive bin selection or small item 

selection. In the BPPvu_c benchmark, the Adaptive IE 0.5 operator found the optimal solution of 822 instances, 290 more than 

Item Elimination 0.1 and 331 more than Item Elimination 0.5. 

 

 
Fig. 6. The total number of optimal solutions found for the Adaptive IE 0.5 operator compared to the other implementations of 

the Item Elimination operator. 
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In the previous implementations of Item Elimination, a decrease in the threshold resulted in better operator performance; with 

this in mind, two more versions of the Adaptive IE operator were implemented. Adaptive IE with threshold values of 0.25 and 

0.75. Tables 9 and 10 present the results of the three versions of Adaptive IE for both the classic benchmark and the BPPvu_c 

benchmark. Adaptive IE 0.25 obtained the worst results in terms of number of optimal solutions found with 1435 in the classic 

benchmark and 760 in the BPPvu_c benchmark, for a total of 2141; Adaptive IE 0.5 found the optimal solution of 1454 

instances in the classic benchmark and 822 in the BPPvu_c benchmark, for a total of 2276; Adaptive IE 0.75 obtained the best 

results by finding the optimal solution of 1470 instances in the classic benchmark and 863 instances in the BPPvu_c benchmark, 

for a total of 2333. 

 

Additionally, to assess the impact of this operator on the algorithm’s convergence time, an additional test was performed where 

the fitness of the best solution of each generation is compared between the three different versions of Adaptive IE and the 

original Adaptive operator in the GGA-CGT. The instance used for this test was BPP.75_10000_1 from the BPPvu_c 

benchmark, since neither operator tested could find the optimal solution of this instance. It can be observed in Fig. 7 that neither 

version of Adaptive IE presents earlier convergence compared to the original operator in the GGA-CGT. Adaptive IE 0.25 

presents slower convergence and does not reach the same fitness as the best solution. Moreover, while Adaptive IE 0.5 and 0.75 

both reach the same fitness value as the Adaptive operator, they do not reach it as fast, with Adaptive IE 0.75 reaching it close to 

400 generations and Adaptive IE 0.5 reaching it earlier, close to 250 generations. Meanwhile, the original GGA-CGT reaches 

the same fitness value close to 100 generations. 

Table 9. Number of optimal solutions found in each of the nine classes of the classic benchmark for the three 

implemented version of the Adaptive IE operator 

Class Instances Adaptive 

IE 0.25 

Adaptive 

IE 0.5 

Adaptive 

IE 0.75 

Data set 1 720 710 706 702 

Data set 2 480 449 457 474 

Data set 3 10 8 8 9 

Triplets 80 1 5 6 

Uniform 80 58 60 61 

Hard28 28 5 6 6 

Was 1 100 97 99 100 

Was 2 100 93 99 99 

Gau 1 17 14 14 13 

Total 1615 1435 1454 1470 

Table 10. Number of optimal solutions found in each of the four classes of the BPPvu_c benchmark for the three 

implemented version of the Adaptive IE operator 

Class Instances Adaptive 

IE 0.25 

Adaptive 

IE 0.5 

Adaptive 

IE 0.75 

BPP.25 700 220 213 273 

BPP.5 700 206 237 201 

BPP.75 700 190 198 199 

BPP1 700 144 174 190 

Total 2800 760 822 863 

 



Barojas-Vázquez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(4) 2025, 194-211. 

208 

 

 
Fig. 7. Convergence graph for comparison of the following operators: Adaptive, Adaptive IE 0.25, 0.5 and 0.75. 

 

Finally, to better evaluate the use of resources, a comparison between the original operator of the GGA-CGT, the Adaptive 

operator, and Adaptive IE 0.75 is made in Tables 11 and 12, where not only the optimal solutions found per class in each 

benchmark are compared but also the average time in seconds for each operator for each class and the total average time for 

each benchmark, as well as the average number of individuals with repeated fitness after mutation for each class and the total 

average for each benchmark. While the Adaptive operator found more optimal solutions and had a lower computational cost 

than the Adaptive IE 0.75 operator in both benchmarks, it showed more average individuals with repeated fitness. This 

difference in computational cost is due to the Adaptive IE operator checking the weight of each item in the selected bins and 

generating a random probability for those with a weight lower than 50% of the bin capacity. While this helps with diversity 

regarding the individuals with repeated fitness values after the mutation, it does not result in a competitive number of optimal 

solutions found compared to the original GGA-CGT operator. 

Table 11. Number of optimal solutions found, average time and average number of individuals with repeated fitness value 

after mutation in each of the nine classes of the classic benchmark for the Adaptive and Adaptive IE 0.75 operators 

Class Instances Adaptive Adaptive IE 0.75 

Opt Time (s) Avg 

Individuals 

with 

Repeated 

Fitness values 

Opt Time (s) Avg  

Individuals  

with 

Repeated 

Fitness values 

Data set 1 720 720 0.802 3.555 702 1.140 0.281 

Data set 2 480 480 0.286 0.143 474 0.569 0.019 

Data set 3 10 10 1.934 0.060 9 4.010 0.000 

Triplets 80 80 0.330 0.116 6 4.220 0.011 

Uniform 80 80 0.226 0.119 61 5.089 0.199 

Hard28 28 14 1.399 0.908 6 1.963 0.009 

Was 1 100 100 0.005 0.102 100 0.030 0.070 

Was 2 100 100 0.599 0.189 99 1.184 0.029 

Gau 1 17 16 0.219 0.293 13 0.726 0.045 

Total 1615 1600 0.644 0.609 1470 2.103 0.073 
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Table 12. Number of optimal solutions found, average time and average number of individuals with repeated fitness value 

after mutation in each of the nine classes of the BPPvu_c benchmark for the Adaptive and Adaptive IE 0.75 operators 

Class Instances Adaptive Adaptive IE 0.75 

Opt Time(s) Avg Individuals 

with Repeated 

Fitness values 

Opt Time(s) Avg Individuals 

with Repeated 

Fitness values 

BPP.25 700 443 5.838 0.476 273 7.970 0.231 

BPP.5 700 322 4.209 0.617 201 5.339 0.298 

BPP.75 700 239 2.606 3.167 199 1.697 0.427 

BPP1 700 478 1.851 4.921 190 1.482 0.816 

Total 2800 1482 3.626 2.295 863 4.122 1.772 

 

6 Conclusions 
 

In this paper, we presented an experimental study in which we compared and measured the performance of the GGA-CGT for 

the 1D-BPP with five different grouping mutation operators and tested two bin selection strategies and two item selection 

strategies. The conclusions are presented as follows. 

 

Our first experiments showed that the least disruptive operators performed better in the GGA-CGT compared to highly 

disruptive ones. For the top five performing operators in the first test, an additional test was conducted where the bin selection 

was changed from random to selecting the least full bins for the mutation operations. These changes resulted in improved 

performance for the group-oriented operators and a decline in performance for the item-oriented operators, likely due to 

complications with eliminating and reinserting large-sized items. Finally, bin and item selection strategies were tested on an 

item-oriented operator, where only a calculated number of the least full bins and only small items from those bins were selected 

for the operations. These strategies resulted in an improvement of 26% in the operator's performance. We conclude that the bin 

selection strategy significantly impacts the performance of a group-oriented operator. In contrast, the item selection strategy has 

a greater impact on the item-oriented operators. However, more experiments need to be conducted with more operators to 

understand further the impact of these strategies on mutation operators. Understanding these characteristics can lead us to 

further improve all the mutation operators presented in this study, including the adaptive operator, by following a strategy 

similar to that of the Adaptive IE operator. The GGA-CGT is already one of the best algorithms in the specialized literature to 

solve the 1D-BPP, and applying this methodology could make it more competitive with other state-of-the-art methods. 

 

More gene selection strategy tests and item selection strategies are planned for future work. More versions of the operators will 

also be implemented, like adding more options for movements in the Swap operator, testing different values for thresholds for 

the Item Elimination operator variations, or percentages for the Elimination operator. Finally, we plan to culminate this work in 

the future by designing a new grouping mutation operator using the knowledge obtained from this study. 
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