
© International Journal of Combinatorial Optimization Problems and Informatics, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

Received Jun 19, 2016 / Accepted Dec 10, 2016

 Editorial Académica Dragón Azteca (EDITADA.ORG)

Enumeration and Generation of Permutations with a Partially Fixed

Order of Elements

Yuri G. Stoyan1, Igor V. Grebennik2, Viacheslav V. Kalashnikov3,4,5*, and Oleksandr S.

Lytvynenko2.
1A.N. Podgorny Institute for Mechanical Engineering Problems, Kharkiv, Ukraine 61046

2Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 61166
3Tecnológico de Monterrey (ITESM), Campus Monterrey, Monterrey, Mexico

4Central Economics and Mathematics Institute (CEMI), Moscow, Russia 117418
5Sumy State University, Sumy, Ukraine 40007

stoyan@ipmach.kharkov.ua, igorgrebennik@gmail.com, kalash@itesm.mx,

litvinenko1706@gmail.com

Abstract. A specific class of permutations – permutations with partially fixed order of elements – has been

described. A procedure of enumeration and generation of this class has been developed. Steps of the

algorithm have been established to be well-defined, and its complexity has been evaluated. Some important

particular classes of permutations, such as alternating and unimodal ones are special cases of the

permutations described. This algorithm can be used for generating other combinatorial sets, e.g.

arrangements and combinations.

Keywords: Enumeration and Generation of Permutations, Partially Fixed Order of Elements.

1. Introduction

Numerous monographs and papers on the exhaustive generation of combinatorial sets (e.g., [1]–[4]) mainly

deal with classical combinatorial objects such as permutations, trees etc. However, in many real-world

problems, generation of non-classical combinatorial objects or classical ones with additional special

properties is needed (cf., [3]).

Permutation sets are considered the most common and well-examined combinatorial sets. Unrestricted

permutations generation algorithms have been developed in numerous books and papers, cf., [1]–[2]. In many

cases, generation problems are solved for sets of permutations with special properties, like sets of

permutations with a given number of cycles, Bell permutations, or alternating permutations [4]–[5]. Problems

of enumeration of permutations with a given order of elements have been explored since the early 1970s. In

some papers, problems of enumeration for some classes of permutations with prescribed up-down structure

are solved. These permutations are called permutations with a prescribed pattern; they are special cases of

permutations with a fixed order of elements. Enumeration problems for permutations having a prescribed

sequence of rises and falls are considered in [6] and many others. A permutation with a signature

1 2 1(, ,...)nQ q q q where iq is either 1 or – 1, is a permutation 1 2, ,... nP of integers 1 to n, so that

1i i if 1iq , 1i i otherwise, for all 1,2,..., 1i n . Alternating permutations [4]–[5] are an

example of permutations with the signature (1, –1, 1, –1, ...). In [6], a problem of generation of permutations

with a given signature is solved.

In this paper, we are going to consider a generalization of permutations with a given signature – permutations

with partially fixed order, where “greater-less” relations are determined not for all pairs of neighboring

elements but only for some of them.

* This research was partially financed by the SEP-CONACYT grant CB-2013-01-221676, Mexico

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

20

The rest of the paper is organized as follows. Permutations with a partially fixed order of elements are defined

and studied in Section 2. Section 3 deals with the formal description of the proposed algorithm for generating

the whole list of permutations with a partially fixed order of elements. A particular case of such permutations

is considered in Section 4. Concluding remarks and the list of references are in Sections 5 and 6, respectively.

Finally, the detailed presentation of the steps of the developed algorithm and some semantic features of the

latter can be found by the interested reader in Appendix A (Section 7), while a link to a paper assessing and

discussing the algorithm complexity is provided in Appendix B (Section 8).

2. Permutations with a Partially Fixed Order of Elements

Consider a set of generating elements 1 2{ , ,..., }nA a a a , 1 2 ... na a a , 1
ia R , ni J , {1,2,..., }nJ n ,

and let nP denote a set of all possible permutations of entries 1 2, ,..., na a a . For an arbitrary permutation

1 2(, ,...,)n nP , the following relationships are valid:

 1 1 2 2 1... n n , { , }i , 1ni J . (1)

 In other words, Eq. (1) means that, for each 1ni J , exactly one of the inequalities holds:

 1i i , (2)

or

 1i i . (3)

Definition 1. The sequence 1 2 1() (, ,...,)n is called the order of elements in the permutation

nP . A permutation with an order of fixed elements
i is called permutation with a fixed order.

Permutations with a fixed order are identical to the permutations with a given signature described by Roeiants

van Baronaigien and Ruskey [6]. For example, permutations with the order () (, , ,) are identical to

those with signature (1, 1, 1, 1)Q .

Definition 2. An arbitrary subsequence
i , i.e. a sequence

1 2
() (, ,...,)

k
r i i i , 1 2 ... ki i i ,

1nk J , is called a partially fixed (or partially set) order of elements for permutation nP .

A complete order of elements
i determines relationships between i and 1i for all positions 1ni J ,

while the partially fixed order ()r determines it only for positions 1 2{ , ,..., }ki i i i . The order of elements of

the permutation nP can be formalized in various ways. Roeiants van Baronaigien and Ruskey [6] made

such formalization via signatures. We will describe an order of elements in permutations using a set of

descent introduced by Stanley [5].

Definition 3. The set of descent ()D of permutation nP is determined as in [5] 1() { | }i iD i ,

1ni J . The complementary set 1() \ ()nD J D is denoted with
iF , 1ni J .

In this paper, a special subset of ()D comprising positions 1 2{ , ,..., }ki i i i is used. Let us denote it by

 1 2 1'() { , , , | } ()k i iD i i i i D . Next, 1 2'() { , ,..., }\ '()kD i i i D can be rewritten as follows:

 1 2 1'() { , , , | } ()k i iD i i i i D . Subsets '()D and '()D explicitly determine the partially

fixed order of elements for each permutation nP . The partially fixed order of elements ()r , on the one

side, and the subsets '()D and '()D , on the other side, are explicit functions of each other. For example, if

() (, ,) (, ,)2 4 5r , then '() {2,5}D and '() {4}D . This statement is also true for the

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

21

complete order of elements () as a special case of the partially fixed order ()r . A permutation satisfies

the partially fixed order ()r in case when for all positions 1 2{ , ,..., }ki i i i the difference i – 1i fits the

relation ()r . However, the relation i – 1i is not defined for 1 2{ , ,..., }ki i i i .

Example 1. The partially fixed order ()r that corresponds to the sets '() {1}D and '() {2}D has been

defined on a set of generating elements {1,2,3,4}A for 2k positions {1,2}i . For position 3i both

2 3 and 2 3 are acceptable. Thus, the partially fixed order ()r corresponds to

1 4 2 12 2 2n k complete orders () that can be presented as follows:

 () {1}D , () {2,3}D

and () {1,3}D , () {2}D .

In both cases, for {1,2}i , the relation i – 1i satisfies the assigned one; the set of descents includes

'()D , and ()D comprises '()D .

Now let us consider the problem of enumeration of permutations nP with a partially fixed order of

elements ()r . The number of permutations satisfying the given partially fixed order ()r is equal to the

total of the number of permutations satisfying each of 12n k complete orders ()j , 11,2,...,2n kj .

Then, we need to find all complete orders 1 2 2 1
(), (),..., ()

n k

 that correspond to the partially fixed

order ()r to determine the number of permutations satisfying each of the complete orders and to sum them

all to obtain their total. Permutations with a given complete order of elements () are identical to

permutations with a given signature. Therefore, to calculate a number of these permutations, the previous

results obtained for permutations with a given signature can be used, e.g., [7].

The number of permutations with a given complete order of elements () can be also calculated through its

set of descent. To enumerate permutations nP with the order of elements () we are going to calculate

the total number (())N of all permutations nP having ()D S . Following [5], for a fixed

1 2 1{ , ,..., }k nS s s s J let the number of permutations nP having S as its (exact) set of descents be

denoted with ()n S . Stanley [5] developed a formula to determine ()n S :

1 2 1

1 21 ...

() (1)
, ,...,

j
j

k j
n

i i i ii i i k

n
S

s s s n s

 , (4)

where
1 2 1 2

!

, ,..., ! ! ... !k k

n n

n n n n n n

, kj J . Let 0() be the order of elements in the permutation

0
nP , with 0

1 2 1() { , ,..., }k nD S s s s J . The number 0(())N of all permutations nP having

the order of elements 0() () is equal to ()n S , i.e. 0(()) ()nN S where ()n S is determined

by Eq. (4). By summing up the number of permutations with the order of elements

1 2 2 1
(), (),..., ()

n k

, the number of permutations with the partially fixed order of elements ()r is

obtained:

2

1

1

(()) (())j

j

n k

N r N

 . (5)

The next section describes an algorithm for generating all permutations nP with a partially fixed order of

elements ()r .

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

22

3. Generation of Permutations with a Partially Fixed Order of Elements

Let us select a set of generating elements 1 2{ , ,..., }nA a a a such as 1 2 ... na a a , and a partially fixed

order of elements ()r determining the sets '()D и '()D . All permutations nP corresponding to

'()D и '()D must be generated in quantity (())N r determined by Eq. (5). We use
i to denote the

partial permutation composed of the first i elements 1 2(, ,...,)i
i , i A , 0

ni J , 0 {0,1,2,..., }nJ n .

Here
0 is an empty partial permutation, while n

nP is the desired result of generation. Now we

describe the algorithm PartOrderedPerm generating all permutations with the partially fixed order of

elements ()r .

At the beginning (zero level), an input of the algorithm is the empty permutation
0 . The algorithm has a

recursive structure: at each recursion level, 0
1ni J it expands the current partial permutation

1 2(, ,...,)i
i of length i by adding the next element with the number 1i and thus obtaining a new

partial permutation 1
1 2 1(, ,...,)i

i
 of length 1i at the next level. Consequently, at the level n , the

desired permutation
n is obtained. The newly selected element 1i A must satisfy the conditions

below.

Condition 1. A new element 1i is to be distinct from all previously selected elements of the partial

permutation in question:

 1i j , ij J . (6)

Condition 2. If the partially specified order of elements ()r requires a descent in position i , then 1i has

to be smaller than i :

 '() 1i D i i . (7)

Otherwise, if ()r needs an ascent in position i , then 1i must be greater than i :

 '() 1i D i i . (8)

Finally, if the partially fixed order of elements ()r does not include position i , element 1i can be either

greater or smaller than i ; i.e., there are no limitations for 1i :

 '(), '() , { , }1i D i D i i i i . (9)

Condition 3. This condition being too lengthy has been exported to Appendix A.

Now let us describe the main algorithm PartOrderedPerm that generates all permutations with a partial

order of elements ()r . A pseudo-code of this algorithm is shown in Figure 1. To generate all required

permutations, the procedure PartOrderedPerm is called with input
0 . The input data for

PartOrderedPerm are identical to input data for the procedure Get_F (cf., Appendix A). As mentioned

above, at each level up to level 1n the algorithm adds a new element to a current permutation
i while it

returns the desired permutation
n at level n . At each recursion level 0

1ni J , the following operations

are performed: if i n , then the result
n is returned (work is finished); the set

iF is generated through

function Get_F (see, Figure 4 in Appendix A); a recursive call of PartOrderedPerm with the parameters
1

1, , ,i
i i i i i

i j k
f F j J k Card F

 is made.

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

23

procedure PartOrderedPerm (
i);

if i n then print(
i); return;

iF :=Get_F(
i);

for 1,2,..., ()ij card F do PartOrderedPerm(
1

1 2(, ,..., ,)i i
i jf);

Fig. 1. The main algorithm PartOrderedPerm

Example 2. Figure 2 illustrates an example of generating permutations from the elements {1,2,3,4,5}A ,

for the assigned sets '() {1}, '() {3,4}D D ; the order of elements for position 2 hasn’t been assigned. So,

permutation 5P satisfies the given partially fixed order of elements ()r assigned for 3k positions

{1,3,4}i) if and only if it satisfies one of the 5 3 12 2 complete orders of elements () that is identical

to ()r for positions {1,3,4}i .These two complete orders of elements descend in position 1 and ascend in

positions 3, 4 and correspond to diagrams and .

Fig. 2. The recursive tree demonstrating how the algorithm runs.

It should be noted that to generate other combinatorial sets with this algorithm, it is sufficient to identify the

laws of constructing set iF for each level 1
0
ni J . Those laws are referred to in [8] for arrangements and

combinations (either with repeated elements or without them).

3.1. Particular Cases of Permutations with a Partially Fixed Order

If the partially fixed order ()r has not been assigned to any position, the order of elements in permutations is

not important at all. In this case, the generation results in the set nP of all permutations of n elements.

If the partially fixed order ()r determines all positions {1,2,..., 1}i n , it becomes a complete order of

elements () . Then the described algorithm will generate permutations with a given signature [6].

4. Conclusions

In this paper, a special case of permutations – permutations with a partially fixed order of elements has been

examined. This class of permutations generalizes permutations with a given signature described earlier. The

number of such permutations has been evaluated.

An algorithm to generate such permutations has been suggested and its complexity has been evaluated (cf.,

Appendix B). The described algorithm also allows generating permutations with a given signature as a special

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

24

case of the described class of permutations but is more complex one than the algorithm described by Roeiants

van Baronaigien and Ruskey [6].

It should be noted that the described PartOrderedPerm algorithm is universal and can be applied for

generating other combinatorial sets. To do this, it is enough to assign the laws of constructing the set iF for a

chosen combinatorial set.

Acknowledgments

The authors would like to express their profound gratitude to the two anonymous reviewers whose valuable

comments and suggestions have helped them considerably improve the text and the structure of the paper.

This research was partially financed by the SEP-CONACYT grant CB-2013-01-221676, Mexico, and by

Tecnológico de Monterrey (ITESM), Campus Monterrey (Strategic Group of Numerical Methods and

Industrial Engineering).

References

1. Knuth, D.: The Art of Computer Programming, Vol. 4, Fasc. 2: Generating All Tuples and Permutations, Addison-

Wesley Publishing Company, Boston, MA (2005).

2. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration, and Search, CRC Press, Taylor

& Francis Group, London (1999).

3. Grebennik, I.V., Pankratov, A.V., & Baronov, A.V.: Packing n-dimensional parallelepipeds with the feasibility of

changing their orthogonal orientation in an n-dimensional parallelepiped, Cybernetics and Systems Analysis, 46,

793-802 (2010).

4. Flajolet, R., Sedgewick, R.: Analytic Combinatorics, University Press, Cambridge (2009).

5. Stanley, R.P.: A Survey of Alternating Permutations (2009); www.math.mit.edu/rstan/papers/altperm.pdf

6. Roeiants van Baronaigien, D., Ruskey, F.: Generating permutations with given ups and downs, Discrete Applied

Mathematics, 36(1), 57-65 (1992).

7. Abramson, M.: A simple solution of Simon Newcomb’s problem, Journal of Combinatorial Theory Ser. A,18, 223-

225 (1975).

8. Grebennik, I.V., Lytvynenko, O.S.: Generating combinatorial sets with given properties, Cybernetics and Systems

Analysis, 48(6), 890-898 (2012).

9. Ruskey, F.: Combinatorial Generation, Dept. of Computer Science, University of Victoria, Canada, 1j-CSC 425/520

(2003).

10. Stanley, R.P.: Enumerative Combinatorics, Vol. 1, Wadsworth Inc., Belmont, CA (1986).

5. Appendix A

Condition 3. If, starting from position 1i , we require m descents in a row, then there must exist at least m

elements of A not belonging to
i and having values smaller than 1i :

1 2 1{ 1, 2,..., } '() { , ,..., } :

m jl l l l ii i i m D L a a a A a ,
jla k , (10)

where mj J , ik J , 1nm J . If starting from position 1i , we require m successive ascents, then there

must exist at least m elements of A not belonging to
i and having values greater than 1i :

1 2 1{ 1, 2,..., } '() { , ,..., } :

m jl l l l ii i i m D L a a a A a ,
jla k , (11)

where mj J , ik J , 1nm J . If the partially fixed order of elements ()r does not include position

1i , the following element 2i can be either greater or smaller than 1i ; and again, there are no

limitations for 2i :

 1 '(), 1 '() , { , }1 1 2 1i D i D i i i i . (12)

http://www.math.mit.edu/rstan/papers/altperm.pdf

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

25

For a partial permutation
i , there may exist several generating elements that can be selected as 1i . Let

the set of such elements be denoted as iF , 0
1ni J . At a level 2ni J , the set

iF contains all the

generating elements satisfying Eq. (6) through Eq. (12). However, the laws of forming the subset
iF are

different at the levels 0i and 1i n . Indeed, at level 0, conditions Eq. (6) – Eq. (9) are not verified

because the permutation
0 has no entries. In this case, the subset

0F is constructed in the following way:

if a given partially fixed order ()r requires m descents at the beginning, then each element of the subset

0F is to be such that there exist m generating elements smaller than this element. Therefore, the subset
0F

consists of the latter n m elements of the generating set:

 0
1 2{1,2,..., } '() { , ,..., }m m nm D F a a a . (13)

If on the contrary, a given partially fixed order ()r requires m ascents at the beginning, then each element

of the subset
0F has to be such that there exist m generating elements greater than this element. Therefore,

the subset
0F consists of the former n m elements of the generating set:

0{1,2,..., } '() { , ,..., }1 2m D F a a an m . (14)

If the partially fixed order of elements ()r does not include the position 1i , then the subset
0F includes

all the generating elements:

01 '(),1 '() { , ,..., }1 2D D F a a an . (15)

At the level 1n , the subset
1nF

 contains a single generating element not involved in
1n

. Such an

element should automatically satisfy the partially fixed order of elements ()r since its existence has been

proved by conditions from Eq. (10) and Eq. (11) at the level 2n . Therefore, no condition is checked at the

level 1n . It should be noted that at each level
0

2i Jn , the parameter m has a value depending upon

()r . For convenience, at each level
0

2i Jn , let the number of successive ascents/descents required in a

partially fixed order ()r be denoted with im starting from the next position 1i . Note that im is

determined only if the position i is included into '()D or '()D , i.e., im is not defined when the position

1i is not assigned. The values of im are determined in the following way. If a partially fixed order of

elements ()r requires im successive descents starting from the position 1i , then

 21 () max(: ()),i
n ii D m t i t D t J . (16)

Conversely, if a partially fixed order of elements ()r implies im successive ascents starting from the

position 1i , then

 1 () max(: ()), 2
ii D m t i t D t Jn i . (17)

Now all values im for a partially fixed order ()r can be calculated by the procedure that we call Get_M. Its

input data are the cardinality n of the set of generating elements and the partially fixed order of elements

()r associated with the sets '()D and '()D .

procedure Get_M

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

26

for i:=0,1,...,n-2 do

 if { 1} '()i D then : max(: '())im t i t D

 else : max(: '())im t i t D

Fig. 3. Procedure Get_M calculating im .

Now let us describe the operation of procedure Get_F (Figure 4) that generates the set iF based on a partial

permutation i . First, if 0i , then by means of Eq. (13)–Eq. (15) (subject to ()r) , the set
0F is created.

On the other hand, if 0i then the set iF is generated by searching all the generating elements ja A not

captured in
i . The variable “condition2” has the value TRUE if the conditions Eq. (7)–Eq. (9) are satisfied

and FALSE otherwise. Similarly, the variable “condition3” codes the validity of the conditions Eq. (10)–Eq.

(12). It has been mentioned above that for the level 1n no conditions are verified at all. All the elements

ja A satisfying the above-mentioned constraints are added to the set iF . Since the elements ja A are

searched sequentially and the set A is arranged in a strictly increasing order, the elements of iF are also

arranged in a strictly increasing order. Input data for the procedure Get_F are: the cardinality n , sets '()D

and '()D , the set A of generating elements, a current partial permutation
i , and the values 0, 2

im i Jn

obtained through procedure Get_M.

function Get_F(
i);

:iF ; m:= im ;

if 0i then:

 if 1 '()D then 0 01 2
: { , ,..., }nm m

iF a a a

 ;

 if 1 '()D then 01 2: { , ,..., }
n m

iF a a a

 ;

 if 1 '(),1 '()D D then 1 2: { , ,..., }n
iF a a a ;

 return
iF ;

for (, , 1,2,...,ia A a j ij):

if (()i D and i
ia) or ('()i D and i

ia) or '(), '()i D i D then condition2:=true

 else condition2:=false

if 1 '()i D

then condition3:=
1 2

{ , ,..., } :
i jm

l l l lL a a a A a a ,
jla k , im

j J , ik J ;

if 1 '()i D

 then condition3:=
1 2

{ , ,..., } :
i jm

l l l lL a a a A a a ,
jla k , im

j J , ik J ;

if 1 '(), 1 '()i D i D then condition3:=true;

if (1i n) or (condition2 and condition3) then : iiF F a ;

return
iF ;

Fig. 4. The function Get_F(
i) forming the set iF

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

27

6. Appendix B

Evaluating the Complexity of the PartOrderedPerm Algorithm

Basing upon the usual methods of evaluating a recursion algorithm’s complexity (cf., F. Ruskey [9]), we

define the complexity of PartOrderedPerm algorithm as the quantity of changes in the interim data starting

at the moment the algorithm is called up and finishing with its returning the final result. When

PartOrderedPerm is called at each level 0
1ni J , from the current permutation i with the aid of the

elements of the set iF , a new entry 1i is generated; after that PartOrderedPerm is called with the

parameter 1i . Therefore, the algorithm complexity can be evaluated as a number of calls of

PartOrderedPerm at all the levels 0
1ni J .

Theorem 1. The PartOrderedPerm algorithm constructs a backtracking tree (cf., [9]) where each

permutation π with a partially fixed order ()r serves as a leaf.

Proof. If a tree leaf is a permutation of the length n , it means that all elements of this permutation n

satisfy the conditions Eq.(6)–Eq.(12) and for that reason n is the permutation that satisfies ()r . Let us

demonstrate that this recursion tree has no deadlocks, i.e., such leaves that the length of i is less than n .

A deadlock at a level 0
1ni J occurs when the set iF is empty, i.e., there are no generating elements that

simultaneously satisfy the conditions Eq.(6)–Eq.(12). Therefore, by proving that iF contains at least one

element at each level 0
1ni J we establish that the recursive tree of PartOrderedPerm does not have any

deadlocks.

At the level i , there are always n i generating elements not involved in i . Thus, we can always find n i

generating elements that satisfy the condition Eq.(6). Since the generating elements are distinct, each of n i

generating elements not included in
i can be greater or smaller than i . In order to satisfy the conditions

Eq.(7) and Eq.(8), a generating element has to be smaller or greater than i depending on the partially fixed

order ()r .

From Eq.(10)–Eq.(11) it follows that, at the level 1i , the element i is selected in such a manner that there

exist at least 1 1im generating elements not involved in 1i , which are either greater or smaller than i

(depending on ()r). The latter evidently implies that at the level i there always exist no less than 1 1im

generating elements that satisfy Eq.(7)–Eq. (8).

Let us denote the strictly increasing set of generating elements that satisfy the conditions Eq.(6)–Eq.(8) at the

level i by
1 2

{ , ,..., }
p

i
c c cC a a a , 1 2 ... pc c c , 1 2{ , ,..., }p nc c c J . For the elements of the set iC to

be included in the set iF , they have to satisfy the conditions Eq.(10)–Eq.(11).

An element ,c pk
a k J satisfies the conditions Eq.(10)–Eq.(11) if, and only if there exists im generating

elements from the set iC that are smaller or greater than ck
a (depending on ()r). Making use of a

somewhat modified terminology used by R. Stanley [10] we notice that, according to the given order of

elements ()r , the element 1i can be:

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

28

a descent, if 1 2i i i , i.e. { , 1} '()i i D ;

a peak, if 1 2i i i , i.e. '()i D , 1 '()i D ;

an ascent, if 1 2i i i , i.e. { , 1} '()i i D ;

a valley, if 1 2i i i , i.e. '()i D , '()i D .

In our case, for descents and peaks, starting from the position 1i , there may occur im positions belonging to

set '()D , i.e. { , 1,..., } '()ii i i m D for a descent, and '()i D , { 1,..., } '()ii i m D for a peak.

Similarly, starting from the position 1i , for ascents and valleys, there may occur im positions belonging to

set '()D , i.e. { , 1,..., }ii i i m '()D for an ascent and '(),{ 1,..., }ii D i i m '()D for a valley.

Thus, apart from Eq.(6), the conditions Eq.(7) and Eq.(10) have to be verified for the descents, Eq.(8) and

Eq.(10) – for the peaks, Eq.(8) и Eq.(11) – for the ascents, Eq.(7) and Eq.(11) – for the valleys. For each of

these four cases, the two remaining conditions are not verified.

It should be noted that in [10], descents and ascents are understood as the corresponding elements of a

permutation, while in this paper, we mean positions belonging to permutation sets of descents or ascents,

respectively.

If 1i fixes ascents or descents, then the existence of 1 1j im m elements of the set iC that are greater

or, on the contrary, smaller than 1i , is verified at the previous level 1i in the conditions Eq.(10) or

Eq.(9), respectively.

When 1i occupies a peak, then the set iC contains unused generating elements that satisfy Eq.(8), i.e., are

greater than i . To satisfy the relationship Eq.(10) for the element ck
a , the existence of im elements of the

set iC that are smaller than ck
a is required. If the set iC is a singleton containing only one element

1c
a ,

then the remaining 1n i elements not involved in i violate the restriction Eq.(10). In other words, all

those elements are smaller than i and hence smaller than
1c

a .

Next, if iC contains 1p elements, then there are n i p elements not included in i and not belonging

to iC . i.e., violating Eq.(8). If
in i p m then Eq.(10) is true for all elements of iC , since for every ck

a

there always exist n i p generating elements smaller than i and not involved in i .

If
in i p m then Eq.(10) does not hold for all elements of iC but is true only for those that have im

elements that are smaller than ck
a and not involved in i . Thus, the existence of im elements that are

smaller than ck
a is required, however, there are only n i p of them beyond the set iC . It means that there

must be ()im n i p elements of iC that are smaller than ck
a . Therefore, the condition Eq.(10) holds

true for the latter (())i ip m n i p n i m elements of the set iC . Moreover, im is always smaller

than n i because the number of relations among n i elements is clearly 1 in i m .

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

29

If 1i is a valley, then the set iC contains unused generating elements that satisfy Eq.(7), i.e., are smaller

than i . The element ck
a satisfies the condition Eq.(11) if there exist im elements of the set iC that are

greater than ck
a .

If the set iC is a singleton containing only one element
1c

a , then the remaining 1n i elements not

involved in i violate the restriction Eq.(11). In other words, all those elements are greater than i and

hence greater than
1c

a . If iC contains 1p elements, then there are n i p of them not included in i

and not belonging to iC , i.e., violating the condition Eq.(7). If
in i p m then Eq.(11) is true for all

elements of iC , since for every ck
a there always exist n i p generating elements greater than ck

a and

not involved in i .

If
in i p m , then Eq.(10) does not hold for all elements of iC but is true only for those that have im

elements that are smaller than ck
a and not involved in i . Thus, it should exist im elements being greater

than ck
a , but there are only n i p of them outside the set iC . It means that there must be ()im n i p

elements of iC that are greater than ck
a . Therefore, the relationship Eq.(10) is valid for the former

(())i ip m n i p n i m elements of the set iC .

To satisfy Eq.(9), the generating element can be either greater or smaller than i . Therefore, all generating

elements satisfy Eq.(9). The same reasoning allows stating that all generating elements satisfy (12).

We have just shown that the set iF
has at least one element at each level 0

1ni J , which means the absence

of deadlocks in the recursion tree grown by PartOrderedPerm and thus proves the theorem.

Now following the terminology from [9] and having established the validity of Theorem 1, it can be

concluded that PartOrderedPerm algorithm belongs to the BEST (Backtracking Ensuring Success at

Terminals) class. In other words, it is an algorithm of the backtracking type, but every leaf of the

backtracking tree is an object of the desired kind [9].

Proposition 1. PartOrderedPerm algorithm is a ranking algorithm, as permutations are generated in

the lexicographical order.

Proof. As mentioned above, the elements of the set
iF strictly increase: 1 2 ...

i
i i i

k
f f f ,

i i
jf F , ik

j J ,

i ik Card F . The algorithm inserts the elements of
iF (starting from the first one) into the current partial

permutation i , and then calls PartOrderedPerm again. This means that the recursive calls of

PartOrderedPerm are made first for the smallest elements of
iF and subsequently are applied to the ever

growing elements of iF , which finally leads to the lexicographic ordering of generated permutations. The

proof is complete.

Let us denote the total number of permutations of n elements with a given partially fixed order of elements

by N .

Stoyan et al. / Enumeration and Generation of Permutations with a Partially Fixed Order of Elements. IJCOPI, Vol. 8, No. 1, Jan-April

2017, pp. 19-30. ISSN: 2007-1558.

30

Proposition 2. The complexity of PartOrderedPerm algorithm is ()O nN .

Proof. As mentioned above, we decided to evaluate the complexity of the algorithm by the number of calls of

PartOrderedPerm through all the levels 0
1ni J . Since at each level 0

1ni J , PartOrderedPerm adds one

element in i and there can be no deadlocks (see, Theorem 1), the procedure PartOrderedPerm is called

no more than n times to generate each of N permutations. Therefore, the total number of calls of

PartOrderedPerm at all the levels 0
1ni J does not exceed nN , which finishes the proof.

