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Abstract. In this paper, valid bounds for a facility location bilevel 

problem with capacities are proposed. This problem arises from 
the situation when a company aims to locate some facilities such 

that the location and distribution costs are minimized. 

Nevertheless, the customers are free to choose the facility they 
prefer for satisfying their demand. Under this assumption, this 

problem can be modeled as a bilevel program, in which, the upper 

level is associated with the company’s decision and the lower level 

corresponds to the allocation of the customers based on their 

preferences. The resulting lower level problem is NP-hard, which 

complicates the resolution of the bilevel problem due to the 
difficulty of obtaining –in general- feasible bilevel solutions. 

Hence, we explore other approaches for handling this issue. By 

considering traditional bounds for the lower level problem, we can 
propose valid bounds for the bilevel one. However, the 

impossibility of classifying them as upper or lower bounds is 

shown through computational experimentation. 
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1. Introduction 

 
Location science is an area that has always attracted the attention of the researchers due to their significant impact 

when dealing with real applications. Also, the complex nature of that kind of problems has motivated to the 

scientific community for studying them. Under the classical approach, customers are allocated -in a deterministic 

way- to their nearest located facility. However, in some situations that allocation criterion could be substituted by 

some others, such as, a specific utility function, customer’s preferences or even, stochastic rules can be considered. 

 

In this paper, we are interested in the criterion that allocates the customers to their most preferred facility considered 

in [1]. By following this allocation criterion, the facility location problems can be naturally modelled as bilevel 

programs. For instance, bilevel models for locating facilities without considering their capacity are studied in [2, 3, 

4]. Also, in [5, 6] the constraint that forces to locate exactly 𝑝 facilities isincluded to the bilevel problem. 

 

In all the above-cited papers the lower level problem is an integer problem in which the optimal solution of its linear 

relaxation coincides with the optimal solution of the integer problem –due to the property of the closest assignment 

constraints, see [7]-. Hence, it could be solved via a commercial optimizer or exact procedures based on a reordering 

of the matrix of the customer’s preferences, as in [8]. 

 

The remainder of this paper is as follows. Section 2 presents the background necessary to understand the importance 

of having the lower level’s optimal response and an overview of some cases in which is not possible or 

computationally convenient. In Section 3 the mathematical formulation of the problem herein considered is 

presented. Section 4 introduces two schemes for obtaining valid bounds for the bilevel problem. The first scheme 

omits the lower level’s objective function from the bilevel formulation. The second scheme takes into account the 

complexity of the lower level problem and relaxes the binary nature of its decision variables. Computational 

experimentation was conducted for measuring the quality of the bounds, and the results are shown in Section 5. 

Finally, the conclusions are stated in Section 6. 

2. Background 
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As it was mentioned before, a bilevel programming problem is composed of two decision levels –an upper and a 

lower level- that interact with each other in a hierarchized manner. The existing relationship among both levels 

yields that the decision variables associated with the lower level are given by the optimal solution of another 

optimization problem parameterized on the upper-level decision variables. In other words, a bilevel programming 

problem is a mathematical program with another mathematical program in its constraints. Let 𝐹, 𝑓: 𝑅𝑛 × 𝑅𝑚 → 𝑅 be 

the upper and lower level objective functions, respectively. Defining𝐺: 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑝 the upper level constraints 

and 𝑔: 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑞 the lower level constraints; a general mathematical formulation is as follows (see [9, 10]): 
 

min
𝑦

{𝐹(𝑥, 𝑦): 𝑦 ∈ 𝑅𝑚, 𝐺(𝑥, 𝑦) ≤ 0, 𝑥 ∈ 𝑃(𝑦)}   (1) 

where 𝑃(𝑦) = {𝑥 ∈ 𝑅𝑛: 𝑥 ∈ argmin{𝑓(�̂�, 𝑦): 𝑔(�̂�, 𝑦) ≤ 0}}. Note that the constraint 𝑥 ∈ 𝑃(𝑦) forces bilevel feasible solutions to 

have the particularity that a subset of its variables must be determined by the optimal solution of the lower level problem. 

 

Nevertheless, due to the complex nature of some bilevel problems the optimal solution of the lower level cannot be 

always reached. For example, when it corresponds to a multi-objective problem, there is a Pareto front of solutions, 

not only a single optimal solution. See [11] for a detailed explanation about the issues that appear under this scheme. 

Another example is when a Nash equilibrium is considered at the lower level as in [12], in which, the lower level 

consists of several problems interrelated. The Nash equilibrium is assumed to be unique, but in general, that is not 

always possible. Moreover, when the lower level is an NP-hard problem –as the problem herein considered-its 

optimal resolution cannot be always guaranteed. For instance, in [13] a heuristic approach that reaches good lower 

level solutions were considered. In that problem, a minimum spanning tree must be obtained for having feasible 

bilevel solutions. Note that in that problem, the lower level is an NP-complete problem. Therefore, in a strict sense, 

the obtained solutions are bilevel infeasible in the mentioned cases. However, the problems under study need to be 

solved efficiently and acceptably. 

 

Furthermore, some efforts have been made for studying the behavior of algorithms that are designed for solving 

bilevel problems. In other words, the impact of considering approximate solutions when solving the lower level 

problem instead of optimal ones has been analyzed. For example, in [14], a bilevel production-distribution problem 

is considered and the affectation on the upper level’s solution when comparing an optimal procedure against an ant 

colony optimization algorithm is shown. Also, in [15] a similar analysis is made for a facility location bilevel 

problem without capacities, in which, the lower level was solved via an exact procedure and a heuristic one. In both 

cases, the findings are consistent that there is not a reliable manner to predict the impact on the upper-level objective 

function value when the lower level is not optimally solved. 

 

Based on the above mentioned main issues, we propose valid bounds for the bilevel problem herein considered due 

to the impossibility of obtaining the lower level’s optimal solution in the general case. Additionally, a discussion 

about some counterintuitive findings are presented and illustrated by computational experimentation. 
 

3. Facility location bilevel problem with capacities 

 
First, let us introduce the notation used in the model. 

 

Decision variables: 

𝑦𝑖   represent whether a facility is located in the potential location 𝑖 (upper level). 

𝑥𝑖𝑗  denote if the demand of the customer 𝑗 is supplied by the facility 𝑖 (lower level). 

 

Parameters: 

𝑖 = {1, 2, … , 𝑛}, is the set of potential location for the facilities. 

𝑗 = {1, 2, … , 𝑚}, is the set of customers that will be served by the facilities. 

𝑐𝑖𝑗  associated costs for allocating a customer 𝑗 to the facility 𝑖. 
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𝑓𝑖    fixed cost for locating a facility at the 𝑖 − 𝑡ℎ potential location. 

𝑑𝑗   demand associated to each customer 𝑗. 

𝑏𝑖   production capacity to each facility 𝑖. 
𝑝𝑖𝑗  preference of the customer 𝑗 towards the facility 𝑖, in which, if 𝑝𝑖𝑗 = 1  indicates the less preferred facility and 

𝑝𝑖𝑗 = 𝑛 corresponds to the most desirable facility. 

 

The mathematical model is as follows: 
 

min
𝑦,𝑥

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑦𝑖

𝑛

𝑖=1

 
  (2) 

subject to:  𝑦𝑖 ∈ {0,1} 

 

∀𝑖  (3) 

 
𝑥 ∈ Arg max ∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 
  

(4) 

 subject to: 
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 
 

∀𝑗 

 

(5) 

  
∑ 𝑑𝑗𝑥𝑖𝑗

𝑚

𝑗=1

≤ 𝑏𝑖𝑦𝑖  
 

∀𝑖 
 

(6) 

   

𝑥𝑖𝑗 ∈ {0,1} 

 

∀𝑖, 𝑗 

 

(7) 

 

where equation (2) denotes the upper level’s objective function, in which the minimization of the locating and distributing costs 

is aimed. In equation (3) the binary nature of the upper level’s decision variables is required. Constraint (4) shows the freedom 

that customers have concerning being allocated to the facility they preferred. That constraint is known as the lower level’s 

objective function and indicates the maximization of the customer’s preferences. The requirement that whole customer’s 

demand must be met is guaranteed by equation (5). The capacity constraint associated with facilities is considered in equation 

(6), where the located facilities will supply the demand of all the possible customers without exceeding their production 

capacity. Equation (7) denotes the binary constraint associated with the lower level decision variables. 

 

It is important to highlight that since (2) is being minimized for both decision variables, but 𝑦 is decided in the upper 

level problem and 𝑥 in the lower level one. This fact yield us to consider the optimistic version of the bilevel 

problem. In other words, if the lower level problem has multiple optimal solutions for a given upper level decision 

𝑦; then, the resulting solution𝑥 will be the one that results more convenient for the upper level’s objective function. 

It is clear that the lower level’s objective function will remain as the same. In this sense, it could be seen that there is 

a certain type of cooperation among both decision levels. 
 

4. Obtaining the bounds 
 

Due to the lack of commercial software capable of solving the bilevel problem described in the previous section, 

other resolution schemes are explored. One of the most common approaches is to reformulate the lower level 

problem via it corresponding KKT conditions. Also, a similar approach that uses the primal-dual relationships of the 

lower level problem is commonly used. Both approaches reduce the bilevel problem into a single-level one. 

Moreover, these approaches lead us to equivalent single-level problems. However, it is evident that these approaches 

cannot be applied straightforwardly to the problem herein considered due to the integrality constraints associated 

with the decision variables. On the other hand, a single-level reduction that obtains classical lower bound consists in 

omit the lower level’s objective function and solve the remaining problem. Nevertheless, the quality of the resulting 

bound is poor in most of the cases. 
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Other resolution approach consists in developing an algorithm for handling the upper-level decision variables, while 

considering the lower level’s resolution within the process. The selected algorithm depends on the problem’s 

characteristics. For example, enumerative, heuristic or metaheuristic algorithms have been applied for solving 

bilevel problems. 

 

We conduct two of the mentioned approaches, that is, reformulate the bilevel problem by considering a linear 

relaxation of the lower level and implement an enumerative algorithm for comparing the values given by the 

reformulation. In the latter algorithm, the lower level is optimally solved by an optimizer for each upper level’s 

decision. By doing this, feasible bilevel solutions are obtained and the optimal solution is guaranteed. 
 

 

4.1 Classic lower bounds of the bilevel problem 

 
As it is mentioned above, a classical bound for bilevel problems consists in omitting the lower level’s objective 

function and aggregate all its corresponding constraints into the upper-level problem. Since we are considering a 

minimization problem, the resulting bound is a lower one. By doing the latter, the upper level’s decision maker will 

decide both decision variables, his and the lower level ones. Hence, he will select the best decisions based on his 

objective function without regarding the lower level.  

 

Therefore, the single-level reformulation used for obtaining classical lower bounds of the problem (2)-(7) is as 

follows: 
 

min
𝑦,𝑥

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑦𝑖

𝑛

𝑖=1

 
  (8) 

subject to:  𝑦𝑖 ∈ {0,1} 

 

∀𝑖  (9) 

 
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 
 

∀𝑗 

  

(10) 

 
∑ 𝑑𝑗𝑥𝑖𝑗

𝑚

𝑗=1

≤ 𝑏𝑖𝑦𝑖  
 

∀𝑖 
  

(11) 

  

𝑥𝑖𝑗 ∈ {0,1} 

 

∀𝑖, 𝑗 

  

(12) 

 

This scheme is very useful to validate the bilevel structure of a problem. This is, if the optimal solution of the single-

level problem (8)-(12) is the same than the optimal solution of the bilevel problem (2)-(7), then it implies that the 

most preferred facilities coincide with the closest ones; and the bilevel formulation lost it sense. Moreover, since the 

opinion of the lower level decision maker is not being taken into account, the upper-level objective function cannot 

be affected in any way. Hence, the optimal solution of the problem (8)-(12) will be a valid lower bound for the 

bilevel problem. 

 
4.2 Proposed bounds based on the linear relaxation of the lower level 

 
Consider the lower level problem defined by (4)-(7) and consider the linear relaxation of equation (7), that is, 𝑥𝑖𝑗 ≥

0 –this will be denoted as (7𝐿𝑅)-. Note that after this linear relaxation, the NP-hardness associated with the lower 

level is lost. Moreover, the primal-dual relationships of the resulting problem can be obtained. First, let 𝑢𝑗(𝑗 =

1, … , 𝑚)and𝑣𝑖(𝑖 = 1, … , 𝑛)be the dual variables associated with the lower level. Then, its corresponding dual 

problem is as follows: 
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min
𝑢,𝑣

∑ 𝑢𝑗

𝑚

𝑗=1

+ ∑ 𝑏𝑖𝑦𝑖𝑣𝑖

𝑛

𝑖=1

 
  

(13) 

s.t. 𝑢𝑗 + 𝑑𝑗𝑣𝑖 ≥ 𝑝𝑖𝑗  ∀𝑖, 𝑗 (14) 

 𝑣𝑖 ≥ 0 ∀𝑖 (15) 

 
Then, this reformulation consists in assure primal and dual feasibility of the lower level and include a criterion for 

guaranteeing optimality, such as, the slackness complementarity constraints or the equality of both objective 

functions. Therefore, the reformulated relaxed problem is given by (2), (3), (5)-(6), (7𝐿𝑅), (14)-(15) and (4)=(13). 

Note that the latter equality is referred to the value associated with the primal and dual’s objective function. 

Moreover, it can be appreciated that (13) is non-linear, but it can be easily linearized by including an auxiliary 

variable 𝑧𝑖 = 𝑦𝑖𝑣𝑖, (𝑖 = 1, … , 𝑛). This is possible due to that 𝑦𝑖 is a binary variable despite the fact that 𝑣𝑖 is a 

continuous one. Hence, 𝑧𝑖 = 𝑣𝑖 when 𝑦𝑖 = 1; and 𝑧𝑖 = 0 when 𝑦𝑖 = 0.Taking advantage of these relationships, the 

proper constraints could be added into the model for linearizing it. A detailed description of this procedure but 

applied to another bilevel problem can be seen in [4]. 

 

Then, the resulting single-level mixed integer programming problem -in which 𝑀 is a positive and sufficient large 

constant- is presented next: 

min
𝑦,𝑥,𝑢,𝑣,𝑧

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

+ ∑ 𝑓𝑖𝑦𝑖

𝑛

𝑖=1

 
  

(16) 

Subject to: 
∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 
 

∀𝑗 

 

(17) 

 
∑ 𝑑𝑗𝑥𝑖𝑗

𝑚

𝑗=1

≤ 𝑏𝑖𝑦𝑖  
 

∀𝑖 
 

(18) 

 𝑢𝑗 + 𝑑𝑗𝑣𝑖 ≥ 𝑝𝑖𝑗  ∀𝑖, 𝑗 (19) 

 
∑ ∑ 𝑝𝑖𝑗𝑥𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

= ∑ 𝑢𝑗

𝑚

𝑗=1

+ ∑ 𝑏𝑖𝑧𝑖

𝑛

𝑖=1

 
  

(20) 

 𝑧𝑖 ≥ 0 ∀𝑖 (21) 

 𝑧𝑖 ≤ 𝑀𝑦𝑖  ∀𝑖 (22) 

 𝑧𝑖 ≤ 𝑣𝑖 ∀𝑖 (23) 

 𝑧𝑖 − 𝑀𝑦𝑖 ≥ 𝑣𝑖 − 𝑀 ∀𝑖 (24) 

 𝑦𝑖 ∈ {0,1} ∀𝑖 (25) 

 𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 (26) 

 𝑣𝑖 ≥ 0 ∀𝑖 (27) 

 

It is important to remark that this reformulation is not equivalent to the original bilevel problem. The main issue is 

that equation (7𝐿𝑅) does not guarantees that the optimal solution be integer. Moreover, since the lower level is a 

maximization problem and it is being relaxed, the objective function value for this relaxation will be greater than the 

objective value for the integer problem. And, due to the fact that the optimal solution for the lower level 

parameterized in a fixed upper level variable will represent the approximation of the bilevel feasible region 

(inducible region). It is natural to suppose that the approximated inducible region is being overestimated. Then, the 

upper level decision will take place over that overestimated region and its minimum value will be greater than the 

optimal for the original problem. So, we could expect that the lower level’s relaxation yield us to an upper bound. 

However, this is not always true (this is shown in next Section) since the absence of the lower level optimal solution 

will affect in a non-predictable manner the upper level objective function of the problem herein considered. On the 

other hand, this linear relaxation obtains good bounds, although they cannot be classified as upper or lower bounds. 
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5. Computational experimentation 
 

The results obtained from the computational experimentation are presented in this subsection. Two different sets of 

instances were considered; the main difference is that one has homogeneous production capacity for the facilities 

and the other one, contains heterogeneous capacities. The former set of instances was taken from the instances used 

for the capacitated warehouse location problem contained in the Beasley’s OR Library. From that set, we consider 

the 13 instances with 16 facilities and 50 customers, that is, 16 × 50. Regarding the last four instances, the fixed 

costs and capacities for each facility were modified in order to reach different optimal solutions. On the other hand, 

the latter set was taken from a set of instances for the single source capacitated plant location problem studied in 

[16]. For our experimentation, ten instances of size 15 × 30 were considered. Both sets were adapted by adding the 

customer’s preferences with the same procedure that is described in [1]. 

 

We decided to test only small size instances due to the limitations of the enumerative algorithm. For example, for the 

16 × 50 instances, there are only 26,333 feasible solutions; but, for a set of dimensions 25 × 50 there are 

33,554,431 feasible solutions. Moreover, the lower level is optimally solved for each of these solutions. This clearly 

limits the capability of the enumerative algorithm for solving medium or large size instances. Also, this work aims to 

measure the efficiency of the proposed bounds and for doing that, the optimal solution of the tested instances is 

required. 

 

The computational experimentation was conducted in a workstation with an Intel (R) Core processor and 32GB of 

RAM. The code was implemented in C++ language and CPLEX 12.6.1 was used for solving the reformulation that 

omits the lower level objective function, the relaxed reformulation and the lower level in the enumerative algorithm. 

It is worthy to emphasize that for both sets of instances, the lower level can be optimally solved despite its NP-

Hardness. Tables 1 and 2 show the obtained results for instances with homogeneous and heterogeneous production 

capacity, respectively. For the enumerative algorithm, the optimal upper-level objective function value and the 

required time are shown. Then, regarding the proposed bounds, the reached values, the required computational time 

and the optimality gap, computed as100% × (optimum − bound)/optimum, are presented. 
Table 1.Results obtained from the computational experimentation with homogeneous production capacity. 

  Enumerativealgorithm Classicallowerbounds Relaxedreformulationbounds 

Instance Optimum Time (s) Bound 
Time 

(s) 

Gap 

(%) 
Bound Time (s) Gap (%) 

16 × 50
− 41 

1,518,736 1,697.72 964,895 1.02 36.47 1512700 340.85 -0.42 

16 × 50
− 42 

1,640,170 1,072.51 1,016,155 1.11 38.05 1737580 372.03 5.94 

16 × 50
− 43 

1,599,687 907.21 1,064,678 2.20 33.44 1604880 347.09 0.32 

16 × 50
− 44 

1,648,478 1,001.80 1,129,726 7.19 31.47 1675090 353.44 1.61 

16 × 50
− 51 

1,416,440 1,186.43 1,014,038 1.56 28.41 1437680 102.60 1.51 

16 × 50
− 61 

1,307,693 1,230.22 932,616 0.64 28.68 1289980 30.36 -1.35 

16 × 50
− 62 

1,305,170 1,288.15 977,799 0.56 25.08 1309990 28.56 0.37 

16 × 50
− 63 

1,322,223 1,234.80 1,010,808 1.02 23.55 1322760 46.89 0.04 

16 × 50
− 64 

1,405,077 1,260.28 1,042,331 2.02 25.82 1385040 39.86 -1.43 

16 × 50
− 71 

1,332,155 1,222.64 
940,116 0.28 29.43 

1360000 29.58 2.09 

16 × 50
− 72 

1,347,556 1,126.81 
990,299 0.39 26.51 

1347560 26.78 0.00 



Casas-Ramirez and Camacho-Vallejo / International Journal of Combinatorial Optimization Problems and Informatics, 10(2) 2019, 8-16. 

  

14 

 

16 × 50
− 73 

1,346,647 1,192.97 
1,028,140 0.45 23.65 

1349660 28.08 0.22 

16 × 50
− 74 

1,352,116 1,140.99 
1,060,130 0.52 21.59 

1389990 24.31 2.81 

 

From Table 1, it can be appreciated that –as it is expected- the enumerative algorithm consumes a significant amount 

of time for solving small-sized instances. The scheme for obtaining the classical lower bounds is very fast. However, 

the optimality gaps are very large –between 21.5% and 38%-. On the other hand, it can be seen that the obtained 

bounds from the proposed relaxed reformulation have good quality. The greater magnitude of the optimality gap is 

5.94%. Also, the time reduction is significant. On the other hand, there are negative and positive optimality gaps, 

which means that obtaining feasible bilevel solutions for this problem is not guaranteed due to the lower level’s 

relaxation (gaps with negative values are semi-feasible bilevel solutions). Nevertheless, the proposed bounds are a 

viable option for solving this problem. 
 

Table 2.Results obtained from the computational experimentation with heterogeneous production capacity. 

  Enumerativealgorithm Classicallowerbounds Relaxedreformulationbounds 

Instance Optimum Time (s) Bound 
Time 

(s) 

Gap 

(%) 
Bound Time (s) Gap (%) 

15 × 30 − 𝑝7   5,102 5,705.18   4,366 8.14 14.43 5,231.34 5.50 -2.54 

15 × 30 − 𝑝8   8,908 5,022.95   7,926 7.50 11.02 8,657.60 3.84 2.81 

15 × 30 − 𝑝9   3,363 2,235.52   2,480 3.33 26.26 3,467.96 10.17 -3.12 

15 × 30 − 𝑝10 24,012 3,076.26 23,144 7.63   3.61 24,143.56 0.56 -0.55 

15 × 30 − 𝑝12  4,417 6,186.57   3,711 11.14 15.98 4,459.71 18.83 -0.97 

15 × 30 − 𝑝13   4,569 4,837.69   3,760 9.67 17.71 4,690.32 21.03 -2.66 

15 × 30 − 𝑝14   6,700 6,026.05   5,965 6.92 10.97 6,798.35 0.91 -1.47 

15 × 30 − 𝑝15   8,909 1,079.64   7,816 5.94 12.27 8,728.28 1.77 2.03 

15 × 30 − 𝑝16 12,262 1,024.27 11,543 6.39   5.86 12,325.25 1.23 -0.52 

15 × 30 − 𝑝17 10,700 6,299.82   9,884 5.97   7.63 10,673.03 0.66 0.25 

 

Furthermore, when considering instances with a different structure, the behavior of the proposed bounds remains 

very similar -see Table 2-. In other words, the classical lower bounds are not as strengthened as the ones obtained by 

the relaxed reformulation. Also, there are some instances which required less time for obtaining the proposed bounds 

than for obtaining the classical ones. In Figure 1, the optimality gaps associated with the classical lower bounds and 

the proposed bounds are displayed. The first 13 instances correspond to Table 1 and the remaining ten instances to 

Table 2. It can be seen that with the reformulation that leads us to lower bounds, larger gaps are obtained than those 

obtained with the primal-dual relaxed reformulation. For example, the worst gap of the classical lower bounds is 

38% and the worst proposed bound is almost 6%. Both bounds correspond to instance16 × 50 − 42. Also, it can be 

observed that instance 15 × 30 − 𝑝9 shows the larger negative gap between both sets for the proposed bounds; and 

the larger gap for the classical bounds in the instances with heterogeneous production capacity. 
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Fig. 1.Optimality gaps. 

 

Figure 2 plots –in a logarithmic scale- the required time for the three considered schemes. The findings are very 

intuitive, that is, the enumerative algorithm consumes more time than the other two methods. Then, the first 

reformulation, which gives poor quality bounds, is the less time consuming for the first set of instances. However, 

for the second set, the proposed relaxed reformulation requires less time in 7 of 10 instances.  
 

 
Fig. 2.Consumed time (in seconds). 

 

6. Conclusions 
 

In this paper, a capacitated bilevel facility location problem with customer’s preferences is studied. Also, valid 

bounds for this complex problem were proposed. The main motivation is that the lower level problem is NP-hard, 

so, the inducible region of the bilevel problem may not be explicitly found. However, some appropriate resolution 

scheme must be conducted. Hence, in order to approximate the inducible region, a bound based on the linear 

relaxation of the lower level is proposed. This could lead us to guess that an upper bound will be found. 

Nevertheless, the computational experience shows that this is not always the case. Therefore, the proposed bound is 

valid, but it cannot be classified as upper or lower bound.  

 

Moreover, the results obtained from the computational experimentation show that the classical reduction of bilevel 

programming problems gives poor quality lower bounds. It is well-known that this behavior takes place because the 
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objective function of the lower level is not being taken into consideration during the decision process. In order to 

compare the obtained bounds, an enumerative algorithm was implemented. 
 

The proposed relaxed reformulation’s performance is quite acceptable due to the fact that the required computational 

time is reasonable –the worst time is only 372 seconds- with good quality bounds for the set of instances with 

homogeneous production capacity. On the other hand, in the second set of instances, the computational time is 

decreased in most of the tested instances. Moreover, the good quality of the obtained bounds is maintained. Hence, 

the proposed bounds seems to be a good option for solving this problem regardless of the structure of the instance. 

 

Two straightforward future research areas can be mentioned. The first one is to experiment with a larger set of 

instances to validate the well-behavior of the proposed bounds. Based on the inefficiency of the enumerative 

algorithm when solving medium or large size instances, the second one is to implement efficient exact procedures 

based on adding valid inequalities for solving the bilevel version of the problem. 
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